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We consider the evolution of nonlinear optical pulses in cubic-quintic nonlinear media wherein the pulse

propagation is governed by the generalized nonlinear Schrödinger equation with exponentially varying disper-

sion, cubic, and quintic nonlinearities and gain and/or loss. Using a self-similar analysis, we find the chirped

bright soliton solutions in the anomalous and normal dispersion regimes. From a stability analysis, we show

that the soliton in the anomalous dispersion regime is stable, whereas the soliton in the normal dispersion

regime is unstable. Numerical simulation results show that competing cubic-quintic nonlinearities stabilize the

chirped soliton pulse propagation against perturbations in the initial soliton pulse parameters. We characterize

the quality of the compressed pulse by determining the pedestal energy generated and compression factor when

the initial pulse is perturbed from the soliton solutions. Finally, we study the possibility of rapid compression

of Townes solitons by the collapse phenomenon and the exponentially decreasing dispersion. We find that the

collapse could be postponed if the dispersion increases exponentially.
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I. INTRODUCTION

The generation of ultrashort optical pulses has received

much attention owing to their wide applications in many

different areas such as ultrahigh-bit-rate optical communica-

tion systems, ultrafast physical processes, infrared time-

resolved spectroscopy, optical sampling systems, etc. �1–3�.
In general, it is difficult to produce very short optical pulses

even from the best available laser sources. Therefore optical

pulse compression techniques have been utilized to generate

optical pulses shorter than those produced by lasers or am-

plifiers. Optical pulse compression can be classified into two

different types. The first is linear compression of chirped

pulses using a dispersive fiber delay line or grating pairs. The

second is nonlinear compression based on the interplay be-

tween self-phase modulation and group velocity dispersion

using either a soliton or adiabatic effect �3�. In soliton effect

compression, the compressed pulse typically is a sharp, nar-

row spike centered on a broad low-intensity pedestal which

contains a large proportion of the pulse energy. In optical

communication systems, a broad pedestal is undesirable be-

cause it will overlap with adjacent pulses and results in in-

tersymbol interference. A number of pedestal suppression

techniques have been proposed to block the low-intensity

tails of the compressed pulses �4�. Much of the energy of the

initial pulse, however, is also discarded in the process. Adia-

batic pulse compression, in principle, can achieve pedestal-

free compression, but it is difficult to maintain the adiabatic

condition throughout the compression process.

Contrary to the above-discussed conventional pulse com-

pression techniques, a technique has been proposed based on

filamentation and plasma generation in the high-intensity re-

gion �5�. When the intensity of the incident field is high

enough in the range of 1013–1014 W /cm2 or the intensity

reaches the value where the Kerr nonlinearity saturates, im-

portant physical effects like self-focusing, plasma defocus-

ing, etc., come into play. When a pulse with power exceeding

the critical power for self-focusing, Pcr, propagates in gases
it supports a narrow coherent structure known as filaments.
The filament is generated after the dynamical balance of two
counteracting physical effects: namely, focusing due to the
Kerr effect and defocusing due to plasma generated by mul-
tiphoton ionization. The filament has been observed in gases
as air �6�, in solids as silica glasses �7�, and in liquids �8�.

Recently, much interest has been focused on the compres-
sion of linearly chirped pulses. Moores suggested that
chirped solitary pulses can be compressed more efficiently if
the dispersion decreases approximately exponentially �9�. A
self-similar analysis has been utilized to study linearly
chirped pulses in optical fibers and fiber amplifiers. The self-
similar analysis for the nonlinear Schrödinger �NLS� equa-
tion with constant gain has revealed that the interplay of
normal dispersion, nonlinearity, and gain produces a linearly
chirped pulse with a parabolic intensity profile which resists
the deleterious effects of optical wave breaking �10�. The
generation of bright and dark self-similar solitary pulses has
been investigated using a NLS-type equation in the presence
of gain �11�. Chirped solitary pulse compression has been
demonstrated in these optical amplifiers. Using the self-
similar analysis, we have shown that chirped Bragg solitary

pulses can be generated near the photonic band gap of non-

uniform-fiber Bragg gratings. We have also investigated

pedestal-free Bragg soliton pulse compression �12�. Using

the Hirota bilinear method and variational analysis, we have

shown that the intensity and the chirp of the chirped soliton

for an exponentially decreasing dispersive medium increase

exponentially, while its width decreases exponentially. These

properties are consistent with self-similar behavior �13�.
When an optical pulse is compressed, its peak intensity

increases, while the pulse width decreases. When the pulse

peak intensity is sufficiently large, the field-induced change

of the refractive index is no longer described by the usual

Kerr-type nonlinearity—i.e., n�� , I�=n0���+n2I, where

n�� , I� is the refractive index of the medium, n0��� is the

refractive index of the medium for weak input optical power,
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� is the angular frequency, n2 is the Kerr constant, and I is

