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Abstract. Current trend in processor manufacturing focuses on multi-core architectures rather 

than increasing the clock speed for performance improvement. Graphic processors have 

become as commodity hardware for providing fast co-processing in computer systems. 

Developments in IoT, social networking web applications, big data created huge demand for 

data processing activities and such kind of throughput intensive applications inherently 

contains data level parallelism which is more suited for SIMD architecture based GPU. This 

paper reviews the architectural aspects of multi/many core processors and graphics processors. 

Different case studies are taken to compare performance of throughput computing applications 

using shared memory programming in OpenMP and CUDA API based programming. 

 

1. Introduction 
Architectural advancements in microprocessors created improvement in performance of HPC 

applications by increasing processing elements on processor die. This in contrast to traditional way of 

increasing clock rate; created huge impact on the software development community. [1] With this 

approach we can divide the processors in two groups: the first is multi-core model where a few cores  

are integrated in single processor (e.g. Intel Core- i7 contains four physical cores) and second is many-

core model where large number of core/ processing elements are integrated (e.g. Nvidia GeForce GTX 

1080 contains 2560 single precision CUDA cores). The power of massively parallel computer systems 

can be utilized in two ways: automatic parallelism, parallel programming. Both ways differs in peak 

performance achievable for an application and effort required to implement parallelism in the code. In 

automatic parallelism ILP (Instruction Level Parallelism) and parallel compilers plays major role by 

taking advantage of hardware features of micro architecture.  

The scope of the paper is to review architectural aspects of multi/many core processors and 

graphics processors. Different case studies are taken to compare performance of throughput computing 

applications using shared memory programming in OpenMP and CUDA API based programming.  

The rest part of the paper is divided into following parts: Section: 2 shows throughput computing 

applications and usage in different domains.  Section: 3 provide major performance evaluation metrics 

for parallel programs. Section: 4 provide review on HPC hardware and software. Section: 5 describes 

case study on CpenMP and CUDA programming and analysis using profiling. Section:6  concludes 

the paper. And Section: 7 shows proposed future work. 

 

 

 



2

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

 

 

 

 

 

 

2. Throughput computing workloads 

With increase in digital data from various sources like IoT, social networking sites, multimedia, big 

data, scientific data, medical data etc. has created processing and storage requirements at large scale. 

Such kind of massive data requires state of art storage, indexing, processing and retrieving 

requirements. One of attractive feature of such applications is "inherent data level parallelism" due to 

which data can be processed in independent order on different processing elements. "Data level 

parallelism" and "processing deadlines" plays major role in "throughput computing applications" as in 

simple terms throughput is how much data can be processed in given time period. 

In [2], authors provide evaluation of selected throughput computing application kernels based on 

CPU and GPU implementations. These kernels are part of application code having inherent 

parallelism. They can be classified based on (1) computation and memory access (2) nature of memory 

access to take advantage of data parallelism in terms of SIMD (3) coarse grained and fine grained 

parallelism to identify synchronization requirements. Summary of these kernels are given in table:1. 

Authors using benchmarks and optimized code for CPU and GPU shows that the performance for 

CPU can be obtained at par with GPU implementations by carefully using the architectural features of 

multi-core CPUs. Author’s shows performance comparison based on following criteria which is 

briefly given below: 

1. Memory bandwidth: 

The effect of data transfer to/from external memory in performance of kernel depends on two areas: 

(1) how much computation is provided in kernel so that it can use the memory transactions (2) 

whether the kernel has working set that is appropriate for size of storage elements (i.e. cache or 

buffers) 

2. Computation in terms of FLOPS(Floating Point Operations Per Second): 

It depends on performance of single thread and achieved TLP using multiple cores or DLP using 

vector (SIMD) units. 

3. Impact of cache memory: 

Working set characteristics determine the performance of kernel. Cache is useful for hiding memory 

latency of kernel by storing kernel's working set on cache fully or partially. 

4. Level of data parallelism in terms of gather/scatter: 

If the kernel is not bandwidth bound then it is advantageous with increasing DLP. However for 

achieving best performance the data layout should be aligned with the width of SIMD units. 

