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a b s t r a c t 

Overall energy consumption has expanded over the previous decades because of rapid population, ur- 

banization and industrial growth rates. The high demand for energy leads to higher cost per unit of 

energy, which, can impact on the running costs of commercial and residential dwellings. Hence, there is 

a need for more effective predictive techniques that can be used to measure and optimize energy usage 

of large arrays of connected Internet of Things (IoT) devices and control points that constitute modern 

built environments. In this paper, we propose a lightweight IoT framework for predicting energy usage at 

a localized level for optimal configuration of building-wide energy dissemination policies. Autoregressive 

Integrated Moving Average (ARIMA) as a statistical liner model could be used for this purpose; however, 

it is unable to model the dynamic nonlinear relationships in nonstationary fluctuating power consump- 

tion data. Therefore, we have developed an improved hybrid model based on the ARIMA, Support Vector 

Regression (SVRs) and Particle Swarm Optimization (PSO) to predict precision energy usage from supplied 

data. The proposed model is evaluated using power consumption data acquired from environmental ac- 

tuator devices controlling a large functional space in a building. Results show that the proposed hybrid 

model out-performs other alternative techniques in forecasting power consumption. The approach is ap- 

propriate in building energy policy implementations due to its precise estimations of energy consumption 

and lightweight monitoring infrastructure which can lead to reducing the cost on energy consumption. 

Moreover, it provides an accurate tool to optimize the energy consumption strategies in wider built en- 

vironments such as smart cities. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

According to the International Energy Agency (IEA) [1] , there

ill be a 30% increase in the global demand for electricity by 2040.

his is in part due to population growth, increased accessibility to

lectricity through growing urbanization and an increasing pop-

lation living in urban centres within developing and emerging

conomies [2] . With urbanization comes the need to build more

ower-hungry infrastructures in the form of new homes, commu-

ity centres, workplaces, hospitals and schools. The UNEP express

hat buildings contribute to 33 percent of the energy produce and

ccount for around 20 percent of carbon dioxide and other green-
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ouse gas emissions globally [3] . A recent UN Environment report

as further warned that energy inefficient buildings could prevent

s from reaching the target set by the Paris Climate Agreement of

eeping keep global warming below 2 °C [4] . To meet these tar-

ets, the energy intensity of the global buildings sector needs to

mprove by 30 percent by 2030 according to The Global Alliance

or Buildings and Constructions [4] . Although there have been im-

rovements in the effectiveness of new buildings these effort s are

ot keeping pace with the remarkable extension of the world’s

ities. As most new buildings will be built in developing countries,

here is concern over the lack of standards and agreements for

andatory regulations for energy efficiency that must be complied.

dditionally, there is a need to make energy efficiency provisions

marter, more accessible and affordable f or monitoring and meet-

ng the usage requirements of new and existing buildings. This is

https://doi.org/10.1016/j.enbuild.2019.05.031
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especially true for multifunctional community and religious build-

ings such as library building that tend to be functional throughout

the day and night to serve a variety of purposes and usage needs. 

Efficient management of the energy in smart building can be

used to reduce the operational costs by assessing the amount of

energy that end-users consume from lighting and electrical equip-

ment and lowering the used amount for an individual or a group of

end-users. Effective ener gy consum ption management of inhabited

spaces can be achieved by continuously monitoring the usage of

electricity points and environmental control actuators to use this

information to optimize the way electricity is consumed without

compromising the utility and functionality of the space. However

due to the huge number of possible actuators (fans, lights, HVAC,

blinds, window actuators, etc.) and electricity outlets within large

and multifunctional user spaces there is both a need to develop ef-

fective infrastructures to sense and connect these devices together

to capture data on energy usage as well as model and predict us-

age patterns for managing and optimizing the overall energy con-

sumption of the building [5] . There has been an expanding growth

in automated control frameworks and computational improvement

methodologies applied to big data analytics [6] for modelling en-

ergy usage to provide accurate consumption estimations. Zhou

et al. [7] has introduced an extensive vision for big-data-driven

intelligent energy management through intelligent power genera-

tion, power transmission, power distribution and transformation,

and demand side management. These big data drive applications

can enable better energy estimation and management while con-

sidering the “4V” features of using large datasets that consider its

volume, velocity, variety, and value [7] . 

Different machine learning and predictive modelling techniques

have been included as part of energy management sensing and

control frameworks. Regression analysis has conventionally been

the most common approach in context of vehicle energy consump-

tion prediction, solar energy prediction, and energy consumption

prediction in buildings [8–12] . Artificial neural networks (ANNs)

have also been adopted for predicting energy consumption where

in [12] an ANN has been trained on data extracted from a simu-

lation to draw a mapping between the input and output for antic-

ipating energy consumption. In addition, decision trees have also

been used in production systems as an efficient decision support

technique to dynamically control changing industrial production

processes [13] . 

In [14] , both Genetic Algorithms (GA) and ANNs were utilized to

forecast the electrical energy consumption and in [15] ANN, fuzzy

systems and GA were used to find a buildings thermal response

to variables including internal occupancy and building plant re-

sponses and outside weather conditions. A hybridization of fuzzy

logic modelling and ANNs was introduced in [16] to perform long-

term distribution prediction achieving a high accuracy based on

extensive testing on actual data acquired from a small power dis-

tribution organization. In [17,18] multiple regression analysis tech-

niques have been adapted for the same purpose while in [19] an

approach based on the decomposition method is described to ex-

plore diverse univariate-modelling procedures to provide estima-

tion of monthly electric energy utilization in Lebanon. Univariate

systems such as autoregressive, techniques combined with mov-

ing average and a novel structure from coordinating the pass filter

with an autoregressive approach have also been presented in [20] . 

