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We introduce two different systems of coupled-mode equations to describe the interaction of two waves coupled
by the Bragg reflection in the presence of saturable nonlinearity. The basic model assumes the ordinary linear
coupling between the modes. It may be realized as a photorefractive waveguide, with a Bragg lattice perma-
nently written in its cladding. We demonstrate the presence of a cutoff point in the system’s bandgap, with gap
solitons existing only on one side of it. Close to this point, the soliton’s norm diverges with power −3/2. The
soliton family between the cutoff point and the edge of the bandgap is stable. In this model, stationary bound
states of two in-phase solitons are found too, but they are unstable, transforming themselves into breathers.
Another model assumes a photoinduced longitudinal bulk grating, with the corresponding intermode coupling
subject to saturation along with the nonlinearity. In that model, another cutoff point is found, with the soliton’s
norm diverging near it with power −2. Solitons are stable in this model too (while it does not give rise to two-
soliton bound states). Collisions between moving solitons are always quasi-elastic, in either model. © 2007
Optical Society of America

OCIS codes: 060.5530, 190.5530, 350.2770.

1. INTRODUCTION AND THE MODELS
Periodic structures in optical waveguides known as Bragg
gratings (BGs), which provide for resonant reflection of
light, and thus strong linear coupling between counter-
propagating waves, have been a subject of intensive the-
oretical and experimental research, due to their numer-
ous applications to optical sensors and various
telecommunication devices (such as add–drop multiplex-
ers, dispersion compensators, narrowband filters, etc. [1]),
as well as their great potential as media for fundamental
studies of nonlinear optical dynamics [2]. A notable fea-
ture of these periodic structures is the presence of the
stopband, alias photonic bandgap, in the linear spectrum.
The combination of the bandgap (that generates ex-
tremely strong effective dispersion in the temporal do-
main, or effective diffraction in the spatial-domain real-
ization of the BG, near edges of the bandgap) with the
waveguide’s material nonlinearity gives rise to a variety
of effects, such as optical bistability, limiting, and modu-
lational instability. An especially interesting manifesta-
tion of the nonlinearity is the formation of BG solitons
(alias gap solitons, if they are spectrally centered inside
the bandgap). A standard theoretical model of a Kerr-
nonlinear medium equipped with the BG is based on a
system of coupled-mode equations (CMEs) for amplitudes
of the counterpropagating waves, U�x , t� and V�x , t�,

which are coupled linearly by the BG reflection, and non-
linearly by the cross-phase modulation (XPM), and also
take into account the self-phase modulation (SPM) effect
[3]:

iUt + iUx + ���U�2 + �V�2�U + �V = 0,

iVt − iVx + ���V�2 + �U�2�V + �U = 0, �1�

where, in the most relevant case of the BG in the optical
fiber, x and t are the coordinates along the fiber and time,
and � is the Bragg reflectivity (i.e., the coefficient of the
intermode linear coupling), while the group velocity of
light and the overall Kerr coefficient are scaled to be 1.
The value of the SPM to XPM ratio in Eqs. (1) correspond-
ing to the ordinary Kerr nonlinearity is �=1/2.

Within the framework of Eqs. (1), a family of exact soli-
ton solutions is available (for any value of �), with two in-
trinsic parameters, which determine the soliton’s ampli-
tude and velocity [4,5]. The stability of these solutions
was first studied by means of the variational approxima-
tion [6], and then with the help of accurate numerical
methods [7,8]. It was found that approximately half of the
gap-soliton family is stable, and the other half unstable
(the solitons with positive and negative intrinsic frequen-
cies are, respectively, stable and unstable). Moving BG
solitons (with the velocity no less than half the group ve-
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locity of light in the same material) have been created ex-
perimentally in silica fibers with the BG written in the
cladding [9,10].

In addition to the studies of temporal gap solitons in fi-
ber BGs, much effort has been focused on gap solitons in
the spatial domain, which were predicted in Refs. [11,12]
and later theoretically elaborated in detail in various set-
tings [13–16]. In particular, Eqs. (1), with t and x realized,
respectively, as the propagation distance and transverse
coordinate, provide for a model of the copropagation of
two waves in a nonlinear planar waveguide, the waves be-
ing linearly coupled by the Bragg reflection from a longi-
tudinal lattice of parallel riblets or grooves on the
waveguide’s surface (“longitudinal” means that the grat-
ing is drawn parallel to the propagation axis, whereas the
Poynting vectors of the two waves make angles ±� with
the axis; see Eqs. (9) below]. In the experiment, one-
dimensional (1D) spatial gap solitons were created in
quasi-discrete waveguide arrays with the Kerr nonlinear-
ity [17–19], as well as in arrays of photovoltaic
waveguides in LiNbO3 [20]. Parallel to that, 1D [21,22]
and two-dimensional (2D) [23] spatial solitons of the gap-
type were created in photonic lattices, which can be opti-
cally induced in photorefractive media (that feature satu-
rable, rather than cubic, nonlinearity), using the
technique proposed in [24,25] and then applied to the cre-
ation of spatial solitons of various types; see review [26].