5. Reduction of threads and synchronization among threads: 

Throughput computing applications uses TLP and DLP for achieving best performance. Creation, 

manipulation, joining of threads or synchronization among threads involve overhead so reduction of 

joining and synchronization plays vital role. 

6. Specific fixed functions 

Certain kernels involve operations which are supported in hardware of CPU or GPU. Such kernels 

take advantage of such features.   

Kernels are classified based on computation, memory and synchronization requirements. Various high 

performance libraries are provided in CUDA toolkit. Open source and proprietary libraries are also 

available for Nvidia CUDA enabled GPUs. 

Table 1 Throughput computing kernels 

 

Description 

of kernels 
Characteristics 

Parallelis

m 

(SIMD)* 

Where TLP 

possible? 
Usage 

Nvidia 

CUDA 

library 

SGEMM 

(Single 

precision 

Performs O(n
3
) 

computations and O(n
2
) 

data accesses. Compute to 

RL 

Processing of 

2D tiles created 

by row of 

Used in 

linear 

algebra 

cuBLAS, 

cuBLAS-XT, 

NVBLAS, 
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General 

matrix-

multiplicatio

n) 

data access ratio is O(n), 

so compute intensive 

nature. 

matrix-1 and 

column of 

matrix-2 

EM Photonics 

CULA Tools, 

ArrayFire 

Monte Carlo 

(MC) 

Heuristic method for 

simulating the nature of 

system like PI value 

approximations, finance 

stock price predictions. 

Simulation can be broadly 

divided into random 

number generator, data set 

generation, function 

evaluation and statistical 

aggregation. 

It is compute intensive. 

RL 

In random 

number 

generation and 

statistical 

aggregation 

Simulati

ng 

systems 

cuRAND-For 

random 

number 

generation 

Thrust library 

can be used to 

accelerate MC 

on GPU. 

Convolution 

(Conv) 

It is commonly used for 

image filtering. It consist 

of multiply-add operation 

and data access for nearby 

neighbours. Each pixel is 

independently processed 

so both SIMD and TLP 

can be used. If 

multidimensional 

convolution is used then 

cache blocks play 

important role. It is 

compute intensive and for 

small filters bandwidth 

bound. 

RL 

Due to 

independent 

processing of 

each pixel, TLP 

can be used 

across pixels. 

For 

analysis 

of 

images 

NVIDIA 

Performance 

Primitives 

library (NPP) 

Fast Fourier 

Transformati

on (FFT) 

Used to transform signals 

from time domain to 

frequency domain and 

vice versa. Compared to 

DFT which requires O(n
2
) 

operations, FFT requires 

O(nlogn) operations.FFT 

is compute intensive or 

bandwidth bound 

depending on size of the 

signals. 

RL In smaller FFTs 

Signal 

processi

ng 

cuFFT 

Single-

Precision 

A·X Plus 

Y(SAXPY) 

It is group of scalar 

multiplication and vector 

addition in Basic Linear 

Algebra Subprograms 

(BLAS). For large vectors 

the operation is 

bandwidth bound. 

RL 

Across the 

vectors X and 

Y as both are 

independent. 

Used in 

linear 

algebra 

cuBLAS, 

cuBLAS-XT, 

NVBLAS, 

EM Photonics 

CULA Tools, 

ArrayFire 

 

Lattice 

Boltzmann 

Used for simulating fluid 

and runs efficiently on 
RL 

Across the cells 

of lattice 

Computa

tional 

cuSOLVER, 

AmgX 
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method 

(LBM) 

massively parallel 

computers. Compute and 

data are O(n) leading low 

compute to bandwidth 

ratio. It is bandwidth 

bound. 

Fluid 

Dynamic

s(CFD) 

Constraint 

Solver 

(Solv) 

Synchronization bound G/S 

Across 

constraints 

 

Rigid 

body 

physics 

- 

Sparse 

matrix 

vector 

multiplicatio

n (SpMV) 

Bandwidth bound for  

matrices with larger 

dimensions 

G 
Across non-

zero elements 

For 

solving 

sparse 

metrices 

cuSPARSE 

Gilbert–
Johnson–
Keerthi 

distance 

algorithm 

(GJK) 

Used to find distance 

between two convex sets. 