the intensity of the optical pulse. A higher-order nonlinear

effect such as the quintic nonlinearity will have to be taken

into account and the refractive index will have to be modi-

fied to be n�� , I�=n0���+n2I−n4I2, where n4 is the quintic

nonlinearity coefficient. The coefficients n2 and n4 are re-

lated to the third-order ��3� and fifth-order ��5� susceptibili-

ties through n2=3��3�
/ �8n0� and n4=−5��5�

/ �32n0�. Pulse

propagation in the presence of competing cubic-quintic non-

linearities has received much attention lately because com-

petition between nonlinearities of different orders could lead

to strong stabilization of pulse propagation �14�. Higher-

order nonlinearities must be considered if the optical pulse

intensity is high or the nonlinear coefficients of the materials

are large—for instance, in semiconductor doped glasses

�14,15�. One example of the effect of competing nonlineari-

ties is the stabilization of vortices and vortex tori in cubic-

quintic nonlinear media �16–19�. In the constant-dispersion

case, the bright and dark solitons have been extensively in-

vestigated in the cubic-quintic nonlinear media �20,21�. The

bright and dark quasi-solitons for the cubic-quintic nonlin-

earity have also been studied �22�. In recent years, a number

of experiments reported the measurement of the cubic-

quintic nonlinearity �23�. More recently, we have investi-

gated the existence of chirped bright solitons in cubic-quintic

nonlinear media with exponentially decreasing dispersion

�24�. In this paper, we investigate pedestal-free pulse com-

pression of the chirped bright soliton pulse under the influ-

ence of cubic and quintic nonlinearities. Numerical results

reveal that competing cubic and quintic nonlinearities can

stabilize the pulse propagation and will lead to more robust

pulse compression. As a special case, we also discuss chirped

Townes solitons in pure quintic media—i.e., power-law

nonlinearity—and study the possibility of rapid pulse com-

pression by wave collapse and exponentially decreasing dis-

persion. We note that the pure quintic nonlinearity aptly

models the Tonks-Girardeau �TG� regime in Bose-Einstein

condensation �BEC�.
The rest of the paper is organized as follows. Section II

discusses the theoretical model and the origin of the fifth-

order �quintic� nonlinearity. In Sec. III, we present the

chirped bright soliton solutions. We then determine the rela-

tions among the dispersion, cubic nonlinear, and quintic non-

linear lengths. Using numerical simulations, we study the

effects of the perturbations in the soliton parameters such as

the peak power and chirp on the quality of compressed

pulses. These numerical results show that the chirped bright

soliton in the anomalous dispersion regime is stable, whereas

it is unstable in the normal dispersion regime. In Sec. IV, we

study the chirped Townes solitons in pure quintic nonlinear-

ity and discuss possible applications to BEC. Finally, we

conclude in Sec. V.

II. THEORETICAL MODEL

Cubic-quintic nonlinearity arises from a nonlinear correc-

tion to the refractive index of a medium in the form �n

=n2I−n4I2, and the coefficients n2, n4�0 determine the non-

linear response of the medium. Formally, the expression for

�n may be obtained by an expansion of a saturable nonlin-

earity of the form �n=n2I�1+ �n4 /n2�I�−1 under the assump-

tion of self-focusing as d��n� /dI. However, the cubic-quintic

model changes the sign of focusing at a critical intensity Ic

=n2 /2n4. Experimental measurement of the nonlinear dielec-

tric response in para-toluene salfonate �PTS� optical crystal

confirmed the observations �14�. Cubic-quintic nonlinearities

can also be obtained by doping a fiber with two appropriate

semiconductor materials. One should be positive n2
�1��0 and

have a large saturation intensity Isat
�1�, and the other should be

negative n2
�2��0 with nearly the same magnitude and have a

low saturation intensity—i.e., Isat
�2�� Isat

�1� �20�.
Pulse propagation in a medium with cubic-quintic nonlin-

earities is governed by the generalized cubic-quintic NLS

�CQNLS� equation

i
�A

�z
−

��z�
2

�
2A

��2
+ 	�z��A�2A − ��z��A�4A − i

g�z�
2

A = 0,

�1�

where A�z ,�� is the slowly varying envelope of the axial

electrical field, � is the retarded time, z is the propagating

distance, ��z� is the group velocity dispersion, and g�z� is the

distributed gain or loss function. The cubic and quintic non-

linear parameters are given by 	=2
n2 /�0Aeff and �
=2
n4 /�0Aeff

2 , where �0 is the central wavelength and Aeff is

the effective core area of the fiber. All physical parameters

��z�, 	�z�, ��z�, and g�z� are functions of the propagation

distance z.

We now investigate the chirped soliton solutions of the

CQNLS equation by a scaling analysis known as self-similar

analysis. We assume the complex function A�z ,�� in the form

A�z,�� = Q�z,��exp�i��z,��� , �2�

where Q and � are the amplitude and phase of the envelope

function A, respectively. In order to study the generation of

chirped solitons of Eq. �1�, we assume a quadratic phase

given by

��z,�� = 
1�z� +

2�z�

2
�� − �c�

2, �3�

where 
1�z� and 
2�z� are functions of z and �c is the center

of the pulse. By self-similar scaling analysis, we assume that

the amplitude depends on the scaling variable �, which is a

combination of variables �−�c and some function ��z� of the

variable z. Since the self-similar solutions possess scaling

structure, we represent the amplitude Q�z ,�� as

Q�z,�� =
1

���z�
R���exp�G�z�

2
� . �4�

The scaling variable � and the function G�z� are given by

� =
� − �c

��z�
, G�z� = 	

0

z

g�z��dz�. �5�

Here ��z� and R��� are some functions which have to be

determined. We also assume that ��0�=1 without loss of

generality. Substituting Eqs. �2�–�4� into Eq. �1�, the qua-
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dratic phase coefficient 
2�z� and the function ��z� are found

to be


2�z� =

20

1 − 
20D�z�
, ��z� = 1 − 
20D�z� , �6�

where 
20=
2�0��0 because the phase is assumed to be a

quadratic function of the variable �−�c and the cumulative

dispersion function D�z� is given by

D�z� = 	
0

z

��z��dz�. �7�

In addition to the above conditions, we also find

d2R

d�2
+

2�2

�

d
1

dz
R −

2�	

�
exp�G�z��R3 +

2�

�
exp�2G�z��R5 = 0.