The recent experimental demonstration of discrete ra-
dial solitons in an axially symmetric photonic lattice in-
duced in a photorefractive material [27] suggests that gap
solitons may be created in that setting too, as recently
shown in detail in a 2D model with the cubic nonlinearity
[28] (for the first time, solitons in a radial potential com-
bined with the cubic nonlinearity were considered in
[29,30]). However, in the present work, we only deal with
1D models.

The objective of the present work is to propose physi-
cally relevant systems of CMEs with saturable nonlinear-
ity, modeling BGs in photorefractive media, and find fami-
lies of gap-soliton solutions in those systems (including
the investigation of the soliton stability). The evolution of
local amplitude E�x ,z� of the electromagnetic field along
the propagation coordinate z in a photorefractive material
equipped with the photonic lattice, of period 2� /K and
strength I0, is described by the well-known equation
[24,25]. In the normalized form, it is

i
�E

�z
+

1

2

�
2E

�x2
−

E

1 + I0 cos2�Kx� + �E�2
= 0, �2�

where x is the transverse coordinate. A natural issue is to
derive CMEs from Eq. (2), substituting the field as a su-
perposition of two waves coupled by the Bragg reflection,
E�x ,z�=U�x ,z�eiKx+V�x ,z�e−iKx, where the amplitudes U

and V are assumed to be slowly varying functions of x in
comparison with the carrier waves, exp�±iKx�. The deri-
vation was performed in [31], by expanding the nonlinear
term in Eq. (2) into a Fourier series and keeping the
lowest-order harmonics. The result is a system of CMEs
with a specific form of saturable nonlinearity, which im-
plicitly contains four-wave mixing, along with SPM and
XPM:

i
�U

�z
+ iK

�U

�x
=

�U − V�

�1 + I0�1 + �U − V�2� + 2��U�2 + �V�2�
,

i
�V

�z
− iK

�V

�x
=

�V − U�

�1 + I0�1 + �U − V�2� + 2��U�2 + �V�2�
. �3�

CMEs were derived in [31] also for a 2D configuration,
when the angles between the wave vectors carrying the
field amplitudes U and V and the propagation axis �z� are
different from 90°. In the latter case, the equations fea-
ture a different saturable nonlinearity,

i
�U

�z
+ iK

�U

�x
=

�U − V�

�I0�1 + �U�2 + �V�2�
,

i
�V

�z
− iK

�V

�x
=

�V − U�

�I0�1 + �U�2 + �V�2�
�4�

[rescaling x, one may set K=1 in Eqs. (3) and (4), and con-
stant I0, which is an irreducible parameter in Eqs. (3), can
be scaled out from Eqs. (4); hence the latter equations do
not contain any irreducible coefficient]. Note that Eqs. (4),
unlike Eqs. (3), feature solely SPM and XPM effects, with-
out four-wave mixing. It is noteworthy too that both sys-
tems, Eqs. (3) and (4), demonstrate not only the satura-
tion of the SPM and XPM terms in each equation, but also
the saturation of the coupling between the two waves [the
coupling is no longer purely linear; cf. Eqs. (1)].

Gap-soliton solutions (including tilted ones, i.e., coun-
terparts of moving solitons in the temporal domain) to
Eqs. (3) and (4) were found in [31], and their stability was
investigated by means of direct simulations. Nontrivial
internal stability borders in the soliton families were
found [in particular, two disjoint stability areas were dis-
covered in the model based on Eqs. (4)].

These results, as well as more general arguments, sug-
gest studying BG solitons in physically relevant systems
with the most fundamental saturable nonlinearity, which
resembles that in Eqs. (4), but is rational, rather than al-
gebraic. We introduce two models, one of which combines
the saturable nonlinearity and ordinary linear intermode
coupling, and another, more formal one (see an explana-
tion of the physical realization of the models below), in
which the coupling between the two waves is also subject
to the saturation. The former model is based on the fol-
lowing CMEs in a normalized form; cf. Eqs. (1) and (4),

iUt + iUx −
U

1 + �U�2 + �V�2
+ �V = 0,

iVt − iVx −
V

1 + �U�2 + �V�2
+ �U = 0. �5�

The latter model (also cast in the normalized form) is
more similar to Eqs. (4):
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iUt + iUx −
U − �V

1 + �U�2 + �V�2
= 0,

iVt − iVx −
V − �U

1 + �U�2 + �V�2
= 0. �6�

In either system, Eqs. (5) or (6), we assume that U and V

are amplitudes of two independent waves, with the total
intensity of light approximated by �U�2+ �V�2, as commonly
adopted in various settings [26,32–34]. This is a differ-
ence from the BG model in the Kerr medium, based on
Eqs. (1), where the relevant combination of the nonlinear
terms has �=1/2 [nevertheless, exact soliton solutions of
Eqs. (1) are available for any � [4], including �=1, which
corresponds to combination �U�2+ �V�2]. Note also that, un-
like Eqs. (1), the coupling constant � (which is propor-
tional to the Bragg reflectivity of the corresponding grat-
ing) cannot be scaled out (set equal to 1) in Eqs. (5) and
(6).