Compute intensive. 

G/S Across objects 

Collision 

Detectio

n 

Image 

processing 

libraries 

ArryFire 

Sorting 

Radix sort is taken into 

consideration. 

Compute intensive 

 

G/S 
Across 

elements 
Database ArryFire 

Ray casting 

(RC) 

Used to visualize 3-D 

datasets like medical 

images, CT scan data etc. 

Memory intensive 

operations are performed 

where first level working 

set may contain 4-8 MB 

and last level working set 

may contain over 500 MB 

to several GB 

 

G Across rays 

Volume 

Renderin

g 

NVIDIA 

IndeX 

Searching 

Compute intensive for 

small tree, bandwidth 

intensive at bottom of tree 

for large tree. 

In memory searching is 

faster if depth of tree is 

less than last cache size in 

CPU performance 

analysis. For GPU 

searching is compute 

intensive and run time 

search is proportional to 

depth of tree 

 

G/S Across queries Database - 



5

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

 

 

 

 

 

 

Histogram 

(Hist) 

Image processing 

algorithm for separating 

the pixels based on 

parameters and 

aggregating in different 

bins. 

Reduction or 

synchronization intensive 

 

Conflict 

detection 

support is 

required 

for SIMD 

implemen

tation 

Across pixels 
Image 

Analysis 

Image 

processing 

libraries 

ArryFire, 

Nvidia 

Performance 

primitives 

Bilateral 

(Bilat) 

Used as non-linear filter 

in image processing for 

edge preserving 

smoothing provisions. 

Compute intensive 

RL Across pixels 
Image 

Analysis 

Image 

processing 

libraries like 

ArryFire 

*Parallelism: RL-Regular, G-Gather, S-Scatter 

 

Kernels are classified based on computation, memory and synchronization requirements. Various 

high performance libraries are provided in CUDA toolkit. Open source and proprietary libraries are 

also available for Nvidia CUDA enabled GPUs.  

In [3], authors divide the workloads based on "RMS- Recognition, Mining and Synthesis" and 

categorise throughput computing applications using similarity patterns based on algorithmic structure, 

mathematical model and data structures. Authors show the importance of workload convergence on 

architectural design of general purpose computing platforms and impact of computing devices on 

user's experience and developer's methodology and productivity. 

"Random number generation(RNG)" is one of basic requirement for throughput computing 

applications like Monte Carlo methods. For accelerating RNG using GPU; different methods and 

requirements are reviewed in [4]. 

Brain data processing is one of the toughest challenge for identifying brain activities and functions. 

Massively parallel systems formed using "GPGPUs" can be used for gaining performance using three 

approaches: (1) decomposing the "electroencephalogram(EEG)" series (2) changing synchronization 

measures for multivariate EEG (3) reducing the dimensions for large scale "parallel factor 

analysis".[5] 

 

3. Performance evaluation 

For evaluating parallel applications one of major parameter is scalability. Given workload is scalable 

if by increasing number of processing elements the application can use the available pool of 

processors and improve the performance.  

Speedup(S): 

Speedup(S) of parallel solution by comparing with sequential solution of given application is ratio of 

running time of sequential solution (T1) to running time of parallel solution on N processors (TN) as 

shown in equation:1.  

Parallel efficiency(E):  

 

Parallel efficiency(E) can be obtained by dividing speedup(S) by total number of processing elements 

as shown in equation:2. 

 

S(N) = T1/ TN 

(1) 

E(N) = S(N) / N = T1/ (N1  *TN) 

(2) 
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Ideal speedup or linear speedup is N and that can be achieved using N processing elements if TN = 

T1/N which leads to "parallel efficiency" 1.0. The linear speedup is theoretical and cannot be achieved 

in practical situation as some portion of any application is serially executable which cannot be 

parallelize.  

