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We study the population trapping extensively in a periodically driven Rydberg pair. The periodic modula-

tion of the atom-light detuning effectively suppresses the Rabi couplings and, together with Rydberg-Rydberg

interactions, leads to the state-dependent population trapping. We identify a simple yet a general scheme to

determine population trapping regions using driving induced resonances, the Floquet spectrum, and the inverse

participation ratio. Contrary to the single atom case, we show that the population trapping in the two-atom

setup may not necessarily be associated with level crossings in the Floquet spectrum. Further, we discuss under

what criteria population trapping can be related to dynamical stabilization, taking specific and experimentally

relevant initial states, which include both product and the maximally entangled Bell states. The behavior of the

entangled states is further characterized by the bipartite entanglement entropy.

I. INTRODUCTION

Periodic driving emerged as a tool to coherently manipu-

late the states of quantum systems. Consequently, Floquet

systems exhibit a wide variety of unique phenomena related

to non-equilbirium dynamics and many-body physics [1–8].

One such phenomenon, the dynamical stabilization, has been

a subject of study in both classical and quantum mechanical

systems. Dynamical stabilization is the stabilization of an oth-

erwise dynamically unstable configuration of a system by pe-

riodically varying the system parameters in time. It has been

first demonstrated using a classical pendulum, by Kapitza [9].

By periodically moving the point of suspension with high fre-

quency, it is possible to stabilize the pendulum in its inverted

position. In the quantum world, a phenomenon closely anal-

ogous to the Kapitza pendulum is the population trapping in

a two-level atom [10–12]. The population can be trapped for

a substantial time in an initial quantum state by periodically

varying the atom-field detuning in time, even in cases where

the state would otherwise evolve instantly into another state

due to the Rabi coupling. Effectively, the periodic modulation

may suppress the Rabi coupling depending on the modulation

amplitude and frequency, leading to dynamical stabilization of

the initial state. Dynamical stabilization has various applica-

tions, for instance, in ion-trapping [13], mass spectrometers,

and particle synchrotrons [14].

Other quantum phenomena related to dynamical stabiliza-

tion are coherent destruction of tunneling in a double-well po-

tential [15–17], the localization of a moving charged parti-

cle under the action of a time-periodic electric field [18, 19],

and the localization of a wavepacket in a periodic lattice due

to periodic shaking of the lattice [20–23] or modulating the

inter-particle interactions [24]. In interacting quantum gases,

a Kapitza or a dynamically stabilized state has different man-

ifestations, for instance, stabilizing a Bose-Einstein conden-

sate [25] or a bright soliton [26, 27] against collapse, freez-

ing spin mixing dynamics in spinor condensates [28–30], in-

hibiting dissipation from a spin-half particle [31], stabilizing

a classically unstable phase (π-mode) in a bosonic Josephson

junction [32], or giving rise to unconventional ordered phases

that have no equilibrium counterparts [33]. Additionally, dy-

namical stabilization has been used to control the superfluid-

Mott insulator quantum phase transition of bosons in an opti-

cal lattice [22].

Currently, ultracold Rydberg atoms are emerging as a

promising platform for probing quantum many-body phe-

nomena and implementing quantum information protocols

[34, 35]. The Rydberg blockade, in which strong Rydberg-

Rydberg interactions (RRIs) suppress simultaneous excitation

of two Rydberg atoms within a finite volume [36–39], and the

breaking of the blockade (anti-blockade) [40–43] are of cen-

tral utility for these applications. For two atoms, it has been

predicted that through modulation induced resonances, one

can engineer the parameter space for both Rydberg-blockade

and anti-blockade [44–46]. The latter is proposed to have

applications in implementing robust quantum gates [46–48]

and accelerating the formation of dissipative entangled steady

states [49]. To realize periodic driving in a Rydberg chain, ei-

ther one can modulate the light field that couples the ground

to the Rydberg state or applying additional radio-frequency

fields. Those approaches give rise to sidebands either in the

driving field or in the atomic levels [12, 50–52]. Experiments

with interacting Rydberg atoms in oscillating electric fields

[53] have been employed to explore dipole-dipole interactions

via Förster resonances [54–57]. Also, the dynamical stabiliza-

tion of thermal Rydberg atoms against ionization, exposed to

periodic kicks, has been a subject of intense study in the past,

especially in classical-quantum correspondence [58, 59]. In

the latter case, the RRIs were not relevant. In a recent experi-

ment, intensity-modulated off-resonance laser is used to vary

the energy of an excited atomic state sinusoidally to generate

interacting Rydberg polaritons [60].

In this paper, we study the population trapping comprehen-

sively in a pair of periodically driven interacting two-level

atoms, in which one of the energy levels is a Rydberg state. In

particular, we consider the periodic modulation of the atom-

field detuning. In general, the periodic modulation can en-

hance or suppress the population dynamics in the system, and

the latter implies population trapping. In our setup, the dy-
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namical stabilization emerges as a particular case of popula-

tion trapping. The stability of the initial state against ”time

evolution” decides whether the population trapping can be ac-

counted as the phenomenon of dynamical stabilization. Sup-

pose the initial state evolves in time in the absence of periodic

modulation. In that case, we have the dynamical stabilization

phenomenon similar to that of the Kapitza pendulum. When-

ever this scenario occurs, we explicitly state it as dynamical

stabilization; otherwise, we use the term population trapping.

The two-atom setup we consider is one of the most com-

mon scenarios in Rydberg atom experiments [38, 61–72] and

can be easily realizable using optical tweezers or microscopic

optical traps [64]. The same setup also constitutes the basic

building block for quantum simulations and quantum infor-

mation protocols [35]. We show that the presence of RRIs

leads to (initial) state-dependent population trapping in the

modulated two-atom setup. In particular, we look at how a

specific set of experimentally relevant initial states, including

both product and maximally entangled Bell states, can be dy-

namically stabilized or freeze for significantly long periods.

The product states we consider are those in which both atoms

occupy either ground or Rydberg states. In a Rydberg setup,

the Bell states have been demonstrated experimentally using

various techniques [61, 62, 68, 73–75]. We identify a simple

scheme for locating population trapping regions for any initial

state, relying on driving induced resonances and the Floquet

spectrum. We also introduce inverse participation ratio (IPR),

calculated from the overlap of the initial state with the Flo-

quet eigenstates, as an indicator of population trapping. Con-

trary to the previous conception from the single atom case, the

population trapping or the dynamical stabilization in the two-

atom setup is not necessarily related to the level crossings in

the Floquet spectrum.