The Autoregressive Integrated Moving Average (ARIMA) [21] is

a statistical liner model for time series prediction which has been

shown to be suitable for modelling short-term forecasting and has

been utilized in an assortment of applications such as predicting

energy demand [21] , wind speed forecasting [22] , vehicular traffic

flow prediction [23] and sales forecasting [24] . The ARIMA model

is a popular time series prediction model [25] and is well suited

for monthly consumption [26] forecasting of energy usage. In the
tudy by Pappas et al. [27] , ARIMA is used for electricity consump-

ion prediction and is shown to outperform other compared ana-

ytical time-series methods. Li and Hu in [28] developed a hybrid

odel for time-series prediction based on ARIMA and fuzzy sys-

ems. Here a fuzzy model is applied on data to determine fuzzy

ules. The ARIMA model is hybridized with fuzzy rules. A key

rawback of ARIMA is low accuracy in prediction of fluctuating or

on-stationary time series data. Additionally, the symmetrical joint

istribution of the static ARIMA method is unsuitable for data with

trong dis-symmetry and the technique has been shown to be in-

ffective in adjusting the parameters of the method when the time

eries comprises new information. Also, the ARIMA model has lim-

tation to capture and detect data features in linear and nonlinear

omains. The most critical issue is lack of accurate data in fore-

asting field, therefore the hybrid model proposed in this study is

omposed of the ARIMA, SVR and PSO components. This enables

he hybrid approach to model the linear and nonlinear patterns

ith improved overall predicting performance. 

The main contribution of this study is in the development of

 hybrid computational model for energy usage prediction. Here

he ARIMA method is optimized by using a hybrid Support Vec-

or Regression (SVR), Particle Swarm Optimization (PSO) for mod-

lling linear and non-linear components in power consumption

ime series data for accurately forecasting power usage. False Near-

st Neighbours (FNN) is used to pre-process the time series data to

etermine the minimum sufficient embedding dimension used to

xplicate the dynamics in the data. The SVR model’s hyper param-

ters are optimized using the PSO to improve prediction accuracy

f the overall model. 

The optimized hybrid ARIMA model is better able to handle

on-stationary or fluctuating nature of power consumption data

rom different connected power appliances in the building. The

roposed hybrid approach is computational efficient and simple to

mplement as part of an automated power monitoring system for

orecasting and managing large scale building wide energy con-

umption. The prediction model forms the central element of a

ovel light weight IoT framework for localized energy consumption

orecasting in large multi-functional building using a cost-effective

emote sensing and embedded computing infrastructure. The ap-

roach is evaluated on real power consumption data of environ-

ental actuator devices controlling a large library building con-

aining several energy consuming devices. The performance of the

roposed prediction method is evaluated using data obtained from

 library study room equipped with environmental control actu-

tors consisting of several lights, fans and air conditioners. The

hole study room is zoned into three areas where the environ-

ental actuators in each area are supplied through three separate

ower lines that are connected to a central control box. A cur-

ent sensor is attached to each of the three power lines. A micro

ontroller (Raspberry Pi) has been used to read the current and

onvert it to power (measured in kWs). This data is then trans-

itted to an IBM bluemix virtual server using 4 G and recorded

o a My SQL database. Using the above system, the power con-

umption of the study room was continuously monitored over a

eriod of one month at a frequency of 1-minute intervals. Results

howed that the new hybrid technique performs well in energy

onsumption prediction compared to non-optimized methods. The

roposed prediction model can be used in various type of applica-

ions such as industrial automation, building automation systems,

uilding safety application, cooling, heating, and power applica-

ions for intelligent building. 

The rest of this paper is organized as follows. Technical back-

round on the data preprocessing and prediction techniques used

n this study are described in Section 2 . The preprocessing ap-

roaches and main modeling process are presented in detail in

ection 3 . A performance comparison of the proposed approach



S. Goudarzi, M.H. Anisi and N. Kama et al. / Energy & Buildings 196 (2019) 83–93 85 

w  

c

2

 

c  

d  

s  

c  

a  

g  

f  

p  

p  

e  

s  

s  

h  

w  

n  

t  

f  

m

 

M  

t  

m  

m  

r  

i  

i  

n  

r  

a  

s  

t  

f  

m  

p  

l  

m  

t  

s  

h  

p  

t  

p  

g  

b  

[  

s  

g

 

S  

s  

t  

r  

s  

d

 

m  

t  

a  

i  

p  

r  

s  

u  

f  

h  

c

 

P  

F  

t  

p

2

 

B  

t  

t  

n  

a  

s  

A  

o  

r  

a  

i  

a  

h  

 

d  

t  

d  

u

φ

w  

t  

d  

f  

a  

a

φ

θ

w  

θ  

t  

s

x

φ  

w

 

l  

m  

g  

p

 

t  

d  

A  

m  
ith the state-of-the-art techniques is presented in Section 4 . Con-

lusions can be found in Section 5 . 

. Technology background 

Suganthi and Samuel in [29] have investigated many different

omputational forecasting techniques for the field of energy pre-

iction where their study identifies traditional predicting methods

uch as econometrics models, time series, regression and ARIMA

ompared to computational intelligence methods such as genetic

lgorithm (GA), fuzzy logic, neural network, and support vector re-

ression models. The study found that ARIMA methods can be ef-

ectively combined with soft computing strategies to enhance the

recision of energy forecasting model. The work in [24] has also

roposed the usage of an ARIMA technique for predicting Greek

lectricity utilization where the planned technique in compari-

on with three systematic time-series methods showed better re-

ults. time series model is further proposed in [30] for short term

ourly prediction for peak loads using an improved ARIMA model

here the prediction results show better results over the origi-

al model. Based on these and other studies it is therefore argued

hat new optimized ARIMA models can achieve good performance

or longer-term, more stable data sets while also handling noisier,

ore volatile data. 