Speedup metrics can be classified as: 

1. Strong scaling or fixed size speedup 

2. Weak scaling or fixed time speedup 

3. Memory bounded speedup 

  

Strong scaling speedup is calculated using Amdahl's law which states that "achievable speedup of 

given workload(w) is identified using portion of program's code which can be executed in serial 

manner only". If we take N as infinite number of computing resources then we get upper bound of 

speedup as 1/(Serial_fraction).  

S(N) =T1(w) /TN(w) 

=T1(w) / (Serial_fraction * T(w) + ((1 - Serial_fraction) * T1(w))/N) 

=1/ (Serial_fraction + (1 - (Serial_fraction)/N) 

(3) 

 

Weak scaling speedup is calculated using Gustafson's law which states in optimistic way that "as 

size of problem increases the serial portion of code is not always appropriate to assume. The parallel 

computing resources can be deployed to solve large problem in time bound manner. Workload can be 

divided into sequential (ws) and parallel (wp) parts. Here it is assumed that parallel part scales in linear 

way with increase of processors." 

S(N) =T1(ws + N * wp) /T1(ws +wp) 

S(N) = (Serial_fraction * T1(w) + N * (1 - Serial_fraction) * T1(w)) / T1(w) 

         = N + (1 - N) * Serial_fraction  

Memory bounded speedup is higher than weak scaled speedup for applications where problem size 

increases more linearly with increase in number of processing elements because of constraints of 

memory i.e. arithmetic calculations increase faster than requirements of memory.[6]  

 

4. HPC hardware and software 

 

4.1  HPC hardware 

Differences between multi-core and modern graphics processing units: 

Multi-core processors 
 Each core (generally <10) works as an independent processing element having complete instruction 

set and out-of-order execution or dynamic scheduling (i.e. each core can execute different tasks and 

instructions are processed according to which operands are available at given instance of time rather 

than program order). Multi-core processors can be homogeneous (i.e. contains similar cores) or 

heterogeneous (i.e. contains different kind of cores). "Hyperthreading" may be supported (i.e. each 

core can execute two hardware threads at same time). Generally they are used to maximize speed of 

execution for sequential programs). Design is optimized for sequential code performance by using ILP 

(Instruction Level Parallelism). Large cache memory for data and instruction are provided to hide 

instruction and data latency. 

    

Graphics processing units 

GPUs contain hundreds of SIMD cores having limited instruction set and heavily multithread, in-order 

execution and single-instruction issue processors. A single SIMD instruction can execute multiple 

operations on different operands so to take advantage of SIMD instructions our code should be in form 

of vectors means independent instructions of similar type has to be identified and these selected 

instructions are replaced by SIMD instructions. Control and instruction cache are shared among other 
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cores. Design is optimized for multimedia intensive applications. Maximum chip area and power used 

for floating point calculation so design focus is on providing large number of numeric computation 

engines. Large memory bandwidth is provided for moving data to GPU as well as small cache 

memory is provided to control bandwidth requirements for applications. 

 

  
 

Figure 1 Simplified architecture of multi-core processor and GPU 

 

 

4.2 Software 

As surveyed in [7], parallel programming models can be classified as: 

 

4.2.1. Pure Parallel Programming Models 

 

4.2.1.1. POSIX threads 

Thread is known as light weight process and it has program counter (PC) and stack memory. The 

"Pthreads, or Portable Operating System Interface (POSIX) Threads"  is a collection of C types and 

procedures. "Pthread" is developed using a header file "pthread.h" and library which is useful 

for "fork/join" based parallel programming. This model provides dynamic memory allocation using 

heap memory and shared global variables. For giving exclusive access of shared variables to threads 

mutex and semaphore constructs are supported. Author suggests that this model is not suitable for 

HPC applications due to scalability issues(i.e. number of threads created in program are independent 

of number of available processors in the system). 