The dispersion relation of the linearized version of Eqs.
(5) or (6), obtained by the substitution of U ,V�eiqx−i�t

(with arbitrary wavenumber q), coincides with that of
Eqs. (1), except for the frequency offset by ��=1,

� = 1 ± ��2 + q2 �7�

[in fact, the choice of ��=1 fixes the normalization
adopted in Eqs. (5) and (6)]. As follows from Eq. (7), the
bandgap in the linear spectrum of either model is

1 − � � � � 1 + � �8�

(by definition, we set ��0).
Proceeding to physical realization of the models intro-

duced above, the coupled-mode equations (5) can be
implemented in a straightforward way if one assumes a
planar waveguide, based on a slab of a photorefractive
material (without any built-in lattice), which is sand-
wiched between two cladding layers (made of an ordinary
optical material). Each layer carries a permanent longitu-
dinal BG, i.e., one written (on the layer) parallel to the
propagation direction. Since the objective is to predict
spatial solitons in this setting [hence t in Eqs. (5) is to be
realized as the propagation distance and x as the trans-
verse coordinate in the plane of the waveguide], the me-
dium can be described by 1D equations if the thickness of
the photorefractive layer, d�, is smaller than a typical
transverse width, W�, of the 2D spatial soliton in photo-
refractive crystals. As predicted in theoretical analysis
[35], and confirmed by experimental observations in
nearly isotropic, [strontium barium niobate (SBN)] [36]
and strongly anisotropic �KNbO3� [37] crystals, the
soliton-forming beam with the power in the microwatt
range gives rise to spatial solitons with W� taking values
in the range of 10–30 	m. Thus, the 1D approximation
may be well justified for d�
10 	m. If the thickness of
the cladding layers, in which the grating is written, is
�2 	m (a natural size of the cladding), the effective
strength of the grating (i.e., the Bragg reflectivity), aver-
aged in the transverse direction, will be �50% of its ac-
tual strength in the cladding. The latter characteristic
may be defined as the inverse reflection length; usually, it

is 1/ lrefl
�Bragg��1 mm−1, for weak gratings [1]. Since the

propagation length necessary for the formation and detec-

tion of gap solitons amounts to several lrefl
�Bragg� [3], the typi-

cal longitudinal size of available waveguides, several cen-
timeters, will be quite sufficient for experiments with the
spatial BG solitons in this setting.

Note that Eqs. (5) and (6) neglect the bulk diffraction.
To estimate conditions that justify this approximation, we
notice that, if the Poynting vectors of the two electromag-
netic waves reflected into each other by the grating make
angles ±� with the propagation axis (i.e., with the longi-
tudinal grating itself), then, in the unnormalized form,
the combinations of derivatives appear in Eqs. (5) [or Eqs.
(6)] as

ik��cos ��
�U

�z
+ �sin ��

�U

�x
�, ik��cos ��

�V

�z
− �sin ��

�V

�x
�
�9�

(z is the propagation distance, which is replaced by t in
the normalized equations, and k=2� /� is the wavenum-
ber corresponding to carrier wavelength �). As mentioned
above, a typical transverse width of spatial solitons in
photorefractive media is W��10–30 	m. Assuming the
carrier wavelength �1 	m, one concludes that the diffrac-
tion, represented by the second derivatives, �1/2��2U /�x2

and �1/2��2V /�x2, is negligible provided that ��1°.
The alternative model, based on Eqs. (6), may be re-

lated to a different setting, with a bulk photoinduced lon-
gitudinal lattice (rather than the material one, perma-
nently written in the cladding). However, in that case
CMEs [Eqs. (6)] may only be considered as providing for a
phenomenological description of the setting, as a consis-
tent derivation may lead to more complex equations; see
[31]. Nevertheless, we will consider the system [Eq. (6)]
too, which will help us to distinguish between more gen-
eral findings and model-specific ones.