Binary classification problems are addressed by Support Vector

achines (SVMs). To do that, they are formulated as convex op-

imization problems [31] . Such problem involves using the maxi-

um margin to separate the hyperplane, and properly classifying

aximum possible number of training points. SVMs are able to

epresent this optimal hyperplane with support vectors. A general-

zation of SVMs is Support Vector Regression (SVR) [32–35] which

ntroduces an ε-insensitive area surrounding the function that is

ames as ε-tube to extends SVMs. The optimization problem is

e-formulated by this tube to discover the tube that is able to

pproximate the continuous-valued function appropriately. At the

ame time, the complexity of the model and the error of predic-

ion should be balanced [36] . Hence, a convex ε-insensitive loss

unction is defined and minimized and the flattest tube containing

aximum training instances to formulate SVR as an optimization

roblem. It constructs a multi-objective function from the tube’s

oss function and geometrical properties. Suitable numerical opti-

ization methods are able to solve a large variety of convex op-

imization. Support vectors represent the hyperplane as training

amples outside the tube’s boundary [36] . The determination of

yperparameters is considered as a limitation of SVR that needs

ractitioner experience. Inappropriately selection of hyperparame-

er settings and kernel functions might result in considerably low

erformance [32–35] . The use of optimization algorithms such as

enetic algorithm (GA) and chaotic genetic algorithm (CGA) have

een employed to discover the optimal hyperparameters for SVMs

37,38] . An approach for electricity load prediction has been pre-

ented in [17] and [39] that uses hybridization support vector re-

ression schemes with simulated annealing (SA). 

Compared with GA and simulated annealing (SA), Particle

warm Optimization (PSO) is able to memorize the optimality of

olutions (represented as particles in a swarm) over each itera-

ion step. As all particles are able to remember the best position

eached during the past iterations as well as share data over the

warm. As such PSO can achieve better performance in selected

omains compared to other evolutionary optimization approaches. 

In this study, we introduce a new optimized ARIMA method for

onitoring and predicting energy consumption from various elec-

rical building actuators towards optimizing inefficient power us-

ge and reducing overall power consumption. The ARIMA model

s used to generate residual vectors for estimating the linear com-

onents in pre-processed power consumption timeseries data. The
esiduals are embedded within a predefined dimension to con-

truct out residual vectors constructed by the SVR that are then

sed to extract the nonlinear patterns for forecasting energy usage

rom supplied data. PSO is further used to discover the optimal

yperparameters for SVR to improve its prediction accuracy of the

ombined hybrid model. 

The following subsection provide details of the ARIMA, SVR and

SO techniques used in the proposed hybrid method along with

alse Nearest Neighbors (FNN) data pre-processing techniques used

o generate the datasets for the training and testing the proposed

rediction method. 

.1. ARIMA method for prediction operations 

The ARIMA approach was presented as a prediction method by

ox and Jenkins [40] . This method is based on a linear combina-

ion of past values (AR) and errors (MA), namely autoregressive in-

egrated moving-average (ARIMA). ARIMA method is a linear tech-

ique that predicts the linear component. Non-linear techniques

re also used to forecast the other elements in time series. In this

tudy we used optimization techniques to design the best possible

RIMA-based method for predicting timeseries data. ARIMA meth-

ds involve one variate as they use only the history of the time se-

ies to show how the variables respond with previous random vari-

nt. ARIMA can be executed through the three steps after collect-

ng historical data of the relevant parameters. These three stages

re identification, estimation and diagnostic checking [40] . An ex-

austive explanation of the ARIMA method is presented in [40,41] .

Formally, ARIMA (p, d, and q) comprise of the parameters p,

 and q where, p is equal to the number of autoregressive (AR)

erms, q shows the number of lagged moving averages (MA) and

 is equal to the number of non-seasonal variances. The method

ses to describe the time series expressed as follows: 

( B ) ∇ 

d x t = θ ( B ) e t (1) 

here x t and e t denote energy consumption and error at random

ime t, consistently. B represents a regressive shift operator well-

efined by Bx t = x t−1 , and associated to ∇; the order time of dif-

erencing is defined by d; ∇ = 1 − B , ∇ 

d = ( 1 − B ) d . θ (B) and φ(B)

nd are moving averages (MA) and auto regressive (AR) and oper-

tives of orders p and q as follows: 

( B ) = 1 − φ1 B − φ2 B 

2 − . . . − φp B 

p (2) 

( B ) = 1 − θ1 B − θ2 B 

2 − . . . − θq B 

q (3) 

here φ1 , φ2 , φ3 , …, φp are the autoregressive coefficients and θ1 ,

2 , θ3 , …, θq are defined as the moving average coefficients. Also,

he time series x t is denoted as linear transfer function of the noise

eries: 

 t = μ + φ( B ) e t (4) 

( B ) = 1 + φ1 B + φ1 B 

2 + . . . (5)

here φ( B ) can be computed as ϕ(B ) = θ (B ) /φ(B ) . 

To utilize ARIMA method, we need to fix the partial autocorre-

ation (PACF) and autocorrelation (ACF) functions. In addition, the

eans of the partial autocorrelation graph and the autocorrelation

raph of data are used to compute the order of the AR and MA

arameters. 