�8�

Note that the coefficients in Eq. �8� are functions of the vari-

able z, but the function R��� depends only on the scaling

variable �. Therefore, Eq. �8� possesses nontrivial solutions

�R����0� if and only if the coefficients in Eq. �8� are con-

stants, i.e.,

−
2�2�z�
��z�

d
1

dz
= �1, �9�

��z�	�z�
��z�

exp�G�z�� = �2, �10�

��z�
��z�

exp�2G�z�� = �3, �11�

where �1, �2, and �3 are constants. Equations �9�–�11� yield

�1 = − 
 2

�0

d
1

dz



z=0

, �2 =
	0

�0

, �3 =
�0

�0

, �12�

because ��0�=1 and G�0�=0. The parameters �0=��0�, 	0

=	�0�, and �0=��0�. Thus for the nontrivial case, Eq. �8� can

be written as

d2R

d�2
− �1R + 2�2R3 + 2�3R5 = 0. �13�

The solution of Eq. �9� is


1�z� = 
10 −
�1

2
	

0

z ��z��dz�

�1 − 
20D�z���2
, �14�

where 
10 is an integration constant. Next we proceed to find

the distributed gain function using Eqs. �10� and �11�,

g�z� =
1

��z�
d�

dz
−


20��z�
��z�

, �15�

where we define the function ��z� as

��z� =
	�z�
��z�

, ��0� =
	0

�0

. �16�

From Eqs. �10� and �11�, the condition for the variation of

the quintic nonlinear parameter is

��z� =
	2�z��2�z�

��z�
�3

�2
2

. �17�

Equations �6�, �7�, and �12�–�17� are the required conditions

for the existence of self-similar solutions in Eqs. �2�–�5� of

the generalized CQNLS with distributed coefficients—i.e.,

Eq. �1�. We observed that for the self-similar solutions of Eq.

�1�, only two of the four parameters ��z�, 	�z�, ��z�, and g�z�
in Eq. �1� are free parameters. For example, if ��z� and 	�z�
are chosen to be the free parameters, then g�z� and ��z� will

be determined from Eqs. �15� and �17� respectively.

Different physical situations lead to different choices of

the two free parameters. For example, consider that both the

cubic and quintic nonlinear coefficients do not vary with

distance; i.e., both 	�z� and ��z� are constant. A self-similar

solution to Eq. �1� exists if the dispersion and gain or loss

vary in the form ��z�=�0 / �1+�0
20z�2 and g�z�=�0
20 / �1
+�0
20z�. If the cubic nonlinear parameter 	�z� is constant

and there is no gain or loss �g�z�=0�, then the dispersion and

the quintic nonlinearity must vary exponentially—i.e., ��z�
=�0 exp�−
20�0z� and ��z�=�0 exp�−
20�0z�. In this case,

the function ��z�=exp�−
20�0z�. Thus, from Eq. �5�, the

pulse width will vary exponentially as the dispersion ��z�.
Since we are interested in pedestal-free compression of op-

tical pulses, we will focus on the soliton solutions to CQNLS

equation with exponentially varying dispersion in Sec. III.

Another special case is pure quintic nonlinearity with no gain

or loss—i.e., 	�z�=g�z�=0. From Eq. �11�, the quintic non-

linearity ��z� is then directly proportional to the dispersion

��z�, which can take any functional form. We will study this

special case in Sec. IV.

III. CHIRPED SELF-SIMILAR BRIGHT SOLITONS IN

THE ANOMALOUS AND NORMAL DISPERSION

REGIMES

In this section, we assume that the cubic nonlinear param-

eter 	�z� is constant and there is no gain or loss—i.e., g�z�
=0. The dispersion and quintic nonlinearity therefore vary

exponentially as ��z�=�0 exp�−
20�0z� and ��z�
=�0 exp�−
20�0z�. From Sec. II, the phase and amplitude of

the self-similar solutions of the generalized CQNLS equation

with distributed coefficients are given by Eqs. �3� and �4�.
We determine the complex envelope of the bright solitary

wave by integrating Eq. �13� and obtain
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A�z,�� =
1

�0�1 − 
20D�z���
�2�1

�1 +
8�1

2

3�2�0
2�1 − 
20D�z��2

cosh 2� � − �c

�0�1 − 
20D�z��
� � 1�

1/2

exp�i�� , �18�

where �1�z�=��z� /	�z� and �2�z�=��z� /��z�. The integration

constant �1 is chosen to be 1 /�0
2, where �0 is the initial pulse

width parameter. The upper sign in Eq. �18� corresponds to

the soliton in the anomalous dispersion regime, while the

lower sign corresponds to that in the normal dispersion re-

gime. In the anomalous dispersion regime, the physical con-

ditions ��0, 	�0, and ��0 �competing cubic-quintic non-

linearities� or ��0, 	�0, and ��0 �cooperating cubic-

quintic nonlinearities� should be maintained for the existence

of solitons. Similarly, ��0, 	�0, and ��0 �competing

cubic-quintic nonlinearities� have to be valid for the soliton

in the normal dispersion regime. Equation �18� is a linearly

chirped self-similar bright solitary pulse since it propagates

in a self-similar manner in a fiber medium under the influ-

ence of cubic-quintic nonlinearities. In semiconductor

double-doped optical fibers, self-similar solitons in both nor-

mal and anomalous dispersion regimes are possible depend-

ing on the doping materials, the operating frequency, and the

optical pulse intensities �21,24�.

A. Length scales

Unlike the conventional soliton in Kerr media, where the

dispersion and nonlinear lengths are proportional to each

other, we found that the dispersion, cubic, and quintic non-

linear lengths for the self-similar solitons in a cubic-quintic

medium follow a harmonic relationship

2 sgn���
3Ln4

�z�
−

sgn�	�
Ln2

�z�
−

sgn���
LD�z�

= 0, �19�

where the dispersion �LD�, cubic �Ln2
�, and quintic �Ln4

� non-

linear lengths are given by

LD�z� =
�0

2�2�z�
���z��

, Ln2
�z� =

1

�	�z��P0�z�
,

Ln4
�z� =

1

���z��P0
2�z�

. �20�

Here P0= �Amax�2 is the peak power of the chirped soliton,

where Amax is the maximum amplitude �which is given in Eq.