Both models conserve the total norm of the field (alias
the total power, in terms of the spatial-domain transmis-
sion),

E =	
−

+


�U�x��2 + �V�x��2�dx. �10�

In addition, Eqs. (5) admit the Hamiltonian representa-
tion in the ordinary form, iUt=�H /�U*, iVt=�H /�V*,
where the asterisk stands for the complex conjugate, and
the Hamiltonian, which is another dynamical invariant of
Eqs. (5), is

H =
1

2
	

−

+


i�UUx
* − VVx

*� + ln�1 + �U�2 + �V�2� − 2�U*V�dx

+ c.c.,

with c.c. standing for the complex conjugate expression.
Equations (5) also conserve the total momentum,

P = i	
−

+

�UUx
* + VVx

*�dx. �11�

On the other hand, a Hamiltonian representation of phe-
nomenological equations (6), as well as their accurate
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physical derivation, is not obvious; that is why the latter
CME system was called “more formal” above.

To conclude the introduction of the models, we note
that, if the nonlinearity is weak, the expansion of the
saturable nonlinearity in all the above-mentioned CME
systems, Eqs. (3)–(6), generates cubic SPM and XPM
terms in the lowest approximation, and various quintic
terms as first corrections to it. In this connection, it is rel-
evant to mention that gap solitons in the coupled-mode
BG equations, including self-focusing cubic and self-
defocusing quintic terms, were studied in [38]. Two differ-
ent types of gap solitons were identified in that work,
namely, regular and “two-tiered” ones, dominated by the
cubic and quintic nonlinearity, respectively. Stability re-
gions for these soliton species are separated, similar to
the above-mentioned property of the stability region for
solitons in Eqs. (4). A principal difference between models
with the cubic–quintic and full saturable nonlinearity is
that the amplitude of soliton solutions is bounded in the
former case, whereas it may be arbitrarily large in the
latter one (in particular, in the models considered in this
work; see below). The latter feature is explained by the
fact that the saturable nonlinearity does not imply the
competition between self-focusing and self-defocusing
terms.

The rest of the paper is organized as follows. In Section
2, we present families of fundamental solitons (including
moving and tilted ones) in the first model, based on Eqs.
(5). These solutions are obtained by means of numerical
methods, but the cutoff point, at which the families ter-
minate inside the bandgap, and power indices that deter-
mine the divergence of the solutions near the cutoff, are
found analytically. In Section 3, we report, in a more brief
form, similar results for the second (phenomenological)
model, which is based on Eqs. (6). In that case, the cutoff
point and divergence powers are found in an analytical
form, too. Dynamical results, which illustrate stability of
the solitons, are presented in Section 4. That section also
demonstrates the existence of two-soliton bound states in
the model based on Eqs. (5). However, the bound states
are unstable and transform themselves into robust
breathers, with little radiation loss [Eqs. (6) do not give

rise to bound states]. Results for collisions between mov-
ing (tilted) solitons are reported in Section 4, too. It is
shown that the collisions, in both CME systems [Eqs. (5)
and (6)], are quasi-elastic, thus being essentially different
from what was found in the standard model, based on
Eqs. (1), where the collisions may be strongly inelastic
[39]. Section 5 concludes the paper.

2. FAMILIES OF BRAGG-GRATING
SOLITONS IN THE MODEL WITH
SATURABLE NONLINEARITY

A. Straight (Zero-Velocity) Solitons
We start the analysis by looking for stationary solutions
of Eqs. (5) for quiescent solitons (i.e., ones with zero ve-
locity, which correspond to zero tilt in the spatial domain),
in the ordinary form,

�U,V = �u�x�,v�x�exp�− i�t�. �12�

The substitution of this expression in Eqs. (5) leads to a
system of stationary equations. Similar to zero-velocity
soliton solutions of Eqs. (1), the solutions in the present
case obey a constraint compatible with the equations, v

=−u*, which reduces the stationary system to a single
equation:

�u + i
du

dx
−

u

1 + 2�u�2
− �u* = 0. �13�

First, we report numerically obtained soliton solutions
of Eq. (13), whose generic examples are displayed in Fig.
1. For comparison, the figure also includes, for the same
values of parameters, well-known exact solutions of the
standard CMEs [Eqs. (1)], that were found in [4,5]. Figure
1(a) presents solitons located close to the upper edge of
the gap, where they are similar to their counterparts in
the standard BG model (which, in this limit, is itself close
to the ordinary nonlinear Schrödinger equation [40]), and
Fig. 1(b) displays an example taken near the cutoff point,
�=� [see Eq. (14)], where the newly found solitons are
drastically different from the exact solutions of the stan-
dard model. In the latter case, we observe a real compo-

Fig. 1. (Color online) Typical examples of stable straight (zero-velocity) solitons found in the Bragg-grating model with the nonlinearity
saturation. The solitons are obtained as numerical solutions of Eq. (13) with �=1. (a) and (b) correspond to �=1.8 and 1.1, i.e., to the
solitons located, respectively, close to the upper edge and center of the bandgap. Here and in Figs. 3 and 5, profiles marked by “cubic”
display, for the sake of comparison, exact solutions for the gap solitons in the standard model, which is based on Eqs. (1) with the cubic
nonlinearity [to make them as close as possible to Eqs. (5), we set �=1 in Eqs. (1)]. The latter solutions were taken also for �=1, with the
substitution of �→�−1, see Eq. (7).
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nent u�x�, which is much larger than both the imaginary
part of the same solution, and real and imaginary parts of
the corresponding gap-soliton solution of the standard BG
model with the cubic nonlinearity.