As mentioned previously, to implement the ARIMA method

hree steps are taken. In the first step of model identification,

ata should be often stationary since it is extremely important in

RIMA forecasting. To stabilize variance in data, differencing is nor-

ally applied [41] , and the parameter d is determined. For time
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Table 1 

AIC and BIC criterions for ARIMA’s models. 

ARIMA’s model [2,1,1] [1,1,2] 

AIC 8.663 8.326 

BIC 8.797 8.529 
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g ( t + 1 ) = g ( t ) + v ( t + 1 ) (13) 
series and probabilistic methods’ stationarity can also be identi-

fied referring to PACF and ACF. Parameter estimation is the sec-

ond step where Akaike’s Information Criterion (AICC) [42,43] and

Schwarz’s Bayesian Information Criterion (BIC) [41] are minimized

through parameter estimation in which both AIC and BIC compute

the maximum log likelihood of the model. BIC is structurally sim-

ilar to AIC but includes a penalty term dependent on sample size.

We achieved the results of ARIMA model by Eviews software. The

non-stationary of data is shown as ascending data. We assigned 1

to d parameter, to make a difference on data. According to data

correlation with 1 lag, we considered 1 and 2 as predicted values

for AR, it means that 1 and 2 refer to AR value and, we computed

1, 2, and 3 as measured values for MA parameter. After compari-

son, we should recognise the best ARIMA model. In this purpose,

two models [1,1,2] and [2,1,1] have been selected as appropriate

models. AIC and BIC criterions comparison for [1,1,2] and [2,1,1]

ARIMA methods are shown in Table 1 . The best ARIMA model with

low values is chosen. The [1,1,2] model with AR = 1 and MA = 2 is

selected as superior ARIMA model. 

In the last step of ARIMA method, the precision and the error

stationarity of the model are evaluated. Some predictive error per-

formance measures such as root mean square error (RMSE) and

mean absolute error (MAE) are applied to select the best model

[43] . 

The ARIMA method [ARMA (p, q)] can be defined for x time

series which contains n instances through forecasting Eqs. (6) and

(7) as follows: 

x t = 

p ∑ 

i =1 

A i X t−1 + 

q ∑ 

j=1 

B j ω t− j + ω t (6)

ˆ x t = α1 x t−1 + . . . + αp x t−p + ω t = 

P ∑ 

i =1 

αi x t−i + ω t (7)

where x ( t ) shows the original data and 

̂ x (t) shows the predict-

ing data; the m-dimensional vector ω t is uncorrected random data

with zero-mean and covariance matrix R, θ = ( p, q ) refers to the

order of the predictor where p presents the number of autoregres-

sive terms, q refers to the number of lagged forecast errors in the

forecasting equation and A 1 , . . . , A p and B 1 , . . . , B q are the m × m

coefficient matrices of the multivariate (MV) ARMA method. The

random errors ( ω t ) are supposed to be self-determining and pos-

sess identical distribution with a constant variance. In this study

the linear components of the energy consumption timeseries data

acquired from the environmental sensors can be predicted using

these equations. 

2.2. Support vector regression 

The SVR [44] used in this study is developed according to the

structural risk minimization (SRM) principle that can minimize the

upper bound of the generalization error. For the case of regression

approximation, suppose there are a training set of data { X i , y i } l i =1 

where X ∈ R d is i th input data, y i is the i th predicted output of X i ,

the number of training samples is shown by l and embedding di-

mension is presented with d . The main target of SVR is to detect

the optimal function among other possible functions as follows: 

y = f ( x ) = w 

T ϕ ( x ) + b (8)
here ϕ( x ) is the high dimensional feature space, which is nonlin-

arly mapped from the input space x and b is a bias constant or

hreshold. W and b are estimated by minimizing the following op-

imization problem: 

f 
1 

2 

‖ 

w ‖ 

2 + C 

l ∑ 

i =1 

L ( y i , f ( x i ) ) (9)

Minimize the regularized error is required to find the optimal

unction f ( x ), where C > 0 is a regulatization factor, the 2-norm on

unction is ‖ w ‖ 2 and L ( y i , f ( x i )) is a loss function. Eq. (8) is used to

resent the sparsity in SVR in the ε-insensitive loss function. This

ormula creates an ability for more forecasting to decrease within

he boundaries of the ε−tube. 

( y, f ( x ) ) = 

{
0 , | f ( x ) − y | < ε
| f ( x ) − y | − ε, otherwise 

(10)

The SVR uses the nonlinear kernels to map samples into a com-

lex dimensional space. The following form is the regression func-

ion: 

f ( x ) = 

l ∑ 

i =1 

( αi − α∗
i ) k ( X i , X ) + b (11)

here α and α∗ are Lag range multipliers and k ( X i , X ) is a ker-

el function. We applied the Gaussian kernel function of the form,

( k ( X i , X j ) = exp ( 
−‖ X i −X j ‖ 2 

2 γ 2 ) ) , where γ is a parameter of the Gaus-

ian kernel. 

.3. Particle swarm optimization method 

Particle swarm optimization (PSO) is an optimization nature-

nspired algorithm [45] that works based on social behavior of bird

ocking or swarming of insects or fish schooling [46] . In nature,

he movement of a bird is adjusted to discover a better position

n the flock based on the experience obtained by the bird and

he neighboring birds. Nowadays, PSO has gained much attention

n wide applications for solving continuous nonlinear optimization

roblems because of its simple concept, easy implementation and

ast convergence [45] . 