The paper is structured as follows. In Sec. II, we discuss

the physical setup, the Hamiltonians including an effective

time-independent one in the high-frequency limit, and tech-

niques which we employ to study the emergence of Kapitza

or dynamically stabilized states. The population trapping in-

cluding the dynamical stabilization in a single two-level atom

and the scheme for identifying dynamical stabilization are dis-

cussed in Sec. III. In Sec. IV, we extend the scheme to the two

atom setup, and in particular, discuss the population trapping

in both product and entangled states, including the driving in-

duced resonances, and the Floquet spectrum. Finally, we sum-

marize in Sec. VI.

II. SETUP, MODEL, AND TECHNIQUES

We consider a chain of two two-level atoms, in which the

electronic ground state |g〉 is coupled to a Rydberg state |e〉
via a light field, the frequency of which is varied periodically

in time t. The system is described in the frozen gas limit, af-

ter the rotating wave and dipole approximations, by the time-

dependent Hamiltonian (~ = 1):

Ĥ = −∆(t)

2
∑

i=1

σ̂i
ee +
Ω

2

2
∑

i=1

σ̂i
x + V0σ̂

1
eeσ̂

2
ee, (1)

where σ̂ab = |a〉〈b| with a, b ∈ {e, g} includes both transi-

tion and projection operators, σ̂x = σ̂eg + σ̂ge, Ω is the Rabi

frequency, ∆(t) = ∆0 + δ sinωt is the time-dependent detun-

ing with modulation amplitude δ > 0 and the modulation fre-

quency ω. The Rydberg excited atoms interact via strong van

der Waals interactions, V0 = C6/r
6, where C6 is the inter-

action coefficient, and r is the separation between two Ryd-

berg excitations [64]. The exact dynamics of the system is

obtained by numerically solving the Schrödinger equation:

i∂ψ(t)/∂t = Ĥ(t)ψ(t). To gain an insight, especially at high

modulation frequency (ω ≫ Ω), we move to a rotating frame:

|ψ′〉 = Û(t)|ψ〉 where Û(t) = exp[i f (t)
∑

j σ̂
j
ee + itV0σ̂

1
eeσ̂

2
ee]

with f (t) = (δ/ω) cosωt − ∆0t. The new Hamiltonian,

Ĥ′(t) = ÛĤÛ† − i~Û ˙̂U†, after using the Jacobi-Anger ex-

pansion exp(±iz cosωt) =
∑∞

m=−∞ Jm(z) exp(±im[ωt + π/2]),

is [44]

Ĥ′ =
Ω

2

2
∑

j=1

∞
∑

m=−∞
imJm(α)gm(t)eiV0

∑

k, j σ̂
k
eetσ̂

j
eg + H.c. (2)

where Jm(α) is the mth order Bessel function with α = δ/ω

and gm(t) = exp[i(mω−∆0)t]. Comparing Eq. (1) with Eq. (2),

we can see that the periodic detuning has effectively modified

the Rabi coupling, thereby affecting the excitation dynam-

ics. Further, using e±iV0

∑

k, j σ̂
k
eet =

∏

k, j

[

σ̂k
ee(e±itV0 − 1) + I

]

,

where I is the identity operator, we rewrite the Hamiltonian

in Eq. (2) as

Ĥ′ =
Ω

2

∞
∑

m=−∞
imJm(α)gm(t)

















2
∑

j=1

σ̂
j
eg + X̂

(

eiV0t − 1
)

















+ H.c.,

(3)

where the operator X̂ = σ̂1
egσ̂

2
ee + σ̂

2
egσ̂

1
ee describes the cor-

related Rabi coupling [44, 76]. The correlated Rabi pro-

cess is analogous to the density assisted inter-band tunnel-

ing or density-dependent hopping for atoms in optical lattices

[77, 78].

Floquet Theory.— According to the Floquet theorem,

the time evolution operator associated with a time-periodic

Hamiltonian Ĥ(t) is Û(t) = P(t)e−iĤF t, where the Floquet

Hamiltonian ĤF is defined through the evolution operator over

a full period T = 2π/ω, i.e., Û(T ) = e−iĤF T [8, 15, 79–81].

The unitary operator P̂(t) = P̂(t + T ) has the same periodicity

as that of the Hamiltonian, and it becomes an identity opera-

tor at the instants tn = nT where n = 0, 1, 2, .... Further, we

can write, Û(T ) = e−iĤF T =
∑

k e−iθk |φk(0)〉〈φk(0)|, where the

Floquet modes {|φk(0)〉} are the eigenstates of the Hamiltonian

ĤF , and they form a complete set of square-integrable states.

The Floquet mode |φk(t)〉 = exp(iǫkt)Û(t)|φk(0)〉 has the same

periodicity in time as that of the Hamiltonian Ĥ(t), and the

quasi-energy ǫk = θk/T is defined up to a multiple of ω. Then,

a general state of the system can be written as

|ψ(t)〉 =
∑

k

ckexp(−iǫkt)|φk(t)〉, (4)

where the time-independent co-efficient ck gives the proba-

bility amplitude for finding the system in the Floquet mode

|φk(t)〉 and is determined from the initial state |ψ(0)〉. It is
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worth mentioning that the population in the Floquet modes

remains preserved even if the actual state of the system or

the Hamiltonian is changing over time. In that spirit, if the

initial state coincides with one of the Floquet modes, the pop-

ulation trapping takes place. The quasi-energies ǫk and the

modes {|φk(0)〉} are calculated numerically by obtaining the

eigenvalues, λk = exp(−iǫkT ) of the one-period operator Û(T )

[82, 83]. To obtain Û(T ), we evolve each of the basis states

using the original Hamiltonian in Eq. (1).

Further, to characterize the behavior of Rydberg excitation

dynamics we define the inverse participation ratio (IPR),

Π
|I〉
N
=

1
∑

k p2
k

− 1, (5)

where pk = |〈φk(0)|I〉|2, is the projection of the initial state

|I〉 on the Floquet mode |φk(0)〉 for N atoms. If the initial

state coincides with one of the Floquet modes, IPR vanishes.

Since, the population in Floquet mode doesn’t vary in time,

Π
|I〉
N
= 0 may indicate the population trapping or dynamical

stabilization of the state |I〉. In the same spirit, a smaller value

of Π
|I〉
N

indicates a slower transition rate from the state |I〉 to

other states.