Collecting results of the numerical solution of Eq. (13)
at different values of �, it is possible to construct a family
of gap-soliton solutions for given �. As a global character-
istic of the family, in Fig. 2 we have plotted (for �=1.5) the
soliton’s norm, defined by Eq. (10), versus �. A conclusion
is that for all values of the coupling constant considered
(we analyzed in detail the situation for ��1), the family
of gap-soliton solutions to Eq. (13) fills out a stripe,

� � � � 1 + �, �14�

inside the bandgap given by Eq. (8); in the remaining part
of the gap, 1−����� (which does not exist for ��1/2),
the solutions could not be found.

To explain these results, it is necessary to take into ac-
count the peculiarities of the gap-soliton solutions to Eq.
(13) highlighted above, in connection to Fig. 1(a). Indeed,
approaching the cutoff point, �=�, where the solutions
cease to exist, we observe broad solitons with a large real
part of u�x�, and bounded Im
u�x��. Analyzing Eq. (13),
one easily concludes that, at �−�→0, the amplitude of
Re
u�x��, A, diverges simultaneously with the soliton’s
width, W, as

A � W � �� − ��−1/2, �15�

while the amplitude of Im
u�x�� remains finite (the satu-
rable nonlinearity, unlike the above-mentioned cubic–
quintic one [38], admits solitons with an arbitrarily large
amplitude). Simultaneously, the soliton is much broader
than its counterpart in the standard model. This entails
an estimate for the respective divergence of the soliton
norm,

E � A2W � �� − ��−3/2, �16�

which agrees with the numerical results shown in Fig. 2.
As mentioned above, the existence region for the gap

solitons given by Eq. (14) actually covers the entire band-
gap [see Eq. (8)], at small values of the coupling constant,
��0.5. While we did not study this case in detail, assum-
ing that the systems with relatively strong coupling,

��1, are of major interest, we assume that, for small �,
the gap-soliton family is similar to that in the standard
model based on Eqs. (1).

B. Tilted (Moving) Solitons
Solutions to Eqs. (5) for solitons moving at velocity c (re-
call they appertain to tilted beams, in the spatial-domain
interpretation of the model) were looked for as �U ,V
= �u�x−ct� ,v�x−ct�exp�−i�t�. The substitution of this in
Eqs. (5) leads to a system of stationary equations,

�u + �1 − c�i
du

d�
−

u

1 + �u�2 + �v�2
+ �v = 0,

�v − �1 + c�i
dv

d�
−

v

1 + �v�2 + �u�2
+ �u = 0, �17�

where ��x−ct. Unlike the case of c=0, these equations do
not admit reduction v=−u*, hence Eqs. (17) cannot be re-
duced to a single equation, such as Eq. (13).

Because the linearization of Eqs. (17) is identical to
that of standard CMEs [Eqs. (1)], the interval of the ve-

Fig. 2. (Color online) Norm of the soliton, defined as per Eq.
(10), versus � for the family of numerically found straight (zero-
velocity) soliton solutions to Eq. (13), with �=1.5. The family ex-
ists in interval 1.5���2.5, which corresponds to Eq. (14). For
�−1.5→0, the norm diverges, as the amplitude of the real part of
the solution and its width tend to become infinitely large; see Fig.
1(b). For the sake of comparison, a curve showing the norm of the
family of exact solitons in the standard model, based on Eqs. (1)
with �=1, multiplied by 10 (otherwise, it would be almost invis-
ible) is included too.

Fig. 3. (Color online) Examples of stable tilted (moving) solitons in the BG model with the saturable nonlinearity, for �=1, c=0.1, and
�=1.8 (a) and �=1.1 (b), i.e., respectively, close to the upper edge and center of the bandgap, cf. Fig. 1. For comparison, exact solutions
for the moving solitons found, at the same parameters, in the standard model based on Eqs. (1), with �=1, are included too.
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locities in which the solitons may exist in the present
model is the same as in the standard one, i.e., −1�c�

+1 (it is found as an interval of values of c for which the
linearization of the equations in the moving coordinates
still yields a finite bandgap).

Shapes of the moving solitons were found from a nu-
merical solution of Eqs. (17). Typical examples of moving
solitons and comparison with their counterparts in the
standard BG model are given in Fig. 3.