For the optimization problem pertaining to this study, each par-

icle represents as a suitable solution. Particles move in a k di-

ensional search space. Movement is performed by each particle

onstructed on prior knowledge and interactions with other par-

icles in each iteration. All particles adjust their positions in the

olution space towards being associated to the best solution (fit-

ess criterion), which has been recognized thus far by these par-

icles. This value is titled the personal best, pbest. PSO tackles an-

ther value that is the best value distance acquired subsequently

y the particles. This is called, gbest. Basically, PSO focuses on the

ast-tracking particles according to their pbest and gbest locations

ver each iteration. Each particle calculates its velocity to perform

ovements and then each particle can update its position for each

teration. The variation of the velocity of the particle is mathemat-

cally formed as follows: 

 i ( t + 1 ) = ω × v i ( t ) + c 1 × rand() 

× ( pbes t i − g i ( t ) ) + c 2 × rand() 

× ( gbes t i − g i ( t ) ) (12)

here v i ∈ [ −v m 

ax, v m 

ax ] , rand () is a random function which uni-

ormly distributed random number between 0 and 1, the c 1 and c 2 
re, respectively, related to weighting factors and denote the per-

onal learning factor and social learning factor and ω is inertia fac-

or. The following equation is designed to display the new solution:
i i i 
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Fig. 1. Flowchart of proposed model. 
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.4. False nearest neighbors (FNN) 

A significant step in time series analysis is the identification of

he minimum (necessary) embedding dimension for reconstructing

he dynamics in the data, where such information is either hidden

r not known a priori [47] . If the embedding dimension is less than

he actual dimension of the system, the computed models can be

naccurate as the dynamics in the data have not been completely

nfolded. If, the embedding dimension is too large, the number of

ata points in the time series would be correspondingly large lead-

ng to excessive computation. This also increases computational er-

or due to the presence of additional unwanted dimension where

o dynamics are operating [47] . 

Selecting the embedding dimension m is therefore very signifi-

ant to predict x i +1 in the historical data. An effective technique of

nding the minimal sufficient embedding dimension is the False

earest Neighbors (FNN) procedure, which was proposed by Ken-

el et al. [48] . FNN is a nature-inspired algorithm based on geo-

etric. When the regression vectors have sufficient data to pre-

ict upcoming output, the future output of the two regression vec-

ors which are also close together in the regression space, will be

ear it. Whenever, not adequate terms to reform the dynamics of

he system are available in the regression vector, some neighbor-

oods in the regression space will have an extensive range of re-

ated forthcoming results. Trajectories that are near with very di-

erse outputs can be assumed could be considered as false neigh-

ors, because their proximity is due to the projection onto a space

ith a dimension too small to denote the dynamics of the system.

To clarify the mechanism of false nearest neighbors, firstly, the

NN assumes the embedded dimension is m = 1 ; so, it evaluates

ow far single points are to their neighbors by calculating the dis-

ances between a i , 1 and a j , 1 ∀ i � = j . Therefore, the FNN for embed-

ed dimension equal to two ( m = 2) must compute distances be-

ween ( a i , 1 , a i , 2 ) and ( a j , 1 , a j , 2 ) where ∀ i � = j . Accordingly, the FNN

ill compute distances between ( a i, 1 , . . . , a i,τ ′ ) and ( a j, 1 , . . . , a j,τ ′ )
here ∀ i � = j . The false nearest neighbors is calculated as follows: 

• For a point a ( i ) in the embedding space, we have to find a

neighbor a ( j ) for which ‖ a i − a j ‖ < ε, where ‖ . . . ‖ is the square

norm and ɛ is a small constant usually not larger than the stan-

dard deviation over all the data. 

• The Eq. (14) shows the normalized distance as R i that is be-

tween the points a(i) and a(j): 

R i = 

∣∣X i + τ − X j+ τ
∣∣

(14) 
‖ 

a ( i ) − a ( j ) ‖ 

i  
• If R i exceeds a given threshold R tr then in dimension m, the

point a ( i ) is defined as a false nearest neighbor. According to

[47] , R tr = 15 has proven to be a good choice for most data sets.

Another issue is the correct estimation of the time delay τ . We

an determine τ , by using the first minimum of mutual informa-

ion (MI) function [48] . The MI functions quantitatively measure

he mutual dependence of the two variables based on the proba-

ility theory and information theory as follows: 

I ( τ ) = 

N−τ∑ 

n =1 

P ( a n , a n + τ ) log 2 

(
P ( a n , a n + τ ) 

P ( a n ) P ( a n + τ ) 

)
(15) 

here P ( a n ) presents the probability density of a n while P ( a n , a n + τ )

onates the joint probability density of a n and a n + τ . 

. Our proposed framework 

This section presents the proposed model including data pre-

rocessing, the PSO algorithm for determining the SVM’s parame-

ers and the proposed ARIMA and PSO-SVM model. The whole pro-

ess is depicted in Fig. 1 . 

.1. Data preprocessing 

Initially, the MI function is computed using Eq. (15) to select

he most relevant inputs for the power consumption dataset. In the

econd step, the first delay time is considered as the optimal time

elay. This value is calculated using the MI function. In the third

tep the minimum sufficient embedding dimension are determined

sing the FNN approach. According to the optimal time delay and

mbedding dimension, the time series phase space is recreated to

lear its hidden dynamics in the fourth step. Eq. (16) is used to

ormalize and fit the data in the interval (0, 1) in step five: 

 new 

= 

x old − x min 

x max − x min 

(16) 

Finally, in step six, two datasets, training and testing dataset are

cquired by splitting the time series dataset. Here, we trained with

0% training data and tested on the remaining 30%. The data pre-

rocessing procedure is illustrated in Fig. 1. 