III. A TWO-LEVEL ATOM (N = 1)

In the following, we briefly review the population trapping

in a periodically driven single two-level atom. In particular,

we discuss the criteria under which the population trapping

can be identified as dynamical stabilization. For N = 1, the

Hamiltonian in Eq. (2) takes the simplest form [10–12],

Ĥ′ =
Ω

2

∞
∑

m=−∞
imgm(t)Jm(α)σ̂eg + H.c.. (6)

In the high-frequency limit (ω ≫ Ω), the terms satisfying the

resonance condition, n1ω = ∆0, where n1 = 0, 1, 2, ... be-

comes the only relevant term in the summation of Eq. (6).

Neglecting non-resonant terms is equivalent to a second ro-

tating wave approximation. Once the resonance condition is

satisfied, the population dynamics exhibits coherent Rabi os-

cillations between |g〉 and |e〉. In Figs. 1(a) and 1(b), we show

the Floquet spectrum and IPR (Π
|g〉
1

) as a function of ∆0. The

resonances can be identified as either avoided crossings in the

Floquet spectrum or peaks in the IPR (Π
|g〉
1

). At those peaks

(Π
|g〉
1
= 1), the Floquet modes become an equal superposition

of |g〉 and |e〉. Far away from the avoided crossings (reso-

nances), i.e., for ∆0 , n1ω and ∆0 ≫ Ω, the periodic driv-

ing is ineffective. In that case, the Floquet modes approxi-

mately become the eigenstates of the undriven Hamiltonian,

Ĥ(t = 0), which are either |g〉 or |e〉 with a weak mixing be-

tween them. Due to this, Π
|g〉
1

decays to almost zero between

the resonances.

At the resonance n1ω = ∆0, the effective Rabi coupling

between the states |g〉 and |e〉 is proportional to Jn1
(α). There-

fore, at the Bessel zeros [Jn1
(α) = 0], the dynamics freezes

and leads to population trapping. This can be further ver-

ified by looking at the quasi-energies ǫk as a function of α

keeping the resonance condition satisfied. The quasi-energies

or the energy gap between them oscillate as a function of α,

and crossings occur at the zeros of the Bessel function [83].

Fig. 1(c) and 1(d) show the results for the case of ∆0 = ω,

and the crossings occur at the zeros of J1(α). At those cross-

ings, the degenerate Floquet modes become purely |g〉 and |e〉,
which results in a vanishing Π

|g〉
1

or Π
|e〉
1

as seen in Fig. 1(d).

Since the Floquet modes do not evolve in time, the population

in states |g〉 or |e〉 freezes. Note that at the crossings, an arbi-

trary superposition of |g〉 and |e〉 is also a Floquet mode mak-

ing the population trapping independent of the initial state. As

we show below, the latter breaks down in the presence of RRI,

leading to a state-dependent population trapping. In short, a

vanishing IPR at the driving induced resonance indicates the

freezing of the initial state or population trapping.

Note that only if the initial state is dynamically unstable

in the absence of periodic modulation, then only the corre-

sponding population trapping can be called the dynamical sta-

bilization. It is easy to see that the dynamical stabilization

occurs only when n1 = 0. If n1 is a non-zero integer, in the

high-frequency limit, the resonance condition demands a large

value of ∆0. For such large values of ∆0, there is hardly any

dynamics in the states |g〉 and |e〉 in the absence of periodic

driving. Therefore, population trappings for n1 > 0 cannot

be interpreted as dynamical stabilization. In other words, the

population trapping at the primary resonance (n1 = 0), i.e.,

when J0(α) = 0 for ∆0 = 0, provides us the phenomenon of

dynamical stabilization. The results for the latter case with an

initial state |I〉 = |g〉 are shown in Figs. 1(e) (quasi-energies)

and 1(f) (IPR). Note that the leading terms in the excited state

population due to m , n1 terms in Eq. (6) are proportional

to (Ω/ω)2 in the high-frequency limit, which can be ignored

[11]. More extensive results of the IPR (Π
|g〉
1

) for the initial

state |g〉, are given in Fig. 2. In the α − ∆0 plane, Π
|g〉
1

ex-

hibits pearl-chains along α axis at the resonances n1ω = ∆0.

The local minima along the chains provide the values of α

at which population trapping takes place [or Jn(α) = 0], and

those along α at ∆0 = 0 are the points of dynamical stabiliza-

tion. Between the stripes (along ∆0 axis), Π
|g〉
1

vanishes due to

the far off-resonant driving of the atom, as discussed above.

Note that the effect of a finite ω is apparent only for suffi-

ciently small ω for which the crossings in Floquet energies

start to deviate slightly from the Bessel zeros.

In short, by varying the amplitude of periodic modulation,

the avoided crossings (resonances) [see Fig. 1(a)] in the quasi-

energy spectrum become actual level crossings [see Fig. 1(c)].

At the crossings, the population dynamics freezes, and also

the IPR vanishes. We term this, at resonance, as Popula-

tion trapping. Population trapping at the primary resonance

is identified as the dynamical stabilization. Thus, we have a

scheme to identify population trapping (including dynamical

stabilization) of any initial state in two steps. First, identify

resonances in which the initial state is involved, and second,

vary the amplitude of modulation, keeping the resonance con-

dition satisfied.
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Figure 1. (Color online) Floquet mode properties of a driven single two-level atom with ω = 8Ω. (a) The quasi-energies ǫk and (b) IPR (Π
|g〉
1

)

as a function of ∆0 for δ = 15Ω. (c) The quasi-energies ǫk and (d) IPR (Π
|g〉
1

) as a function of α = δ/ω for the resonance ∆0 = ω (n1 = 1). In

(d), we also show the Bessel function, J1(α). Its zeros coincide with Π
|g〉
1
= 0 indicating the population trapping. The parameter α is varied by

changing δ. (e) and (f) show the results for the case of primary resonance, ∆0 = 0 (n1 = 0). The crossings of ǫk in (e) and the zeros of Π
|g〉
1

in (f)

coincides with the zeros of J0(α). The plots (e) and (f) are the special case of population trapping corresponding to the dynamical stabilization.

The parameter α is varied by changing δ and keeping ω constant.