As well as the straight (zero-velocity) solutions, their
counterparts for the tilted (moving) solitons fill out only a
part of the available bandgap. Indeed, a straightforward
analysis shows that soliton solutions to Eqs. (17) can only
be found for ��� (i.e., the cutoff point, �=�, does not de-
pend on the velocity, as corroborated by numerical solu-
tions for the moving solitons), and estimates [Eqs. (15)
and (16)] that were derived above for the straight (zero-
velocity) solitons, remain valid for the tilted (moving)
ones as well. Note that the soliton existence region, �

��, covers the entire bandgap in the comoving reference

frame at ��1/ �1+�1−c2�; cf. the above-mentioned condi-
tion, ��1/2, for the straight (zero-velocity) solitons.

For given values of �, the family of moving solitons is
characterized by the dependence of the momentum on the
velocity, P�c�, with P defined by Eq. (11). Typical examples
of this dependence are displayed in Fig. 4.

3. SOLITON FAMILIES IN THE MODEL
WITH THE SATURATION OF THE
NONLINEARITY AND COUPLING

Proceeding to the analysis of solitons in the phenomeno-
logical model based on Eqs. (6), which includes the satu-
ration of the intermode coupling, we start with the
straight (zero-velocity) solutions, in the form of Eq. (12).
Substituting it in Eqs. (6) and using the above-mentioned
constraint, v=−u*, we reduce the stationary equations to
a single one [cf. Eq. (13)],

�u + i
du

dx
−

u + �u*

1 + 2�u�2
= 0. �18�

The analysis of Eq. (18) readily demonstrates that, in this
model, the cutoff point is �=0 „if it belongs to the band-
gap [Eq. (8)], i.e., if ��1…, with the solitons filling the re-
gion of

0 � � � 1 + �. �19�

Note that this region is broader than its counterpart in
the previously considered model, which was given by Eq.
(14). In the limit of �→ +0, analysis of Eq. (18) predicts
the following divergence scalings for the soliton’s ampli-
tude, width, and norm [cf. Eqs. (15) and (16)]:

Fig. 4. (Color online) Momentum of the moving (tilted) solitons, found as per Eq. (11), plotted versus their velocity, for �=1. The intrinsic
frequency of the solitons is fixed at (a) �=1.8 and (b) �=1.1. The P�c� dependences for exact solitons in the standard model, based on Eqs.
(1), with �=1, are included for the comparison.

Fig. 5. (Color online) Examples of stable straight (zero-velocity) solitons found in the BG model with the coupling saturation, based on
Eqs. (6) with �=1: (a) �=0.18; (b) �=1.8. For comparison, solitons in the standard BG model, based on Eqs. (1) and found at the corre-
sponding values of parameters (in particular, �=1), are shown too.
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A � �−1/2, W � �−1, E � �−2. �20�

Typical examples of solitons produced by numerical so-
lution of Eq. (18) are displayed in Fig. 5 [together with
their counterparts found in the standard model based on
Eqs. (1)], and the E��� dependence for the family is shown
in Fig. 6. Solutions for moving (tilted) solitons have also
been found in this model, in the entire region of velocities
where they are expected to exist, −1�c� +1. Examples of
the moving solitons are given in Fig. 7.

4. DYNAMICAL PROBLEMS: STABILITY OF
THE SOLITONS, BOUND STATES, AND
COLLISIONS

A. Stability Analysis
The next step in the study of the present models is to con-
sider stability of the solitons. To this end, we note, first of
all, that the E��� dependences displayed in Figs. 2 and 6
satisfy the Vakhitov–Kolokolov (VK) criterion, dE /d��0,
according to which solitons cannot be unstable against
perturbation eigenmodes with purely real instability
growth rates [41]. However, the VK criterion ignores per-
turbations with complex growth rates. In particular, it is
well known that, while all soliton solutions in the BG
model with the cubic nonlinearity, based on Eqs. (1), meet
the condition of dE /d��0, only half of them are truly
stable [6–8].

To analyze the stability of zero-velocity solutions in the
model with the saturable nonlinearity in a consistent way,
we employ the linearization of Eqs. (5). To this end, we
take a perturbed solution as

�U�x,t�

V�x,t�
� = ��u0�x�

v0�x�� + �u1�x�

v1�x��ei�t�e−i�t,

where u0�x� and v0�x� are components of the unperturbed
solution, and functions u1�x� and v1�x� constitute an
eigenmode of small perturbations with a (generally
speaking, complex) instability growth rate �. Upon the
substitution of this in Eqs. (5) and linearization, we arrive
at coupled equations for the components of the perturba-
tion eigenmode (if the unperturbed soliton is straight, i.e.,
it has zero velocity),

�� + i
d

dx
�u1 −

u1

1 + �u0�2 + �v0�2

+
�u1u0

* + u0u1
*� + v1v0

* + v0v1
*

�1 + �u0�2 + �v0�2�2
u0 + �v1 = �u1,

�� − i
d

dx
�v1 −

v1

1 + �v0�2 + �u0�2

+
�v1v0

* + v0v1
*� + u1u0

* + u0u1
*

�1 + �v0�2 + �u0�2�2
v0 + �u1 = �v1.