�23��. Note that all the three length scales vary with distance

because the coefficients of the CQNLS equation depend on

distance. We note that when the quintic nonlinearity is

switched off—i.e., Ln4
→�—Eq. �19� is reduced to the well-

known condition LD=Ln2
for soliton formation in Kerr me-

dia. In this case, the linearly chirped bright soliton in Eq.

�18� will be reduced to the chirped soliton solution for Kerr

nonlinearity �11–13�.
From Eq. �18�, the energy of the chirped bright soliton is

calculated as

W = 	
−�

�

�A�2d� = −
2�1�z�

�0��1 − b2
ln

1 + �1 − b2

b
�b � 1� ,

�21�

W = 	
−�

�

�A�2d� = �
2�1�z�

�0��b2 − 1
�


2
� sin−1
1

b
�� �b � 1� ,

�22�

where b=�1+8�3 /3�0
2�2

2 is a constant. In terms of

length scales, the parameter b can also be written as

b=�1+
4Ln2�z�

LD�z�2 �sgn���sgn�	�LD�z�+Ln2�z��. Equation �21�
represents the energy of the soliton in the anomalous disper-

sion regime when b�1. The upper sign in Eq. �22� corre-

sponds to the soliton energy in the anomalous dispersion

regime when b�1. The lower sign corresponds to the soliton

energy in the normal dispersion regime for all values of b

�0. The condition b�1 ��1� corresponds to �0 /�0�0

��0�. For optical fibers, the cubic nonlinear coefficient 	
�0. Thus, in the anomalous dispersion regime, the condition

b�1 means ��0 representing cooperating cubic-quintic

nonlinearities, whereby the effect of dispersion is balanced

by the cubic and quintic nonlinearities. The other condition

b�1 means ��0 representing the competing cubic-quintic

nonlinearities, wherein the effect of cubic nonlinearity is bal-

anced by that of dispersion and quintic nonlinearity. The con-

dition b=1 is not of interest because it corresponds to

LD�z�=Ln2�z�, which is possible only if Ln4
→�—i.e., �=0.

In the normal dispersion regime, normally b�1 because

sgn�	��0. Thus, in the anomalous dispersion regime, the

parameter b determines whether the nonlinearities are coop-

erating or competing.

We find that the soliton solution in the anomalous disper-

sion regime will approach the chirped soliton solution re-

ported in �11–13� when the coefficient of the quintic nonlin-

earity approaches zero ��→0�. However, the energy of Eq.

�22� goes to infinity when �→0 ��3→0�. Thus, the quintic

nonlinearity is crucial to the chirped soliton solutions in the

normal dispersion regime. Similarly, the peak intensity and

the full width at half maximum �FWHM� are given by

Amax
2 �z� = P0 = �

1

�0
2�2

2�1�z�
b � 1

, �23�

�� = �0��z�ln�2 � y + ��2 � y�2 − 1� , �24�

where y=1 /b. The upper sign in Eqs. �23� and �24� corre-

sponds to the peak intensity and the pulse width of solitons

in the anomalous dispersion regime, while the lower sign

corresponds to that in the normal dispersion regime. Note

SENTHILNATHAN et al. PHYSICAL REVIEW A 78, 033835 �2008�

033835-4



that Eq. �24� represents the FWHM of the chirped soliton

pulse after the compression process. Further, from the same

relation, as we know the initial and final widths of the pulse,

one can easily determine the pulse compression factor with

the relation

�0

��
= �� ln�2 � y + ��2 � y�2 − 1��−1. �25�

B. Stability of the chirped solitons

Strictly speaking, the localized solution given in Eq. �18�
is not a soliton, but rather a solitary wave. It is therefore

crucial to determine the stability of the chirped solitons. Ide-

ally, analytical techniques such as the Vakhitov-Kolokolv

�VK� criterion should be used to determine the stability of

the solitary waves. The VK criterion has been well estab-

lished for constant-coefficient NLS-type equations �for both

cubic and cubic and quintic nonlinearities�. However, math-

ematically the VK criterion is applicable to the ground states

of NLS-type equations only. Thus, the VK criterion cannot

be applied to analyze the stability of the chirped soliton

given in Eq. �18�. As a result, we have to resort to using

numerical simulations to determine the stability of the

chirped solitons. From extensive numerical simulations, we

find that the chirped soliton in the anomalous dispersion re-

gime is stable, whereas that in the normal dispersion regime

is unstable �for details see Sec. III C�. Therefore, hereafter,

we focus on pulse compression in the anomalous dispersion

regime only.

Before we leave this subsection, we would like to illus-

trate the relationship between the three length scales dis-

cussed in Sec. III A. We consider the case in which the cubic

nonlinearity 	=const and gain or loss g�z�=0. Thus the dis-

persion and quintic nonlinearity parameters are given by

��z� = �0 exp�− �z�, ��z� = �0 exp�− �z� , �26�

where �0�0, �0�0, and �=
20�0�0 for dispersion-

decreasing fibers. As an example of pulse compression, we

consider a semiconductor-doped �chalcogenide AS2Se3� fiber

of length L=400 m. The effective core area of the fiber is

assumed to be 10 �m2. The cubic and quintic nonlinear co-

efficients are assumed to be 	0=0.2362 W−1 m−1 and �0

=0.4724 W−2 m−1, respectively. The initial dispersion �0 is

chosen to be −0.5 ps2 m−1. The other physical parameters

chosen are �0=5 ps, �=0.005 m−1, 
20=−0.01 THz2, and g

=0. Figure 1 plots the variation of dispersion, cubic, and

quintic nonlinear lengths for a soliton solution. From Fig. 1,

in the beginning of the compression, the cubic nonlinear

length and the dispersion length dominate. As the pulse

propagates and compresses, its peak intensity increases and

hence the quintic nonlinear length decreases and becomes

comparable to the dispersion length and the cubic nonlinear

length.