0 4 8 16
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0

4

12
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12
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Figure 2. (Color online) The IPR (Π
|g〉
1

) as a function of α and ∆0

for ω = 8Ω. The pearl-stripes are along the α axis at the resonances

nω = ∆0. The local minima (Π
|g〉
1
= 0) along the first stripe are

the points of DS for which J0(α)=0. The parameter α is varied by

changing δ and keeping ω constant.

IV. TWO-ATOM CHAIN (N = 2)

This section extends the above analysis from a single two-

level atom to a pair of Rydberg atoms and discusses how

RRIs affect the population trapping. In particular, we are in-

terested in the conditions under which the states |gg〉, |ee〉,
|+〉 = (|eg〉 + |ge〉)/

√
2, and |B〉 = (|gg〉 + |ee〉)/

√
2 are dy-

namically stabilized. The first two states are product states,

and the last two are the maximally entangled Bell states. If

we restrict the dynamics to the symmetric states, we can trun-

cate the basis to {|gg〉, |+〉, |ee〉}. On this basis, the off-diagonal

matrix elements of Ĥ′ in Eq. (3) provide the time-dependent

coupling strengths for |gg〉 ↔ |+〉 and |+〉 ↔ |ee〉 transitions,

and they are respectively,

Ω1(t) ∝ Ω√
2

∞
∑

m=−∞
Jm(α)ei(mω−∆0)t+imπ/2 (7)

Ω2(t) ∝ Ω√
2

∞
∑

m=−∞
Jm(α)ei(mω−∆0+V0)t+imπ/2, (8)

and in general, Ω1 , Ω2. As a first step towards analyzing

the population trapping, we discuss the resonances in the two-

atom driven setup.

A. Resonances

At high ω, the most relevant terms in Eqs. (7) and (8) give

the resonance criteria n1ω = ∆0 (R1) and n2ω = ∆0 − V0

(R2), which are associated with the transitions |gg〉 ↔ |+〉
and |+〉 ↔ |ee〉, respectively. For sufficiently large values of

|V0−nω|with n = 0,±1,±2, ..., the resonances of the types R1

and R2 can be well separated along the ∆0 axis. If V0 = nω,

the criteria for R1 and R2 are satisfied simultaneously with

n1 = n2 + n. Assuming R1 and R2 resonances do not over-

lap, and only if R1 is fulfilled, the effective (time-averaged)

Rabi couplings become Ω1 ≈ ΩJn1
(α)/
√

2 and Ω2 ≈ 0, for

|gg〉 ↔ |+〉 and |+〉 ↔ |ee〉 transitions, respectively. Therefore,

for the initial state |I〉 = |gg〉, the system exhibits Rabi oscil-

lations between |gg〉 and |+〉 states [see Fig. 3(a) for n1 = 1],

which corresponds to the dynamics under the Rydberg block-

ade. In contrast, if |I〉 = |ee〉, the dynamics freezes, as shown

in Fig. 3(b). The latter is expected since the state |ee〉 is far

off-resonant from |+〉 due to large V0, and hence, the periodic

driving is nonrelevant. If the condition for R2 is satisfied, we

have Ω1 ≈ 0 and Ω2 ≈ ΩJn2
(α)/
√

2 which leads to the Rabi

oscillations between |ee〉 and |+〉 states and hardly any dynam-

ics if the initial state is |gg〉, as shown in Figs. 3(c) and 3(d) for

n2 = −1, respectively. Apart from the resonances R1 and R2,

there exists a third one n3ω = 2∆0 − V0 (R3), which is not di-

rectly visible from Eqs. (7) and (8), but can be revealed using
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Figure 3. (Color online) Population dynamics for the resonance type

R1 (n1ω0 = ∆0) for the initial states (a) |I〉 = |gg〉 and (b) |I〉 = |ee〉.
The same, but with the resonance type R2 (n2ω = ∆0 − V0) for the

initial state (c) |I〉 = |gg〉 and (d) |I〉 = |ee〉 with ∆0 = 2Ω. In (a)

we see the Rabi oscillations between |gg〉 and |+〉 states, whereas in

(b) we observe no dynamics. Similarly, (c) shows the absence of

dynamics, and the Rabi oscillations between |+〉 and |ee〉 states is

shown in (d). We took V0 = 10Ω, δ = 15Ω, and ω = 8Ω for all plots.

The value of ∆0 is taken such that n1 = 1 for (a) and (b), and for (c)

and (d) we have n2 = −1.

adiabatic impulse approximation [45]. R3 leads to resonant

transitions between |gg〉 and |ee〉.
In Figs. 4(b) and 4(c), we show the IPR (Π

|I〉
2

) as a func-

tion of ∆0 for the initial states |gg〉 and |ee〉, respectively. The

value of other parameters is the same as in Fig. 3. The peaks

in Fig. 4(b) correspond to the resonances R1 and R3, labeled

by n1 and n3, respectively. Similarly, the peaks in Fig. 4(c)

correspond to the resonances R2 and R3, labeled by n2 and

n3, respectively. As expected, the R3 resonances (marked by

n3) are very narrow since |gg〉 and |ee〉 are not directly cou-

pled. Between the resonant peaks, Π
|I〉
2

vanishes due to the

off-resonant driving as discussed above. These resonances

cause the avoided crossings in the quasi-energies shown in

Fig. 4(a). To calculate ǫk in Fig. 4(a), we used the basis

{|gg〉, |eg〉, |ge〉, |ee〉} and therefore we have four levels in the

quasi-energy spectrum.

B. Dynamical stabilization of product states: |gg〉 and |ee〉

R1.— First we discuss the dynamical stabilization of the

product states |gg〉 and |ee〉. To identify the regions of dy-

namical stabilization we choose the primary resonance in each

of R1, R2 and R3, i.e., n j∈1,2,3 = 0 and vary the amplitude

of modulation. Equivalently, one can vary α by keeping ω

constant. First, we consider the resonance R1 with n1 = 0

(∆0 = 0). For the non-interacting case (V0 = 0), as dis-

cussed for the single atom case in Sec. III, the dynamical

stabilization occurs at the zeroes of the J0(α). As expected,

when J0(α) = 0, all three quasi-energies cross [dashed lines

in Fig. 5(a)]. Since we have eliminated the asymmetric state

|−〉 = (|eg〉− |ge〉)/
√

2 from the dynamics, there are only three

0 2 4 10 126 8-2

(b)