The eigenvalue problem based on these equations (com-
plex conjugates of the equations were used to close the
linear system) was solved numerically. The obtained re-
sults show that, within the numerical accuracy available,
the instability growth rate for the straight (zero-velocity)
solitons is zero, in the entire region where they exist. We
stress that this result was obtained for the model with �

�1, when the existence region, given by Eq. (14), occupies

Fig. 6. (Color online) Norm of the soliton defined as per Eq. (10),
is plotted versus � for the family of numerically found straight
(zero-velocity-) soliton solutions of Eq. (18), with �=1. The family
exists in the interval [Eq. (19)], which, in the present case, is 0
���2, coinciding with the entire bandgap [Eq. (8)] (for ��1, the
existence interval is smaller than the bandgap; see text). For �

→0, the norm, amplitude and width of the soliton diverge in ac-
cordance with analytical predictions [Eq. (20)]. For comparison, a
curve showing the norm of the family of exact solitons in the
standard model, based on Eqs. (1) with �=1 and �=1, multiplied
by 10 (to make it visible), is included too, cf. Fig. 2.

Fig. 7. (Color online) Examples of stable moving (tilted) solitons in the model with the saturation of the nonlinearity, for �=1: (a) c

=0.5, �=1.8 and (b) c=0.2, �=0.18, i.e., near the upper and lower edge of the bandgap, respectively; cf. Fig. 3. For comparison, included
are also exact solutions for the moving solitons (at the corresponding values of the parameters) in the standard model based on Eqs. (1),
with �=1.
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less than a half of the entire bandgap, see Eq. (8). On the
other hand, in the standard BG model, with the cubic
nonlinearity, an approximate analytical consideration [6]
and accurate numerical analysis [7,8] of Eqs. (1) reveal
that only the solitons from the upper-half bandgap, 0
����, are stable, while the remaining half, −����0, is
occupied by unstable solitons (as mentioned above). A pos-
sible explanation to the complete stability of the gap-
soliton family in the present model is that a part of the
bandgap where unstable solitons could be found is actu-
ally empty.

The stability of the solitons has also been verified by di-
rect simulations of the evolution of perturbed solitons in
the framework of the underlying Eqs. (5). A typical ex-
ample attesting to the stability of the solitons, with the
initial perturbation amplitude at a 2% level, is shown in
Fig. 8.

The stability of tilted (moving) solitons has also been
analyzed, by computing eigenvalues determined by the
linearization of Eqs. (5) in the reference frame moving
along with the unperturbed soliton and also by means of
direct simulations of perturbed solitons. It has been con-
cluded that, as well as their zero-velocity (straight) coun-
terparts, the moving (tilted) solitons do not give rise to
unstable eigenvalues, within the framework of the avail-
able numerical accuracy. Direct simulations of Eqs. (5)
confirm the stability of the moving solitons. Examples, ob-
tained by adding a perturbation to the moving solitons at

the amplitude level of 2%, are displayed in Fig. 9; cf.
Fig. 8.

A similar analysis has been performed for the solitons
in the model based on Eqs. (6), which includes the satu-
ration of the linear coupling. The results are similar too,
demonstrating the stability of the solitons, as determined
by the computation of the eigenvalues and verified in di-
rect simulations. Moving solitons in this model are also
stable.

B. Bound States of Solitons
Some other models based on the linear coupling between
waves induced by the Bragg reflection feature double-
hump (DH) stationary solitons, in addition to the funda-
mental single-hump (SH) ones. Examples are three-wave
[14] and four-wave [42,43] systems with quadratic nonlin-
earity. Similar states were also found in a model with
saturable nonlinearity, but without the BG-induced cou-
pling [44].

Besides the fundamental solitons reported above, nu-
merical solution of the stationary equation, which deter-
mines zero-velocity solitons in the model with the nonlin-
earity saturation, Eq. (13), gives rise to DH solitons in
this model, too; they may be realized as in-phase bound
states of the fundamental solitons; see an example in Fig.
10. This result, by itself, is nontrivial, as no such states
are known in the standard BG model based on Eqs. (1),

Fig. 8. (Color online) Evolution of a perturbed straight (zero-
velocity) soliton in the model based on Eqs. (5), for �=1 and �

=1.8, i.e., when the unperturbed soliton is the same as in Fig. 1.
In this figure and in other figures that present results of direct
simulations (see below) only the U component is displayed, as the
evolution of its V counterpart seems quite similar, in all cases.

Fig. 9. (Color online) Evolution of the tilted (moving) solitons from Figs. 3(a) and 3(b), to which a 2% amplitude perturbation was added.