.2. PSO for determine the SVR’s parameters 

Good setting of hyper parameters C , ε and the kernel parame-

ers ( σ ) determine the prediction accuracy of the SVR. Parameter C

s specifies the tradeoff between the degree of the training errors
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Table 2 

Minimum testing MAPE value. 

Power lines MAPE of testing (%) 

Power line 1 1.4178 

Power line 2 1.7001 

Power line 3 1.3349 
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larger than e that are tolerated in Eq. (17) (i.e., the empirical risk)

and the model flatness and. When C has large boundary balue (in-

finity), the empirical should be decreased. Parameter ε is used to

control the ε-insensitive zone’s width, for instance, the number of

SVs used for the regression [42] . When ε-value is large, fewer SVs

employed is implied; hence, the regression function is flatter (sim-

pler). As mentioned previously there is no specific technique for

effectively setting of SVR parameters. 

In PSO, tracing and memorizing can be used to store each parti-

cle’s experience in searching process. As all particles can remember

the best position they reached during the past iteration, the PSO

process can hybrid self-experience search with neighboring experi-

ence search. In the traditional SVR technique the parameters were

selected using a grid search over a fixed interval of possible val-

ues for the parameters. In the hybrid PSO-SVR model, the PSO con-

structs a stochastic search for finding the best set of parameters of

SVR. The position, velocity, and local best position of the ith par-

ticle pair can be defined as follows where these terms are defined

based on the three hyper parameters in an SVR model for the n-

dimensional space and are denoted in Eqs. (17) –(19) , respectively,

X ( k ) i = 

[
x ( k ) i, 1 , x ( k ) i, 2 , x ( k ) i, 3 , . . . , x ( k ) i,n 

]
(17)

 ( k ) i = 

[
v ( k ) i, 1 , v ( k ) i, 2 , v ( k ) i, 3 , . . . , v ( k ) i,n 

]
(18)

P ( k ) i = 

[
p ( k ) i, 1 , p ( k ) i, 2 , p ( k ) i, 3 , . . . , p ( k ) i,n 

]
, 

k = C, ε, σ, i = 1 , 2 , . . . , N (19)

We initialize a population of particles ( C i , ɛ i , σ i ) with ran-

dom positions ( X Ci , X ɛ i , X σ i ) and velocities ( V Ci , V ɛ i , V σ i ). Then,

the global finest position between all particles in the swarm X k =
[ X k 1 , X k 2 , X k 3 , . . . , X kN ] is shown as Eq. (20) : 

P kg = 

[
p kg1 , p kg2 , p kg3 , . . . , p kgd 

]
, k = C, ε, σ, i = 1 , 2 , . . . , N 

(20)

The new velocity of all particles in the population is then cal-

culated by Eq. (21) as follows: 

 ( k ) i ( t + 1 ) = w v ( k ) i ( t ) + q 1 Rand ( . ) ( P ki − X ki ( t ) ) 

+ q 2 rand ( . ) 
(
P kg − X ki ( t ) 

)
, 

k = C, ε, σ i = 1 , 2 , 3 , . . . , N, (21)

where w refers to the inertia weight which controls the impact of

the prior velocity of the particle on its present one, where it is

used to control the degree of exploration of the search, q 1 and q 2 
are two positive constants. Rand (.) and rand (.) are uniform ran-

dom variables with range [0, 1]. The new position of the particle

for each parameter is determined in the next generation as follows,

X ki ( t + 1 ) = X ki ( t ) + V ki ( t + 1 ) , k = C, ε, σ i = 1 , 2 , 3 , . . . , N (22)

Notice that the value of each factor in V ( k ) i is limited to the

range [ −v max , + v max ] to control excessive roaming of particles out-

side the feasible search space. This procedure is continued until a

predefined threshold is reached. In this study, the forecasting error

index, namely the mean absolute percentage error (MAPE) is used

as the forecasting accuracy measure. The MAPE is used for mea-

suring accuracy and is the criterion used for selecting the most

appropriate parameters for usage in the SVR with PSO model, as

shown in Eq. (23) 

MAP E = 

1 

N 

N ∑ 

i =1 

∣∣∣∣y i − f i 
y i 

∣∣∣∣ × 100% (23)
here N is the number of prediction periods, y i is the actual value

t period i and f i shows the predicting value at period i . The small-

st testing MAPE value is determined in the proposed model to be

he most suitable model. The MAPE for testing of the three power

ines are demonstrated in Table 2 . 

The PSO is employed to adjust the parameters with minimum

alidation error and select them as the most appropriate parame-

ers. 

.3. Proposed ARIMA-PSO-SVR model 

In this section we describe each phase of the proposed hybrid

odel which combines the SVR and PSO model components de-

cribed in previous sections. In the first phase, the ARIMA (p, s,

nd q) model is used to estimate the linear component of the time

eries data which generates a ˆ x t where ˆ x t shows predicting data by

RIMA method (See, Eq. (7) . The data are then embedded within a

redefined dimension d where a vector y i = [ ̂ x t , ̂  x t+1 , . . . , ˆ x t+ d ] will

e constructed by the SVR that can extract the nonlinear patterns. 