(c) 1.6

0.8

0.0

1.6

0.8

0.0

0 2 4 10 126 8-2

4

0

-4

(a)

0 2 4 10 126 8-2

5

0

Figure 4. (Color online)(a) The quasi-energy spectrum for N = 2 as

a function of ∆0 for V0 = 10Ω, δ = 15Ω, and ω = 8Ω. (b) and (c)

show Π
|gg〉
2

and Π
|ee〉
2

, respectively. The peaks in Π2 and the avoided

crossings in ǫk indicate the three different resonant transitions: (R1)

n1ω = ∆0, (R2) n2ω = ∆0 −V0, and (R3) n3ω = 2∆0 −V0 labelled by

n1, n2, and n3, respectively.

relevant quasi-energy eigenvalues. The color bar in Fig. 5

quantifies the probability density of |gg〉 in each of the Flo-

quet states. A finite V0 partially lifts the degeneracy of ǫk at

the crossings [see solid lines in Fig. 5(a)]. For small RRIs

(V0 ≪ Ω), the resonance R2 is not well isolated from R1 and

all three states (|gg〉, |+〉, |ee〉) participate in the dynamics for

any initial state. Therefore, we need to address the dynamical

stabilization of both |gg〉 and |ee〉 when RRI is small.

Satisfying R1 and for V0/ω ≪ 1, in the high-frequency

limit (ω ≫ Ω), we can obtain an effective time-independent

Hamiltonian from Eq. (3) as, Heff = 1/T
∫ T

0
dt Ĥ′(t) where

T = 2π/ω [8, 24, 84] (see Appendix A). Then, expanding Ĥeff

in powers of V0/ω we have,

Ĥ
(V0≪ω)

eff
≃ in1 Jn1

(α)Ω

2

















2
∑

j=1

σ̂
j
eg + iπ

V0

ω
X̂

















+

Ω

2

∑

m,n1

imJm(α)

(m − n1)

V0

ω
X̂ + O

(

V2
0/ω

2
)

+ H.c.. (9)

Equation (9) implies that in the infinite-frequency limit

(V0/ω → 0), the population trapping occurs at the zeros of

the Bessel function Jn1
(α) irrespective of the initial state. At

the primary resonance (n1 = 0), we have the dynamical stabi-

lization. For non-zero, but small values of V0/ω, the dominant

interaction dependence comes from the second and third terms

in Eq. (9), which are linear in V0/ω. For n1 = 0, the third

term in Eq. (9) vanishes, which means that the DS occurs at

J0(α) = 0. To verify this, we analyze IPRs Π
|gg〉
2

and Π
|ee〉
2

as

a function of α, shown respectively in Figs. 5(d) and 5(e) for

V0 = 0.2Ω and ∆0 = 0 (green dashed lines). As expected,
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they both vanish when J0(α) = 0, indicating the dynamical

stabilization of both |gg〉 and |ee〉.
When n1 , 0, and for α such that Jn1

(α) = 0, the third term

in Eq. (9) also becomes vanishingly small and can be safely

ignored. That means, for small values of V0/ω with R1 being

satisfied, the population trapping always occurs at the zeros

of the Bessel function Jn1
(α). The corrections from the terms

involving X̂ in Eq. (9) may introduce a tiny shift in the value

of α at which the DS occurs, especially for the case, |I〉 = |ee〉.
It can also be seen from Fig. 5(a) that the value of α for which

the crossings in the Floquet spectrum occur hardly affected by

small values of V0.

Coming back to the case of dynamical stabilization for

n1 = 0 and as V0 increases (excluding V0 = nω where n is

a non-zero positive integer), one quasi-energy level [topmost

level in Figs. 5(a) and 5(b)] moves away from the other two,

and eventually becomes purely |ee〉 in the blockade regime

(V0 ≥ Ω), for any value of α [see Fig. 5(b)]. At that stage, the

two lowest Floquet modes shown in Fig. 5(b) become super-

position of |gg〉 and |+〉 states, except at the level crossings.

At the crossings, which occur for J0(α) = 0, the two Floquet

modes become purely |gg〉 and |+〉 states, and |gg〉 is dynam-

ically stabilized. The latter is further confirmed by Π
|gg〉
2

[see

Fig. 5(d).], which vanishes at the crossings. Π
|gg〉
2
= 1 im-

plies Rydberg blockade for which we have an effective two-

level system consisting of |gg〉 and |+〉 states. In the blockade

regime, the state |ee〉 is dynamically stable even in the absence

of periodic driving, which makes Π
|ee〉
2
∼ 0 independent of α

[see Fig. 5(e) for V0 = 5Ω].

When V0 = nω, where n is a non-zero positive integer,

both R1 and R2 are satisfied simultaneously. In that case, the

Bessel functions Jn1
(α) and Jn2=n1−n(α) [see Eqs. (7) and (8)]

determine the couplings for the transitions |gg〉 ↔ |+〉 and

|+〉 ↔ |ee〉, respectively. In Figs. 5(c)-5(e), we show the re-

sults for ∆0 = 0 and V0 = ω = 8Ω, therefore n1 = 0 and

n2 = n1 − n = −1. Thus, the dynamical stabilization of |gg〉
occurs at the zeros of J0(α), and the population trapping in |ee〉
takes place when J−1(α) = 0. When both R1 and R2 are sat-

isfied simultaneously, both ǫk and Π
|gg〉
2

exhibit qualitatively

different features compared to the case when only either R1

or R2 (see below) is satisfied. The first thing to notice is that

ǫk does not show any level crossings as a function of α [see

Fig. 5(c)]. Despite that, we observe dynamical stabilization of

|gg〉 at J0(α) = 0 [marked by dashed vertical lines in Fig. 5(c)].