Figure 2 shows the compression of the bright soliton un-

der the influence of the competing cubic-quintic nonlineari-

ties. The compression factor of the above compressor is

found to be 7.39. We also numerically integrated Eq. �1�
using the exact soliton solution as an initial condition. The

numerical results agree very well with the analytical solution

as illustrated in Fig. 2.

C. Perturbations in the initial peak power and chirp

Since Eq. �1� is not integrable, for optical compression

applications it is necessary to study the effects of perturba-

tions on the evolution of the solitary-wave solution given in

Eq. �18�. In the following, we investigate the effect of per-

turbations in the initial peak power and chirp on the pulse

evolution. First, we consider variations in the initial peak

power and initial chirp and study the corresponding evolu-

tion in peak power and chirp. We determine the quality of the

compressed pulse by monitoring the evolution of the pedes-

tal energy generated and the compression factor of the per-

turbed initial pulse.

Figure 3 shows the deviations in peak power and chirp

coefficient at L=400 m from the analytic solution when the

input peak power deviates from the ideal peak power from

−20% to +20%, but the pulse width of the solitary pulse

remain unchanged. The choice of fiber and pulse parameters

are the same as those in Fig. 1. The dots represent results for

competing cubic-quintic nonlinearities �b�1�, circles repre-

sent the results for cooperating cubic-quintic nonlinearities

�b�1�, and crosses represent the results for pure cubic non-
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FIG. 1. �Color online� Variation of the dispersion length �dots�,
cubic nonlinear length �solid line�, and quintic nonlinear
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linearity. Figure 3�a� shows that the deviations of the peak

power from the ideal solution is smallest for the case of

competing cubic-quintic nonlinearities and largest for coop-

erating cubic-quintic nonlinearities. Here, it should be em-

phasized that the larger deviation in the latter case is owing

to the beam collapse which occurs in the case of cooperating

cubic and quintic nonlinearities. In Fig. 3�a�, the deviation in

peak power and the perturbation in initial peak power have

been calculated with the expression �Pperturbed− Pideal� / Pideal

�100%. From Fig. 3�b�, the same observation holds for the

deviations of the chirp parameter, but the variations in the

chirp parameter are more sensitive to the perturbation. Here,

the chirp of the perturbed solitary pulse is measured by car-

rying out a polynomial fit of the phase. From the polynomial

fitting, we observe that the chirp remains close to the qua-

dratic chirp since the chirps contributed by all higher-order

terms are very small. Based on the numerical results, we

observe that the soliton solutions for competing cubic-quintic

nonlinearities are more robust to perturbations. The amount

of pedestal generated during pulse compression is an impor-

tant parameter characterizing the quality of the compressed

pulses. The pedestal energy is defined as the relative differ-

ence between the total energy of the transmitted pulse and

the energy of a hyperbolic-secant pulse having the same peak

power and width as those of the transmitted pulse—i.e., ped-

estal energy �%�= �Eperturbed−ECQ� /Eperturbed�100%. Here,

Eperturbed is the energy of the perturbed pulse. Note that the

energy of a hyperbolic-secant type pulse �ECQ� in cubic-

quintic media is calculated by using curve fitting to obtain

the best fit from the data. We use the function �A�2

=�1 / ��2 cosh�2� /�3�+1� to fit the intensity of the

hyperbolic-secant type pulse, where the values of the param-

eters �1, �2, and �3 are determined by the curve fitting. Figure

3�c� shows the amount of pedestal generated for the corre-

sponding perturbation in peak power. The results show that

competing cubic-quintic nonlinearities generate only a small

amount of pedestal energy when compared to cooperating

cubic-quintic nonlinearities and pure cubic nonlinearity.
However, the amount of pedestal generated in all three cases
is very small. Even in the worst case in which the initial peak
power is only 80% of the ideal value for cooperating cubic-
quintic nonlinearities, the pedestal energy is only 1.6%. Fig-
ure 3�d� shows the compression factor for the corresponding
perturbation in the peak power for all three cases. As ex-
pected, the compression factor is the highest for cooperating
cubic-quintic nonlinearities and the lowest for the competing
case. Thus an optical pulse compressor using competing
cubic-quintic nonlinearities are more robust to perturbations
of the input pulse parameters at the expense of the compres-
sion factor.

Figures 4�a� and 4�b�, respectively, show the deviation in
peak power and the chirp when the initial chirp of the input
pulse deviates from the ideal value. Unlike the perturbations
in peak power, the deviation in peak power is small and is
very similar in all three cases. The differences in the devia-
tions in chirp value for the three cases are more significant.
Again, the deviation of the chirp value is the smallest for
competing cubic-quintic nonlinearities and the largest for co-
operating case. Figures 4�c� and 4�d� show the pedestal en-
ergy and compression factor, respectively, for the corre-
sponding perturbations in the initial chirp. The pedestal

energy generated in all three cases is only a fraction of a

percent. The deviation in compression factor is small and is

similar for all three cases. Thus the soliton is very robust to

perturbations in the initial chirp in all three cases. We have

carried out extensive numerical simulations on the perturba-

tions of initial power and chirp by varying the decay rate of

dispersion and changing the strength of quintic nonlinearity.