 

4.2.1.2. OpenMP (Open Multiprocessing) 

"OpenMP" is used for shared memory parallel programming. It is a "multithreading interface"  to 

create HPC applications by providing abstract compiler directives in C, C++ or Fortran languages to 

create threads, provide synchronization and manage memory in shared memory environment. It 

follows block structured fork/join model for creating parallel regions in the programs. Each parallel 

regions is executed by the created threads as single individual task. This approach is also known as 

"work sharing". So parallel loop based structures, "Single Program Multiple Data (SPMD)" and 

fork/join structures are benefited using "OpenMP". Apart from higher level abstraction in terms of 

compiler directive, this model supports "application specific synchronization primitives" which ease 

the programmers burden for managing synchronization explicitly in programs; unlike in "Pthreads". 
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Figure 2  OpenMP architecture 

 

4.2.1.3. Message passing 

"Message passing" programming model is used to create distributed memory parallel programs. While 

comparing with "OpenMP"; communication among different processes is carried out by passing 

messages rather than sharing variables. "Message Passing Interface (MPI)" is de facto standard for 

creating large scale programs for HPC applications using distributed memory architecture. It supports 

"SPMD"  and "master/worker" programming patterns. "MPI" is good for portable applications and 

"task parallel" programs which consist of dynamic data structures and unstructured calculations. 

Nowadays "MPI" supports combination of "message passing" and "multithreading" with inherent 

thread safety levels. 

 

4.3. Heterogeneous parallel programming 

Due to emergence of "general purpose graphics processing units (GPGPUs)" which provides 

traditional GPUs as accelerator for general purpose computations using different "APIs". 

 

4.3.1.  CUDA 

"Compute Unified Device Architecture(CUDA)" API is created by NVIDIA for creating applipcations 

which can take advantage of massively parallel graphics processors to perform general purpose 

computations. "CUDA" model provides high level abstractions and compilers directives for C, C++ 

and Fortran languages. The terminology is briefly provided here. For this model, CPU known as host 

as other device (i.e. GPUs, signal processors, application specific SoCs etc.) are interfaced and 

managed by CPU. As seen in architecture of HPC hardware, "GPU" consist of collection of 

"streaming multiprocessors (SMs)" which executes a large number of threads in parallel manner. The 

threads are logically organized into two level hierarchy of grid and blocks. Each thread has a unique 

"ThreadID". The block may contain one of three kind of hierarchy i.e. one dimensional, two 

dimensional or three dimensional for data structures like vector, matrix and complex number or 

volume respectively. This model is well suited for "SPMD" pattern which can take advantage of 

SIMD based GPUs. Thread creation and management is done by CUDA implicitly whereas 

distribution of work among threads is provided by the programmer in terms of number of blocks per 

grid and number of threads per block. Block of threads creates a workgroup which is executed on 

SMs. "Global function" with "CUDA" primitives is created with appropriate thread hierarchy and 

synchronization. As shown in Fig. [3] global and shared memory are provided. Constant memory is 

"read only" for device(GPU) and shared memory is accessed by all threads in the block. 
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Figure 3 "CUDA" architecture and memory 

model 

 
 

Figure 4. "OpenCL" simplified Model 

 

4.3.2. OpenCL 

As shown in Fig. 6, it is used for general purpose heterogeneous parallel computing. While comparing 

with "CUDA", it supports heterogeneous devices of different vendors and its open royalty free 

standard. 

 

4.3.3. DirectCompute and TPL(Task Parallel Library) by Microsoft 

Microsoft supports GPU programming using DirectCompute. "TPL" provides compiler directive and 

programming constructs to take advantage of multi-core processors in "MS .NET" environment. 

 

4.3.4. AMD ATI Stream 

It is used by AMD multi-core GPUs. It gives support for data and task based parallel programming. 

 

4.3.5. Intel Array Building blocks(ArBB) 

It provides general purpose "vector parallel programming" for mathematical and data intensive 

calculations. It is made of standard C++ library and implicitly uses Intel's Thread Building Blocks 

(TBB). 