Because at those values of α, one of the Floquet modes [mid-

dle one in Fig. 5(c)] becomes purely |gg〉. It is in stark contrast

to the case of a single two-level atom for which the dynami-

cal stabilization is always accompanied by a level crossing in

the quasi-particle spectrum. Additionally, both Π
|gg〉
2

and Π
|ee〉
2

exhibit primary and secondary minima as a function of α [see

Figs. 5(d) and 5(e) for V0 = ω]. The primary minima in Π
|gg〉
2

(occur when J0(α) = 0) coincide with the secondary minima

of Π
|ee〉
2

(Jn2=−1(α) = 0) and vice versa. At the secondary min-

ima of Π
|gg〉
2

, the system exhibits blockade dynamics, and the

same at Π
|ee〉
2

, the system undergoes Rabi oscillations between

the states |+〉 and |ee〉.
The maxima of both Π

|gg〉
2

and Π
|ee〉
2

in Figs. 5(d) and 5(e)

0
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Figure 5. (Color online) The quasi-energy spectrum ǫk and IPR (Π
|gg〉
2

,

Π
|ee〉
2

) for N = 2, ∆0 = 0, and ω = 8Ω, as a function of α for different

V0. (a) shows ǫn for V0 = 0Ω (dashed lines), and V0 = 0.2Ω (solid

lines), and (b) and (c) show the same for V0 = 2Ω and V0 = 8Ω,

respectively. Since ∆0 = 0, in (a) and (b), the level crossings take

place at the zeros of J0(α). In (a)-(c) the color bar indicates the prob-

ability of the finding the state |gg〉 in each of the Floquet modes. The

dashed vertical lines in (c) mark J0(α) = 0, and at those points the

central Floquet mode consists purely of |gg〉 state, which indicates

dynamical stabilization. (d) and (e) show the IPR Π
|gg〉
2

and Π
|ee〉
2

, re-

spectively. In (f), we show the Bessel functions J0(α) (solid line) and

J−1(α) (dashed line). The parameter α is varied by changing δ and

keeping ω constant.

for V0 = ω do not coincide. At those maxima (Π
|gg〉
2
∼ 2 or

Π
|ee〉
2
∼ 2), the system undergoes Rabi oscillations between

|gg〉 and |ee〉 via the intermediate state |+〉 with an effective

Rabi frequency ∝
√

J2
0
(α) + J2

−1
(α). Therefore, the maxima

(Π
|gg〉
2
= 2) in Fig. 5(d) correspond to driving-induced Ryd-
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berg anti-blockade [44, 46]. Figures 6(a) and 6(b) show Π
|gg〉
2

and Π
|ee〉
2

, respectively for a wider range of V0 and α. In

Fig. 6(a), we identify three different regions: dynamical sta-

bilization (shown by horizontal dark regions with Π
|gg〉
2
∼ 0),

anti-blockade (curved shapes with Π
|gg〉
2
∼ 2 around V0 = nω)

and population trapping of |ee〉 (Π
|gg〉
2
∼ 1 and Π

|ee〉
2
= 0) in the

remaining majority of the parameter space. In Fig. 6(b), the

dominant regions with population trapping of |ee〉 (Π
|ee〉
2
∼ 0)

are primarly due to the Rydberg blockade. Π
|ee〉
2

becomes non-

zero in the vicinity of V0 = nω, except when Jn2
∼ 0. The

non-trivial patterns in IPR we see in the α − V0 plane (Fig. 6)

arise due to the interplay between the Rabi-couplings for the

transitions |gg〉 ↔ |+〉 [∝ Jn1
(α)] and |+〉 ↔ |ee〉 [∝ Jn2

(α)].

0

5

10

0.0

0.5

1.0

1.5

2.0

0 4 12 16 208
0

5

10

(b)

(a)

0 4 12 16 208

Figure 6. (Color online) The IPR (a) Π
|gg〉
2

and (b) Π
|ee〉
2

as a function

of V0 and α for N = 2, ∆0 = 0 (R1 resonance), and ω = 8Ω. The

regions of Π
|gg〉
2
= 0 correspond to the dynamical stabilization of

|gg〉, those where both Π
|gg〉
2
∼ 1 and Π

|ee〉
2
∼ 0 indicate the population

trapping of |ee〉, and Π
|gg〉
2
= 2 signals the Rydberg anti-blockade

in which the system exhibits Rabi oscillations between |gg〉 and |ee〉
via the intermediate state |+〉. The intricate patterns arise due to the

competition between the Rabi-couplings for the transitions |gg〉 ↔
|+〉 [∝ Jn1

(α)] and |+〉 ↔ |ee〉 [∝ Jn2
(α)]. If R2 is satisfied with

V0 = ∆0 instead of R1 (a) is Π
|ee〉
2

and (b) is Π
|gg〉
2

. The parameter α is

varied by changing δ and keeping ω constant.

R2.— Now we analyze the population trapping of |gg〉 and

|ee〉 when R2: n2ω = ∆0 − V0 is satisfied, and in particu-

lar, we focus on the dynamical stabilization i.e., for n2 = 0

or ∆0 = V0. Following the discussions we had on R1, it is

easy to see that for V0 ≪ Ω, the dynamical stabilization of the

states |ee〉 and |gg〉 is provided by the condition, J0(α) = 0.

As V0 (or equivalently ∆0) increases, the state |gg〉 completely

decouples from the dynamics (except when ∆0 = V0 = nω).

In the latter case, we only have to consider the dynamical sta-

bilization of |ee〉, which is provided again by J0(α) = 0. If

∆0 = V0 = nω, both R1 and R2 are satisfied simultaneously,

the freezing of |gg〉 is provided by Jn(α) = 0 and the dynami-

cal stabilization of |ee〉 is given by J0(α) = 0. In addition, the

results for R2 are identical to that of R1 with ∆0 = 0, V0 = nω,

except that the role of |ee〉 and |gg〉 are interchanged. There-

fore, Figs. 6(a) and 6(b) equivalently show Π
|ee〉
2

and Π
|gg〉
2

for

V0 = ∆0, respectively.

R3.— Now, we consider the case of third resonance R3:

n3ω = 2∆0 − V0. As mentioned earlier, the resonance condi-

tion for R3 cannot be extracted directly from the Hamiltonian

in Eq. (3) or Eqs. (7) and (8) for the Rabi couplings, and hence,

they do not provide us any direct hint on how dynamical stabi-

lization is related to the Bessel roots. When R3 is satisfied, the

system exhibits Rabi oscillations between |gg〉 and |ee〉. Note

that, for V0 ≪ Ω, the resonances R1, R2, and R3 are not well

separated, and all three states (|gg〉, |+〉, |ee〉) are relevant in

the dynamics which leads to the population transfer between

|gg〉 and |ee〉 via |+〉 state. For large values of V0, R3 gets

well isolated from R1 and R2 along the ∆0-axis. In that case,

the population in |+〉 becomes negligible for sufficiently large

values of V0/ω, except when ∆0 = nω. For small values of

both RRIs and ∆0 compared to the driving frequency, i.e., for

∆0/ω ≪ 1 and V0/ω ≪ 1, we obtain an effective Hamiltonian

as,

Ĥ
(∆0≪ω,V0≪ω)

eff
≃ ΩJ0(α)