In all cases we have studied, we find that the compressed

pulse in the case of competing cubic-quintic nonlinearities

has the smallest deviations in peak power and chirp. The

pedestal energy is also the smallest, but the compression fac-

tor is also the smallest when compared to the case of pure

cubic nonlinearity and cooperating cubic-quintic nonlineari-

ties.
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FIG. 3. �Color online� �a� De-

viations of the peak power from

the exact solution, �b� the chirp

coefficient, �c� the pedestal en-

ergy, and �d� the compression fac-

tor at L=400 m when the input

peak power deviates from the

ideal peak power from −20% to

+20%. The physical parameters

chosen are the same as those in

Fig. 1. The dots represent results

for competing cubic-quintic non-

linearities ��0=0.4724 W−2 m−1�,
circles represent the results for co-

operating cubic-quintic nonlin-

earities ��0=−0.4724 W−2 m−1�,
and crosses represent the results

for pure cubic nonlinearity ��0

=0�.
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Figure 5 shows the evolution of the �a� peak power from

the exact values, �b� chirp, �c� pedestal energy, and �d� com-

pression factor when the peak power of the initial solution is

+20% larger than the ideal solution given in Eq. �21� for

competing cubic-quintic nonlinearties and Eq. �22� for coop-

erating cubic-quintic nonlinearities. The distance traveled is

400 m. The parameter LD0 is the initial dispersion length as

z=0. The dashed lines represent the soliton solution of the

CQNLS equation. The dots represent perturbation results for

competing cubic-quintic nonlinearties, the circles represent

cooperating cubic-quintic nonlinearities, and the crosses rep-

resent pure cubic nonlinearity. From Figs. 5�a� and 5�d�, the

peak power and pulse width �and thereby compression fac-

tor� of the solitary pulse undergo periodic oscillations during

the evolution. We note that the oscillation periods are differ-

ent for the three different cases. Without quintic nonlinearity

and for constant dispersion, the oscillation has a period of

8z0 for solitons where z0 �=
LD0 /2� is the soliton period,

because of the resonance of the perturbation with the soliton

wave vector, 2
 / �8z0� �25�. Figures 5�b� and 5�c�, respec-

tively, represent the evolution of the chirp and pedestal en-

ergy generated.

In what follows, for the completeness of the investigation,

we predict the oscillations exhibited by the peak power and

pulse width during the evolution. Figure 6�a� represents the

behavior of change in peak power �P= Pperturbed− Pideal along

the propagation direction when the initial input peak power

deviates from the ideal peak power from −20% to +20%. We
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FIG. 4. �Color online� �a� De-

viations of the peak power from

the exact solution, �b� the chirp

coefficient, �c� the pedestal en-

ergy, and �d� the compression fac-

tor at L=400 m when the initial

chirp deviates from the chirp

value of the exact solution

from −20% to +20%. The physi-

cal parameters chosen are the

same as those in Fig. 3. The

dots represent results for compet-

ing cubic-quintic nonlinearities

��0=0.4724 W−2 m−1�, circles

represent the results for cooperat-

ing cubic-quintic nonlinearities

��0=−0.4724 W−2 m−1�, and

crosses represent the results for

pure cubic nonlinearity ��0=0�.
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FIG. 5. �Color online� Evolu-

tion of the �a� peak power, �b�
chirp, �c� pedestal energy, and �d�
compression factor when the ini-

tial peak power deviates +20%

from the ideal peak power when

the distance varies from z

=0 to 400 m for the same physi-

cal parameters used in Fig. 1. The

parameter LD0 is the initial disper-

sion length. The dashed lines

represent results for the exact so-

lution, dots represent the compet-

ing cubic-quintic nonlinearities

��0=0.4724 W−2 m−1�, circles

represent the results for cooperat-

ing cubic-quintic nonlinearities

��0=−0.4724 W−2 m−1�, and

crosses represent the results for

pure cubic nonlinearity ��0=0�.
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have halved the dispersion decay rate and doubled the pulse

propagation distance in Fig. 6�a� when compared to that used

in Fig. 4 in order to observe more oscillation periods. The

solid lines represent the competing cubic-quintic nonlineari-

ties, dashed lines represent the cooperating cubic-quintic

nonlinearities, and dot-dashed lines represent the pure cubic

nonlinearity. From Fig. 6�a�, the deviation �P is the smallest

for the competing cubic-quintic nonlinearities case. Figure

6�b� shows that the period of oscillations decreases exponen-

tially along the propagation direction. The solid lines repre-

sent exponential fits for the three different cases. The rate of

change of the period is found to be 0.002 474 m−1 for the

competing cubic-quintic nonlinearities �dots�, 0.002 716 m−1

for the cooperating cubic-quintic nonlinearities �circles�, and

0.002 637 m−1 for pure cubic nonlinearity �crosses�. All three

decay rates for the three different cases are close to the decay

rate of the dispersion, which is 0.0025 m−1. Thus, the period

of oscillation decreases exponentially as the dispersion de-

creases along the propagation direction. The oscillations in

�P represent a gradual adjustment towards ideal pulse shape

under investigation. Figure 7 shows curve fitting of the evo-

lution of �P for competing cubic-quintic nonlinearities with

the function f���=c1 exp�c2��+c3 exp�c4��sin�c5 exp�c6���,
where �=z /LD0 and ci, i=1, . . . ,6, are constants. The solid

lines represent the simulation results of the evolution of �P

for competing cubic-quintic nonlinearities when the initial

peak power is +20% larger than that of the ideal values. The

dashed lines represent the curve-fitting results using the

method of steepest descent where c1=0.0917, c2=0.1238,

c3=0.08, c4=−0.0177, c5=−7.6532, and c6=0.1043.

Figure 8 shows the evolution of the �a� peak power, �b�
chirp, �c� pedestal energy, and �d� compression factor when

the initial chirp is +20% larger than that of the ideal solution.

The dashed lines represent the soliton solution of the

CQNLS equation. The dots represent perturbation results for

competing cubic-quintic nonlinearties, the circles represent

those for cooperating cubic-quintic nonlinearities, and the

crosses represent those for pure cubic nonlinearity. We ob-

serve that the peak power and the compression factor �pulse

width� of the solitary pulse undergo only very small periodic

oscillations. The deviations in peak power and compression

factor are very small. The pedestal energy undergoes rela-

tively larger periodic oscillations during the evolution, but

the magnitude of the variation is smaller than that for the

perturbation in the peak power.