 

5. Implementation 

We have used multi-core processor Intel(R) Core(TM) i7-2670QM CPU @ 2.20GHz. Maximum 

single core frequency is 3.10 GHz using Intel Turbo Boost Technology.  It has 4 Cores or ALUs. Intel 

Hyper-Threading Technology is supported so two threads can be executed per core hence total 8 

logical processors are available in the system. 8 GB of RAM is provided in the system. Nvidia 

GeForce GT 540M graphics card is installed. 

 

5.1 Profiling 

For understanding working of CUDA and OpenMP based application behaviour on the given 

hardware and software; profiling is done using of visual profiler of NVIDIA Nsight in Visual Studio 

2015. Such kind of profiling using benchmarks provides better optimization criteria for throughput 

computing workloads as they tend to be application domain specific and contain similarity patterns or 

design patterns implicitly. With the available hardware and software we are showing basic steps to 
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differentiate two kind of performance analysis tools: (1) profiling which generates statistical report 

based on executed instruction in specific time interval and (2) tracing which store all the events in 

program execution with reference to timestamp and sort the events by comparing initial time. 

 

/*Sample code for using OpenMP and CUDA: cuda_openmp.cu (Source Reference: NVIDIA toolkit 

documentation)*/ 

#include "cuda_runtime.h" 

#include "device_launch_parameters.h" 

#include <omp.h> 

#include <stdio.h>   

#include <helper_cuda.h> 

#include <stdlib.h> 

#include <cuda.h> 

using namespace std; 

 

// a simple kernel for multiplying  

__global__ void kernelMultiplyConstant(int *g_a, const int b) 

{ 

    int idx = blockIdx.x * blockDim.x + threadIdx.x; 

    g_a[idx] *= b+12345; 

    printf("%d ,", g_a[idx]); 

} 

 

int main(int argc, char *argv[]) 

{ 

    int num_gpus;   // number of CUDA GPUs 

    cudaGetDeviceCount(&num_gpus);//identify GPU in system 

    if (num_gpus < 1) 

    { 

        printf("no CUDA capable devices were detected\n"); 

        return 1; 

    } 

    // display CPU and GPU configuration 

    printf("number of host CPUs:\t%d\n", omp_get_num_procs()); 

    printf("number of CUDA devices:\t%d\n", num_gpus); 

    for (int i = 0; i < num_gpus; i++) 

    { 

        cudaDeviceProp dprop; 

        cudaGetDeviceProperties(&dprop, i); 

        printf("   %d: %s\n", i, dprop.name); 

    } 

    int n = num_gpus * 8192 *100; 

    int nbytes = n * sizeof(int); 

    int *a = 0;      

    int b = 99;       

    a = (int *)malloc(nbytes); 

    if (0 == a) 

    { 

        printf("couldn't allocate CPU memory\n"); 

        return 1; 

    } 
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    for (int i = 0; i < n; i++) 

        a[i] = i; 

    omp_set_num_threads(num_gpus*8);// create 8 as many CPU threads as there are CUDA devices 

    #pragma omp parallel 

    { 

        int cpu_thread_id = omp_get_thread_num(); 

        int num_cpu_threads = omp_get_num_threads(); 

        // set and check the CUDA device for this CPU thread 

        int gpu_id = -1; 

        cudaSetDevice(cpu_thread_id % 2);   // "% 2" allows more CPU threads than GPU devices 

        cudaGetDevice(&gpu_id); 

        printf("CPU thread %d (of %d) uses CUDA device %d\n", cpu_thread_id, num_cpu_threads, 

gpu_id); 

        int *d_a = 0;    

        int *sub_a = a + cpu_thread_id * n / num_cpu_threads;    

        int nbytes_per_kernel = nbytes / num_cpu_threads; 

        dim3 gpu_threads(128);  // 128 threads per block are allocated 

        dim3 gpu_blocks(n / (gpu_threads.x * num_cpu_threads)); 

        cudaMalloc((void **)&d_a, nbytes_per_kernel); 

        cudaMemset(d_a, 0, nbytes_per_kernel); 

        cudaMemcpy(d_a,sub_a,nbytes_per_kernel, cudaMemcpyHostToDevice); 

        kernelMultiplyConstant<<<gpu_blocks, gpu_threads>>>(d_a, b); 

  cudaDeviceSynchronize(); 

  cudaMemcpy(sub_a,d_a,nbytes_per_kernel, cudaMemcpyDeviceToHost);  