2

(

1 − iπ
∆0

ω

) 2
∑

j=1

σ̂
j
eg +

in3Ω

2

(

Jn3
(α) − J0(α)

)

(

1 + iπ
∆0

ω

)

X̂ + H.c.. (10)

When n3 = 0, the second term with X̂ in Eq. (10) van-

ishes, and the dynamical stabilization of both |gg〉 and |ee〉 is

provided by the zeros of J0(α). This result has been further

verified by numerical calculations of the Schrödinger equa-

tion, using the crossings in the Floquet spectrum and IPR [see

Fig. 7(a)]. In contrast with R1 and R2, as V0 increases, the dy-

namical stabilization for R3 demands both higher driving fre-

quencies (ω) and larger modulation amplitudes (α). As shown
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Figure 7. (Color online) (a) The IPR (Π
|gg〉
2

) as a function of α for

ω = 30Ω for different V0 satisfying the R3 resonance with n3 = 0,

i.e., 2∆0 = V0. (b) The same as in (a), but for different ω and V0 =

6Ω. In (c), we show the dynamics for the initial state |gg〉 for the two

different resonances: R1 (solid line with n1 = 0) and R3 (dashed line

with n3 = 0) at the first root of J0(α), ω = 15Ω and V0 = 6Ω. In

(d), we show the same as in (c), except that the initial state is |ee〉 and

for the resonances: R2 (solid line with n2 = 0) and R3 (dashed line

with n3 = 0). The parameter α is varied by changing δ and keeping

ω constant.

in Fig. 7(a), for V0 = 0.01Ω, we get the IPR almost identical

to that of the non-interacting case [see Fig. 1(f)], which ex-

hibits sharp minima at J0(α) = 0. For a fixed ω, increasing

V0 makes the minima broader, and in particular, those at small

values of α get lifted from zero. That means, increasing V0/ω

destroys dynamical stabilization at small values of α as seen

for V0 = 0.2Ω and V0 = 1Ω in Fig. 7(a). In Fig. 7(b), we

show IPR at a sufficiently large value of RRIs (V0 = 6Ω) and

for different ω, and we see that the sharp minima with van-

ishing IPR have disappeared completely and become smooth

minima. These results can be understood from Eqs. (7) and

(8). For sufficiently large V0, satisfying resonance condition

2∆0 = V0 does not select a single Bessel function for the Rabi

couplings, which hinders the dynamical stabilization. This

strong dependence of V0 on the dynamical stabilization under

0.0

0.5

1.0

1.5

2.0

0

5
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Figure 8. (Color online) (a) IPR Π
|+〉
2

as a function of α and V0 for

ω = 8Ω and ∆0 = 0. The parameter α is varied by changing δ

and keeping ω constant. (b) The general behavior of the dynamics

of the entanglement entropy SA for Π
|+〉
2
= 0 (solid line), indicating

dynamical stabilization and for Π
|+〉
2
= 1 (dashed line).

R3 resonance, is in high contrast with that of R1 and R2. To

show that explicitly, we look at the dynamics at the first Bessel

zero of J0(α) for the three resonances R1, R2, and R3 for suf-

ficiently large V0 [see Figs. 7(c) and 7(d)]. In Fig. 7(c), we

show the dynamics for the initial state |gg〉, satisfying reso-

nances R1 and R3, and in Fig. 7(c), the dynamics is shown for

the initial state |ee〉 satisfying R2 and R3. In both figures, we

observe population dynamics for R3, indicating the absence

of dynamical stabilization at large RRI.

C. Dynamical stabilization of maximally entangled Bell states

In the following, we consider the dynamical stabilization

of two class of Bell states: |+〉 and |B+〉 = (|gg〉 + |ee〉)/
√

2,

and they both are maximally entangled two-qubit states. We

use the bipartite entanglement entropy to characterize the cor-

relation or entanglement between the qubits. To quantify it,

we label the qubits as A and B, and the entanglement en-

tropy of subsystem A is obtained as SA = −Tr(ρA log2 ρA) =

−∑

k λk log2 λk, where ρA is the reduced density matrix of the

subsystem A and λk are the eigenvalues of ρA. Both |+〉 and

|B+〉 have SA = 1, and under dynamical stabilization, we ex-

pect SA also to be stabilizing over time.

|+〉 state.— The state |+〉 is involved in two resonances: R1

and R2. For V0 ≪ Ω, the resonances R1 and R2 are not en-

tirely separable. The latter implies that the population from

|+〉 state transfers almost equally to both |gg〉 and |ee〉 states
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for V0 ≪ Ω. Following Eq. (9) for V0/ω ≪ 1, we can see

that dynamical stabilization of |+〉 occurs when J0(α) = 0.

For sufficiently large V0 (excluding V0 = nω), the resonances

R1 and R2 can be well isolated from each other, and the dy-

namical stabilization of |+〉 is still determined by the zeros of

J0(α) if either R1 or R2 is satisfied. If R1 alone is satisfied,

the Rydberg blockade prevents any transition to |ee〉 thereby

stabilizing |+〉 state dynamically at J0(α) = 0. On the other

hand, the resonance condition R2 demands a large detuning,

which prevents any population transfer from |+〉 to |gg〉. The

latter helps the dynamical stabilization of state |+〉. Note that,

when |+〉 is dynamically stabilized, one of the Floquet modes

becomes |+〉, as we have discussed in Sec. IV B.

Keeping n1 = 0 and for V0 = nω with n being a non-zero

integer, both R1 and R2 are satisfied simultaneously, and the

dynamical stabilization of |+〉 requires both J0(α) = 0 and

J−n(α) = 0. The latter criteria can never be satisfied with

n , 0, which prevents the dynamical stabilization of |+〉. This

implies that the entangled state is harder to stabilize dynami-

cally than the product state |gg〉. The above results are summa-

rized in Fig. 8(a), in which we show the IPR Π
|+〉
2

as a function

of α and V0. The broken horizontal stripes in Fig. 8(a) cor-

respond to the regions of dynamical stabilization of |+〉 state.