IV. CHIRPED SELF-SIMILAR TOWNES SOLITON

From the previous section, the soliton solution in the nor-

mal dispersion regime of the CQNLS equation with expo-

nentially varying dispersion is unstable. Further, in the ab-

sence of quintic nonlinearity, the combination of cubic

nonlinearity and normal dispersion, exponentially varying or

not, does not support soliton solutions. However, a pure

quintic nonlinear medium does support the soliton solution

known as Townes solitons, which were discovered for the

two-dimensional NLS equation in nonlinear optics and de-
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FIG. 6. �Color online� �a� Evolution of �P= Pperturbed− Pideal

along the propagation direction. The solid lines represent the results

for competing cubic-quintic nonlinearities ��0=0.4724 W−2 m−1�,
dashed lines represent the results for cooperating cubic-quintic non-

linearities ��0=−0.4724 W−2 m−1�, and dot-dashed lines represent

the results for pure cubic nonlinearity ��0=0�. The physical param-

eters are chosen as �0=5 ps, �0=−0.5 ps2 m−1, �=0.0025 m−1, 	0

=0.2362 W−1 m−1, 
20=−0.005 THz2, g=0, and z=800 m. �b�
Variation of the oscillation periods along the propagation direction.

The dots represent the results for competing cubic-quintic nonlin-

earities ��0=0.4724 W−2 m−1�, circles represent the results for co-

operating cubic-quintic nonlinearities ��0=−0.4724 W−2 m−1�, and

crosses represent the results for pure cubic nonlinearity ��0=0�. The

solid lines represent exponential fits for the three different cases.
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FIG. 7. �Color online� Curve fitting the evolution of �P for

competing cubic and quintic nonlinearities by the function f���
=c1 exp�c2��+c3 exp�c4��sin�c5 exp�c6���, where �=z /LD0 and ci,

i=1, . . . ,6, are constants. The solid line represents the simulation

results of the evolution of �P for competing cubic-quintic nonlin-

earities when the initial peak power deviates +20% from the ideal

value. The dashed lines represent the fitting results using the

method of steepest descent where c1=0.0917, c2=0.1238, c3=0.08,

c4=−0.0177, c5=−7.6532, and c6=0.1043, and the dashed lines

represent the results for the fitting function.
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scribe the collapsing and dispersing of optical pulses �26�.
Pulse propagation in a pure quintic NLS �QNLS� equation

with distributed dispersion and distributed linear gain is

given by

i
�A

�z
−

��z�
2

�
2A

��2
− ��z��A�4A − i

g�z�
2

A = 0. �27�

Equation �27� describes nonlinear pulse propagation in

many fields of nonlinear science—for example, in nonlinear

optics under power-law nonlinearity. It is known that physi-

cally, various materials, including semiconductors, exhibit

power-law nonlinearity. Spatial solitons have been investi-

gated in media that have a power-law dependence on the

intensity Iq for continuum values of q �with I being the in-

tensity� �27�. However, in general, it may be difficult to find

suitable nonlinear optical media which exhibit pure quintic

nonlinearity because manipulation of the magnitude and the

sign of nonlinearity is not easy. However, the QNLS equa-

tion aptly models BECs especially in the TG regime. Experi-

mental generation of such a gas had also been reported �28�.
Recently, it has been shown that the magnitude as well as the

sign of nonlinearity, which are determined by the interactions

between atoms in the condensate, could be manipulated by

varying the external magnetic filed near the Feshbach reso-

nance �29�. Therefore, it is physically relevant to discuss the

chirped Townes soliton in BECs. The formation of solitons

in BECs is similar to nonlinear optics, where the bright and

dark solitons are supported by focusing and defocusing non-

linearities, respectively, whereas in BECs, the s-wave scat-

tering interaction between atoms actually determines the

soliton formation. Thus, bright and dark solitons are found in

condensates with attractive and repulsive interactions. We

now discuss the chirped Townes soliton in pure quintic me-

dia. The complex envelope of the chirped Townes soliton is

obtained by applying the following physical condition ��z�
�0 and ��z��0 in Eq. �27�:

A�z,�� =
1

�0�1 − 
20D�z��

�� ���z��
�2��0���0�/3�0

2
sech 2
 � − �c

�0�1 − 
20D�z��
��1/2

�exp�i�� . �28�

The relation between the dispersion and the quintic non-

linear lengths is 2LD /3=Ln4. The energy and peak intensity

of the chirped Townes soliton are given by

W =
�3
���z��

�1 − 
20D�z���8��0���0�
,

Amax
2 =

�3���z��

�0�1 − 
20D�z��2�2��0���0�
. �29�

We then proceed to investigate the stability of the chirped

Townes soliton. For the constant-coefficient case, it has been

demonstrated that the Townes soliton is marginally stable in

homogeneous media �g=0� according to the VK criterion. As

has been discussed in Sec. III B, the VK criterion does not

apply to the chirped Townes soliton in Eq. �28�. However,

unlike Sec. III B it is not possible to numerically establish

that a solution is marginally stable. We would try to infer the

character of the solution in Eq. �28� by numerically studying

the evolution of inputs with amplitude above and below that

of the solution. First we study the evolution of the analytic

chirped Townes soliton. Figure 9 plots the evolution of ana-

lytic chirped Townes soliton solutions for constant �solid

lines, �0=−0.5 ps2 m−1�, exponentially increasing �dot-

dashed lines, �=−0.005 m−1�, and exponentially decreasing

�dashed lines, �=0.005 m−1� dispersions. The dots represent

the results obtained by dint numerical simulations. Note that
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FIG. 8. �Color online� Evolu-

tion of the �a� peak power, �b�
chirp, �c� pedestal energy, and �d�
compression factor when the ini-

tial chirp deviates +20% from the

exact chirp value when the dis-

tance varies from z=0 to 400 m

for the same physical parameters

used in Fig. 1. The dashed lines

represent results for the exact so-

lution, the dots represent the com-

peting cubic-quintic nonlinearities

��0=0.4724 W−2 m−1�, circles

represent the results for cooperat-

ing cubic-quintic nonlinearities

��0=−0.4724 W−2 m−1�, and

crosses represent the results for

pure cubic nonlinearity ��0=0�.
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the analytical results are in good agreement with the results
obtained by dint numerical simulations for the distance simu-
lated.