In the second phase: the optimal hyper parameter set for SVR

s determined using the PSO. The PSO determines the optimal set

f parameters for the SVR comprising of the regression parameter

, a constant C, and the kernel constant σ . In PSO, the search space

s limited by min and max values of the parameters. In the third

hase the final predictions will be based on the combination of

redictions by the ARIMA and PSO-SVR models as follows: 

 t = 

ˆ x t + y ′ t (24)

In the fourth phase, founded on the final prediction z t of the

ystem, the fitness evaluation is computed. The mean square error

MSE) is used to measure the quality of prediction as shown in

q. (25) . Here a validation set is utilized to compute the suitability

f a particle and test set is used to assess the performance of the

ystem. 

f ( g i ) = 

n ∑ 

i =1 

( z t,i − x t ) 
2 

n 

(25)

. Performance evaluation 

The performance evaluation of the proposed hybrid prediction

ethod is based on data obtained from a library building in Uni-

ersiti Teknologi Malaysia (UTM). Different data sets from a library

uilding are collected to verify the forecasting ability of the pro-

osed hybrid model. All data sets are derived from actual building

nergy usage data. Processing and transmission of data using a mi-

rocontroller (Raspberry Pi). Continuous energy monitoring system

re used to monitor and detect unreasonable power consumption.

sing the proposed system, the power consumption of the library

uilding was continuously monitored over a period of one month

t a frequency of 1-minute intervals. 

In the advance of time series forecasting techniques, one of

he significant steps is selecting the input data, which determines

odel’s structure [27] . In the data pre-processing step, we used

ATLAB toolbox to compute MI function and FNN procedures.

igs. 2 and 3 shows the mutual function and FNN results for each

ataset. 
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Fig. 2. MI function of three point of use. 

Table 3 

ARIMA method parameters of three point-of-use. 

ARIMA Power line 1 Power line 2 Power line 3 

p 3 5 3 

d 3 1 1 

q 1 0 0 
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Fig. 3. Embedding dimension of three point of use. 
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As energy consumption data has a number of non-stationary

roperties, diverse techniques need to be employed to modify the

on-stationary attributes. The parameters of basic ARIMA method

hat are displayed in Table 3 , are designed based on the Akaike In-

ormation Criterion (AIC) [49] that are used to measure of model

erformance based on the energy consumption data from three

eparate power lines. Previous experimental results over basic
RIMA method suggest that the predicting functions must be cre-

ted by values shown in Table 3 . 

The comparative results of model fitting and forecasting for

RIMA against the real forecasting data on consumption for each

f the three power lines are shown in Fig. 4 , where the predict-

ng data is organized from 101 to 120. The comparison of the basic

RIMA technique, the PSO-SVR-optimized model and the enhanced

ybrid model against the forecasting data on consumption rates for

ach of the power lines are shown in Figs. 4 –6 . 

We used the mean absolute error (MAE), the average relative

rror (ARE) and the square root of the mean square error (RMSE)

n order to evaluate the performance of the models on prediction

ccuracy. These evaluation measures are equated as follows: 

MSE = 

√ ∑ n 
i =1 

(
y i − ˆ y i 

)2 

/ n 

(26) 
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Fig. 4. Predicting results of ARIMA method. 

 

 

 

 

 

 

 

Table 4 

Indices of ARIMA method. 

Power line 1 Power line 2 Power line 3 

ARE 41% 40% 35% 

MAE 1.2 0.9 0.89 

RMSE 0.9 1.4 0.7 

Table 5 

Indices of the PSO-SVR method. 

Power line 1 Power line 2 Power line 3 

ARE 39% 24% 22% 

MAE 0.9 0.5 0.3 

RMSE 0.7 1.1 0.5 

Table 6 

Indices of the hybrid method. 

Power line 1 Power line 2 Power line 3 

ARE 27% 22% 21.5% 

MAE 0.6 0.30 0.28 

RMSE 0.5 0.80 0.26 
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MAE = 

∑ n 
i =1 

∣∣y i − ˆ y i 
∣∣
/ n 

(27)

ARE = 

∑ n 
i =1 ( 

∣∣ ˆ y i − y i 
∣∣/ y i ) / n 

(28)

where y i is the real value, and ˆ y i is the estimated value of y i . Tables

4–6 further shows the performance of each estimation model

based on the predicted consumption of the three power lines sup-

plying the library building compared to their forecasting data. 

The power consumption prediction results of the ARIMA

method shown in Table 4 and Fig. 4 shows that the ARIMA method

has the ability to explain the variation of the time series. 
Though the basic ARIMA method has an efficient performance

n the presence of energy consumption variation, the basic ARIMA’s

redicting accuracy is not able to address the demand for energy

torage in real-time electricity markets. To better predict the en-

rgy consumption, PSO-SVR was suggested to enhance the results

f the ARIMA method. For the three power lines, the PSO-SVR

ethod optimizes the results of the ARIMA model and the predict-

ng and predicting results have been presented in Fig. 5 . In Figs. 4 –

 , similar trends to real data are observed in each model. How-

ver, there is greater differences notifiable between the real data

nd the results of basic ARIMA. The evaluation indices of the PSO-

VR-optimized ARIMA method are shown in Table 5 . 

The optimized hybrid model that controls the forecasting error

ased on PSO-SVR-optimized ARIMA method for all three power

ines, shows a significant enhancement for energy consumption

rediction in the library building containing several energy con-

uming devices. The detailed indices are shown in Table 6 . These

esults show an improvement of the hybrid model compared to

oth the basic ARIMA and PSO-SVR optimized ARIMA methods. 

To assess the methods accurately, the performance indices of

he different models over the three power lines are calculated

nd shown in Fig. 7 according the measures defined above. From

he results we see an improvement in the new hybrid optimized

ethod regarding both the power consumption indices and fore-

asted results. For example, considering the ARE, in line 1, the val-

es are between 41% and 22% for the basic ARIMA method and the

SO-SVR method but are decreased to 21% in the enhanced hybrid

ethod. 