The regions with Π
|+〉
2
= 1 correspond to the blockade dynam-

ics and those with Π
|gg〉
2
= 2 indicate that all three states are

very involved in the dynamics. As expected, for R2 resonance

and V0 = ∆0, we get the same results as above, with the only

difference is that the regions with Π
|+〉
2
= 1 indicate the Rabi

oscillations between |+〉 and |ee〉. Further, the time evolution

of the entanglement entropy for the initial state |+〉 and dif-

ferent IPR is shown in Fig. 8(b). As seen in Fig. 8(b), when

Π
|+〉
2
= 0, we hardly find any dynamics in SA, which indicates

that the correlation between the two atoms is preserved un-

der the periodic driving. For the case in which Π
|+〉
2
= 1, the

entropy SA undergoes periodic oscillations, and for the partic-

ular case shown in Fig. 8(b), the oscillations in SA are due to

the Rabi oscillations between the entangled state |+〉 and the

product state |gg〉.
|B+〉 state.— To discuss the dynamical stabilization of the

Bell state |B+〉, we need to consider the resonances, which in-

cludes either |gg〉 or |ee〉, or both. Such resonances can drive

the system out of the |B+〉 state. We comment on the case

where both |gg〉 and |ee〉 are involved in the resonant dynam-

ics. The latter happens when either R3 is satisfied or both R1

and R2 are met simultaneously. As already mentioned, when

the primary resonance of R3 is met (2∆0 = V0), the system ex-

hibits Rabi oscillations between |gg〉 and |ee〉 via |+〉. For large

V0, the population in |+〉 can be neglected, and |B+〉 becomes

the stationary state of the unmodulated system. Therefore, the

question of dynamical stabilization is irrelevant, and periodic

modulation may make |B+〉 dynamically unstable. For small

RRIs and V0/ω ≪ 1, the dynamical stabilization is provided

by the roots of J0(α), which can be easily seen from Eq. (10).

On the other hand, satisfying R1 and R2 conditions simulta-

neously requires two different Bessel functions to vanish at

the same value of α, which is never possible, ruling out the

possibility of dynamical stabilization of |B+〉.

V. EXPERIMENTAL PARAMETERS

Finally, we comment on the experimental setup and param-

eters, which can be used to investigate our findings. We con-

sider a Rydberg nS 1/2 state of a rubidium atom. The two

atom setups are easily realizable in labs using either optical

tweezers or optical micro traps [64]. Moreover, the interac-

tion strengths between the Rydberg atoms can be controlled

precisely by adjusting the separation between the atoms or us-

ing external fields [64]. As we mentioned before, the periodic

modulation can be generated by applying an additional oscil-

lating RF field, which creates sidebands in the Rydberg state

as shown in [52, 56, 85, 86]. Further control over the side-

bands, selecting even or odd bands, are accessible via ac or

dc electric fields [52]. An alternative way, as demonstrated

in a recent experiment, an intensity-modulated off-resonance

laser is used to vary the energy of the intermediate excited

state sinusoidally, in a two-photon transition to the Rydberg

state from the ground state [60]. The latter approach is equiv-

alent to modulating the effective light field, which couples the

ground to the Rydberg state.

Taking a typical Rabi frequency of Ω = 1 MHz, our studies

use interaction strengths V0 = 0 − 20 MHz, and modulation

frequency ω = 0 − 30 MHz. Considering the Rydberg state

to be |e〉 ≡ |45S 1/2〉 of a rubidium atom, which can be cou-

pled from the ground state |g〉 ≡ |5S 1/2〉 via a two-photon

transition. As we can see, the frequency differences between

neighboring states are (E45S 1/2
− E44S 1/2

)/~ = 92.96 GHz and

(E46S 1/2
−E45S 1/2

)/~ = 86.53 GHz, ensures that sidebands gen-

erated by the periodic modulation do not populate the nearest

Rydberg states. The latter can also be suppressed by taking

moderately strong modulated field, for instance, the intensity

of the oscillating RF field [52, 86].

VI. SUMMARY

In summary, we have studied the Dynamical stabilization of

a set of experimentally relevant product and entangled states

in a Rydberg atom pair. The presence of Rydberg-Rydberg

interactions leads to state-dependent population trapping. As

we have shown, unlike in the case of a single two-level atom,

the population trapping or dynamical stabilization in two in-

teracting Rydberg atoms may not be accompanied by level

crossings in the Floquet spectrum. We have discussed the dy-

namical stabilization of a few selected states, including both

product and entangled Bell states. The latter case offers a way

to preserve entanglement or correlation between two qubits

for sufficiently long times, with limitations arising only from

the decoherent processes. Our analysis reveals that the driv-

ing parameters are more restricted to stabilize the entangled

states compared to the product states dynamically. The results

we have discussed here on population trapping or dynamical

stabilization are valid for a pair of any interacting two-level

systems.

Our studies immediately raise the question of population

trapping or dynamical stabilization in extended systems, i.e.,

beyond a pair of atoms. For instance, it would be interesting to
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analyze how the population trapping affects the bipartite and

tripartite entanglement of W and GHZ-states in three or more

atoms setup. As the number of qubits or atoms increases, the

Floquet spectrum’s complexity also increases, making the sce-

nario more intriguing.
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Appendix A: Derivation of Eq. (9)

When R1 resonance (n1ω = ∆0) is satisfied, we can write

Eq. (3) as,

Ĥ′ =
Ω

2
in1 Jn1

(α)

















2
∑

j=1

σ̂
j
eg + X̂

(

eiV0t − 1
)

















+

Ω

2

∑

m,n1

imJm(α)ei(m−n1)ωt

















2
∑

j=1

σ̂
j
eg + X̂

(

eiV0t − 1
)

















+ H.c.,

(A1)

where the first term provides us the resonant contribution. In

the limit ω ≫ Ω and ω ≫ V0 the contribution from the second

term in Eq. (A2) is negligible and we can obtain an effective

time independent Hamiltonian Heff = 1/T
∫ T

0
dt Ĥ′(t) where

T = 2π/ω as,

Ĥeff =
Ω

2
in1 Jn1

(α)

















2
∑

j=1

σ̂
j
eg + X̂

(

eiV0T − 1

iV0T
− 1

)

















+

Ω

2

∑

m,n1

imJm(α)X̂

(

eiV0T − 1

i[(m − n1)ω + V0]T

)

+ H.c.,

(A2)

In leading orders of V0/ω, we get the Eq. (9) in the main text.

In a similar manner, we can derive the effective Hamiltonian

in Eq. (10).
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