So far, we have discussed the conventional pulse com-

pression technique whereby we utilized the cubic nonlinear-

ity and dispersion to achieve pulse compression. A noncon-

ventional pulse compression technique based on the wave

collapse phenomenon has also been reported �33�. It is well

established that the pure quintic model exhibits collapse �30�.
However, the occurrence of collapse could either be arrested

or postponed by physical effects like damping, nonlinear

saturation, etc. �31,32�. Recently, it has been shown that the

quintic damping effect, which arises from the three-body in-

teraction of an imaginary component, and cubic nonlinearity

management help to arrest and/or suppress the occurrence of

collapse �31�.
Figure 10 shows the deviations of peak power from the

exact Townes soliton when the input peak power deviates

from the ideal peak power by �a� −5% and �b� +5% for

constant dispersion �solid lines�, exponentially decreasing

dispersion �dashed lines�, and exponentially increasing dis-

persion �dot-dashed lines�. The physical parameters used are

the same as those in Fig. 9. For constant dispersion �solid

lines�, the pulse disperses because the input power is less

than the critical power, as shown in Fig. 10�a�. When the

dispersion increases exponentially �dot-dashed lines�, the

self-similar effect and the wave collapse act together to

broaden the pulse. Thus the pulse undergoes fast broadening.

When the dispersion decreases exponentially �dashed lines�,
the self-similar effect and the collapse act oppositely. Thus

the pulse initially compresses slightly as the self-similar ef-

fect dominates, but eventually the wave collapse effect takes

over and the pulse begins to broaden. The self-similar com-

pression in the exponentially decreasing dispersion can be

used to postpone the wave dispersion in a pure quintic

medium.

Similarly, when the dispersion is constant, the pulse un-

dergoes collapse when the input peak power is higher than

the critical power, as shown by the solid lines of Fig. 10�b�.
Rapid compression can be achieved by the combined action

of the collapse phenomenon and self-similar pulse compres-

sion in the exponentially decreasing dispersion �dashed
lines�. The occurrence of collapse is postponed in the case of
exponentially increasing dispersion �dot-dashed lines� since
the self-similar effect in the exponentially increasing disper-
sion acts against the collapse. Our numerical results show
that the chirped Townes soliton exhibits a similar property as
the Townes soliton with constant dispersion when the input
peak power deviates from the ideal peak power. Thus it is
likely that the chirped Townes soliton is also marginally
stable.

Finally, in general, it is difficult to realize a medium that
exhibits pure quintic nonlinearity. It is therefore important to
determine the tolerance of the chirped Townes soliton of a
quintic medium in the presence of a small amount of cubic
nonlinearity. Figure 11 shows the change in peak power of
the Townes soliton in the presence of cubic nonlinearity. The
dots represent the results of pure quintic nonlinearity. The
solid line, dot-dashed line, and dashed line represent the re-
sults when the ratio of cubic nonlinear length to quintic non-

linear length �Ln2
/Ln4

� is 12 000, 1 200, and 120, respec-

tively. Figure 11 shows that the evolution of the chirped

Townes soliton is very sensitive to the presence of even a

small amount of cubic nonlinearity �Ln4
/Ln2

�0.1% �. As the

cubic nonlinearity increases, the chirped Townes soliton

pulse becomes unstable. The three different values of cubic

nonlinearity are 	0=10−5, 10−4, and 10−3 W−1 m−1. The other

physical parameters are same as those in Fig. 1.

V. CONCLUSION

By using self-similar scaling analysis, we have found the

chirped bright soliton solutions in the anomalous and normal

0 2 4 6 8

2

4

6

8

z / L
D

p
e

a
k

p
o

w
e

r
(a

rb
.u

n
it
s
)

FIG. 9. �Color online� Evolution of the peak power of
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dispersion regimes of cubic-quintic nonlinear media. By
means of direct numerical simulations, we show that the
chirped soliton in the anomalous dispersion regime is stable,
whereas that in the normal dispersion regime is unstable. For
these chirped solitons, the dispersion length, the cubic non-
linear length, and the quintic nonlinear length are related. If
the quintic nonlinear length goes to infinity, the dispersion
length will equal the cubic nonlinear length. We observed
that by the use of exponentially decreasing dispersion, it is

possible to utilize these self-similar solitons to achieve

pedestal-free pulse compression in cubic-quintic nonlinear

media.

We then studied the evolution of the chirped bright soli-

tons when the initial peak power or the initial chirp is per-

turbed. We have found that the evolution of the soliton is not
significantly affected even when the pertubation in the initial
parameters is �20% of its ideal values. The solitons have
better tolerance to perturbations in the initial chirp than ini-

tial peak power. We have carried out extensive numerical

simulations by varying the decay rate of dispersion and

changing the strength of the quintic nonlinearity. From the

numerical simulations, we have observed that competition

between the cubic and quintic nonlinearities stabilizes the

pulse against perturbations in initial pulse parameters.

Hence, one can construct a stable pedestal-free optical pulse

compressor by using competing cubic-quintic nonlinearities.

Finally, we studied the chirped Townes soliton in pure

quintic nonlinear media. As the Townes solitons with con-

stant dispersion are marginally stable, we studied the pertur-

bation of the chirped Townes soliton in terms of peak power.

We found that we can achieve fast pulse compression by

combining the wave collapse and exponentially decreasing

dispersion when the perturbation is higher than the ideal one.

The occurrence of collapse can also be postponed by using

exponentially increasing dispersive media. These two issues

�fast and slow compression� could be implemented depend-

ing on the physical situation and requirement. Applications

in terms of BECs in the TG regime have also been discussed.
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