In comparing the performance of the three approaches based

n RMSE, for line 2 the value of the basic ARIMA method is 1.4575,

hile that of the PSO-SVR method is decreased to 1.1 and that of

he optimized hybrid method is 0.8. Results of improved ARIMA

ith SVR and PSO are presented that RMSE, MAE and ARE cri-

eria have been improved in PSO-SVR and new hybrid optimized

ethod and overall acquires better results than non-optimized sin-

le ARIMA method. Also, SVR with PSO as an evolutionary algo-

ithm is a viable alternative to improve the load forecasting ac-

uracy successfully. As such, it can be used as a suitable method

or energy consumption prediction. Overall Fig. 7 shows that the

roposed hybrid model has the lowest RMSE, MAE, ARE evaluated

n each of the three power lines. This suggests that the improved

ybrid method can successfully reduce the error of the predicted

alues compared to the other two predicting approaches. 
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Fig. 5. Predicting results of the PSO-SVR method. 
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Fig. 6. Predicting results of the optimized hybrid model. 

Table 7 

Models’ performance under MAPE. 

Model Power line 1 Power line 2 Power line 3 

ARIMA 0.047765 0.049032 0.054331 

PSO-SVR 0.046997 0.047145 0.052088 

HYBRID MODEL 0.043495 0.04 4 487 0.046906 

t  

t  

t  

a  

o  
The performance comparison of proposed models on MAPE

s stated in Table 7 . The average error of proposed hybrid

odel, PSO-SVR and ARIMA for MAPE are 0.044962, 0.048743 and

.050376 respectively and the hybrid model is graded first. The re-

ults of MAPE show that the hybrid model is more robust than

ther models. 

Additionally, to prove the significance of accuracy improvement

f the proposed hybrid model, a statistical t-test was conducted.

aired t-tests were performed separately for three power lines. The

-tests examine the performance of each model based on obtained

esults. A complete description for the t-tests is explained in [28] .

e used the results of each model to compute the t-test statis-
ic, that is, the ratio of the estimate of the magnitude of the slope

o its standard deviation. We then calculate the p-value for each t-

est on three power lines datasets where the results of this analysis

re shown in Table 8 . The tests are obtained at a significance level

f 95%. For this purpose, the significance effects have been set as
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Fig. 7. Indices of different models in three point-of-use. 

 

 

 

 

 

 

 

 

 

Table 8 

p-values for paired t-tests. 

Model PSO-SVR ARIMA 

Power line 1 

HYBRID MODEL 0.007 0.011 

PSO-SVR – 0.182 

ARIMA 0.299 –

Power line 2 

HYBRID MODEL 0.013 0.005 

PSO-SVR – 0.243 

ARIMA 0.154 –

Power line 3 

HYBRID MODEL 0.003 0.009 

PSO-SVR – 0.315 

ARIMA 0.108 –
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effects with p-values, 0.05. It specifies models that vary consider-

ably in accuracy. 

According to Table 8 , we can see that our hybrid model has out-

performed other models based on a significant level of 95%. There

is no high variance between other models. The ARIMA model is

highly different from our proposed hybrid model. Overall, accord-

ing to MAPE measurement, we can see that our hybrid model per-

forms well in terms of prediction accuracy. 

In this study, based on several applied methods, it can be

supposed that combining linear and nonlinear methods with an

optimization framework can demonstrate acceptable results with
reater correctness, particularly when both methods offer good

redicting strength. 

. Conclusion 

In this work, an efficient hybrid prediction mechanism based on

SO-SVR and ARIMA has been proposed for accurate prediction of

ower consumption of actuation units in intelligent building en-

ironments. The main contribution of our prediction model is the

ybridization of ARIMA model with an optimized PSO algorithm.

n this study, we tried to show impact of PSO-SVR on optimiz-

ng parameters. The performance of the optimized hybrid method

as assessed on monitored power consumption data of actuator

evices from three zones that separately controlled the environ-

ent of a library building. The results indicated that the prediction

nd forecasting ability of new hybrid technique was able to out-

erform the existing optimized SVR and the basic non-optimized

RIMA method. 

These results show that the new hybrid model is a valuable

ethod of planning and optimizing the ARIMA method in energy

onsumption prediction under real data. The new hybrid predic-

ive modeling techniques offers several benefits. Firstly, the FNN

s able to find the minimum sufficient embedding dimension in

he time series data. Secondly, the proposed ARIMA method that

s optimized by the PSO-SVR enables to model parameters to opti-

ally adjust when dealing with non-stationary or fluctuating time

eries data used in predicting energy consumption; The merging

f PSO-SVR with ARIMA provides an optimized hybrid method

hat has achieved consistently better prediction accuracies as has

een shown from experimental results based on monitoring dif-

erent combinations of building control devices powered using

hree different power lines. The ARIMA combined with PSO-SVR

hows more advantages in terms of its computational efficiency.

he method proposed in this study is also relatively easy to im-

lement and deploy in different inhabited and functional spaces.

ore broadly the method can be extremely beneficial as an accu-

ate tool to predict large scale building wide energy consumption

hat contribute to global energy consumption issues. 

The main goal of this system is to streamline power manage-

ent, monitoring and prediction into one single system such that

nefficient power usage on various electrical appliances can be

inimized to save on rising power utility costs. There can be var-

ous advantages and benefits from implementing such a system,

he most obvious being that the cost of energy consumption can

e significantly reduced. Moreover, the mobile aspect of our appli-

ation using Raspberry Pi’s as our core architecture, provides scal-

bility, processing power and a lightweight form factor for each

evice node that can be accommodated in a small and portable

pplication and easily retrofitted to complement existing building

anagement systems. 
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