   

  cudaFree(d_a); 

 } 

 if (a) 

      free(a); // free CPU memory 

  

 getchar(); 

 return 0; 

} 

 

5.2 Description 

The functions which are executed on GPU are known as kernel function. This is explicitly mention to 

differentiate between kernel workloads and parallel function of CUDA program. 

kernelMultiplyConstant() is kernel function. Thread hierarchy is created in kernel. Every thread 

created in for executing on GPU has same code with unique thread-id. So portion of array is divided 

among the threads according to workload distribution from main() function. cudaMalloc() is used for 

allocating memory on GPU's RAM.cudaMemset() is used to initialize the memory block. Kernel 

function is called form main using <<< block, threads per block>>> directive of CUDA. For doing 

calculations using GPU array is copied from host(i.e. CPU's RAM) to device (i.e. GPU's RAM) using 

cudaMemcpy() function. After performing required operation on array elements in GPU, the array is 

copied back to CPU's RAM for further calculations. 

omp_set_num_threads() is used to create CPU threads using OpenMP library. #pragma omp parallel 

directive spawns number of thread and replicate code among them. 

 

Fig. 5, 6 briefly shows the summery of profiling and tracing of the program. 
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Figure 5 Timeline of program execution 

 

 
 

Figure 6 Function calls with associated threads 

 

Using profiling and tracing data we can find the detailed time analysis and space analysis of program 

for finding regions which requires optimization. 

 

6. Conclusion 

Multi-core processors and graphics processors provide promising way to improve performance of 

HPC applications and throughput computing workloads. Throughput computing applications are 

domain specific so optimization according to deployed hardware and software plays major role in 

improving performance. Scalability is an important factor as performance analysis metric for HPC 

applications. Parallel programming paradigm creates new challenges in term of debugging and 

profiling due to massively threaded parallel systems.  

 

7. Future work 

Implementation of different throughput computing workloads on HPC hardware and software for 

finding application specific optimization criteria for multi-core architecture based software 

development.  



13

1234567890

14th ICSET-2017 IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042101 doi:10.1088/1757-899X/263/4/042101

 

 

 

 

 

 

References 

[1] Sutter H and  Larus J 2005 Software and the concurrency revolution Queue 3 54-62 

[2] Lee V W, Kim C, Chhugani J, Deisher M, Kim D, Nguyen A D, Satish N and Smelyanskiy M 

2010 Debunking the 100X GPU vs . CPU Myth : An Evaluation of Throughput Computing on 
CPU and GPU  451–460 

[3] Chen B Y, Ieee S M, Chhugani J, Dubey  P, Ieee  F, Hughes C J, Ieee M, Kim D, Kumar S, Ieee 

M, Lee V  W, Nguyen A D, Ieee M, Smelyanskiy M, and Ieee M 2008 Convergence of 

Recognition , Mining , and Synthesis Workloads and Its Implications 96 

[4] Ecuyer P L, Munger D, Oreshkin B, and Simard R 2017 ScienceDirect Random numbers for 

parallel computers : Requirements and methods, with emphasis on GPUs  Mathematics and 

Computers in Simulation  135  3–17 

[5] Chen D, Hu Y, Cai C, Zeng K and Li X 2016 Brain big data processing with massively parallel 

computing technology : challenges and opportunities 

[6] Sun X H and Ni L M 1993 Scalable Problems and Memory-Bounded In: Journal of Parallel and 

Distributed Computing 19 27–37 

[7] Diaz-montes J and Nin A 2012 A Survey of Parallel Programming Models and Tools in the Multi 

and Many-Core Era A Survey of Parallel Programming Models and Tools in the Multi and Many-

Core Era 19–21 

[8] Molka D 2017 Performance Analysis of Complex Shared Memory Systems 