Fig. 10. (Color online) Typical example of a DH stationary pat-
tern found from Eq. (13) at �=3.4 and �=2.5. For comparison, a
fundamental (SH) soliton, found at the same values of param-
eters, is shown too.
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and numerical solution of the other coupled-mode system
introduced above, viz., the one based on Eqs. (6), have not
revealed any bound states either. However, direct simula-
tions of Eqs. (5), with the DH solitons taken as initial con-
ditions, demonstrate that they are unstable. A typical ex-
ample displayed in Fig. 11 shows that the instability
initiates repeated collisions of two solitons that originally
form the bound state. Eventually, they merge into quite a
robust breather, that features indefinitely long quasi-
regular vibrations. The transformation of the unstable
bound state into the breather gives rise to little radiation
loss: in the case shown in Fig. 11, the relative difference of
the norm [Eq. (10)] between the initial and final localized
states is 5%.

Barring numerical problems with solutions for very
broad solitons, a conclusion is that the bound states of two
fundamental solitons, which transform themselves into
breathers due to the instability, can be found at all values
of � at which the fundamental solitons themselves exist.
It is also relevant to mention that no stable or unstable
bound states formed by three (or more) solitons have been
found in Eqs. (5).

C. Collisions between Moving Solitons
The existence of stable moving solitons suggests a possi-
bility to simulate collisions between them. In the stan-
dard BG model with the cubic nonlinearity, based on Eqs.
(1) with �=0.5, collisions were systematically investi-

gated in [39]. It was found that identical solitons moving
with velocities ±c collide quasi-elastically (passing
through each other, with some loss and excitation of in-
trinsic oscillations) if c exceeds 0.2; at c�0.2, the slowly
moving solitons could merge into a single pulse; see an ex-
ample of the latter outcome of the collision in Fig. 12(a).

We have performed systematic simulations of the colli-
sions in the two models introduced in this work, i.e., ones
based on Eqs. (5) and (6). In either system, the collisions
always appear to be quasi-elastic, i.e., the solitons sepa-
rate after the collision, featuring some intrinsic perturba-
tions. A typical example of the quasi-elastic collision of
slow solitons, with velocities c= ±0.1, is shown in Fig.
12(b).

5. CONCLUSION

In this work, we have introduced two coupled-mode sys-
tems describing the copropagation of two waves coupled
by the resonant Bragg reflection in a medium with satu-
rable nonlinearity. The main model, based on coupled-
mode equations in the form of Eqs. (5), combines the ra-
tional nonlinearity and ordinary (linear) coupling. It may
be realized in the spatial domain, considering a planar
waveguide made of a photorefractive material, with the
longitudinal diffraction lattice written in its cladding,
which is made of an ordinary optical material. We have
demonstrated analytically and confirmed by numerical
results that, unless the coupling is too weak, there is a
cutoff point ��=�� inside the system’s bandgap, with gap
solitons existing to the right of it. The powers that deter-
mine the divergence of the soliton’s amplitude, width and
norm close to the cutoff point were predicted in the ana-
lytical form and corroborated by numerical computations.
The computation of the stability eigenvalues for small
perturbations and direct simulations demonstrate that
the solitons existing between the cutoff point and the up-
per edge of the bandgap are stable, which pertains to
straight (zero-velocity) and tilted (moving) solitons alike.
In-phase bound states of two fundamental solitons have
been found too, but they are unstable, and eventually
merge into robust breathers, with little radiation loss at
the transient stage.

Fig. 11. (Color online) Transformation of the unstable bound
state of two in-phase solitons into a breather, at �=2.5 and �

=3.4 (the initial bound state is the same as in Fig. 10).

Fig. 12. (Color online) Examples of collisions between identical solitons moving at velocities ±c: (a) the inelastic collision at c=0.1,
produced by simulations of the standard BG model, based on Eqs. (1) with �=0.5; (b) quasi-elastic collision at the same velocities, c

=0.1, revealed by simulations of Eqs. (5). In both cases, the equations were taken with �=1, and the colliding solitons had intrinsic
frequencies (a) �=0.6675 and (b) �=1.8.
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The second model introduced in this work, based on
Eqs. (6), is a phenomenological one. It assumes a bulk
photoinduced grating, therefore this model features the
saturation of the intermode coupling, in addition to the
nonlinearity saturation. In that case, the cutoff point, �

=0, and the law of divergence of the soliton solutions close
to it were also found analytically and confirmed numeri-
cally. The solitons are stable in this model too, while it
does not give rise to two-soliton bound states, stable or
unstable ones.

Collisions between solitons in the present models were
explored by means of direct simulations. It was concluded
that, on the contrary to the standard Bragg-grating
model, the collisions are always quasi-elastic in both sys-
tems of the CMEs introduced in this work.
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