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Abstract: This study addresses the event-triggered (ET)-based stabilisation problem of neural-network-based control system
(NNBCS) and illustrates the direct application to wind power generation system. In this regard, the novel ET-based controller
algorithm is designed for NNBCS instead of sampled data controller (sampling will be initiated at a fixed rate regardless whether
it is required or not) which reduces the computation complexity by avoiding the unnecessary details over the transmission. The
novel stability and stabilisation conditions are expressed in terms of linear matrix inequalities that are derived through
constructing the time-dependent Lyapunov functional candidate. For deepening the knowledge in the outcomes of the proposed
conditions, the study numerically evaluates the dynamic models such as variable-speed wind turbine drive system, permanent
magnet synchronous motors model and traditional inverted pendulum model and validates the effectiveness of the proposed
controller scheme. Finally, a comparison result shows the superiority of the derived conditions.

 Nomenclature
Bs shaft damping
JT and Jg turbine and generator inertia
Ks shaft compliance
Q shaft torque
QA input wind torque
QE generator torque
ℛ blade length
V wind velocity,
ωt turbine angular velocity
ωg generator angular velocity
ρ air density

1 Introduction
The world without modern technologies is likely to be the home
without doors, in this situation, the requirement of energy is rapidly
increasing. Lots of technological developmenets are made for the
production, renewable and minimise the consumption via green
energies which include wind farm, solar energy, hydro, bio-masss
and they proved the importance of saving the natural resources.
However, it is not possible to implement every minute details into
real-world systems because of economic crisis [1–3]. In this regard,
the fundamental research on these renewable energies is always of
great interest because of cost-effective and time complexity when
compared to practical implementation. For instance, in a wind
power generation system (WPGS), the investigation of the
controllers have a significant role for pitch and yaw components.
Mathematical modelling of real-world problems via differential
equations will help to reveal the system properties and proven the
significance of parameters. Among various green energies, we aim
to investigate the WPGS which is one of the main sources of
electricity. In the literature, WPGSs are modelled into the set of
non-linear differential equations that acquires the information
about the productivity of energy. In addition, numerous controllers
have been proposed and proved the stable performance of the wind
turbines (see for example [4–8]). In general, improvements are still
necessary in order to configure the stable performance and
optimise the leakages. Hence, in this work, we theoretically design
the event-triggered (ET)-based control scheme for the generalised
non-linear differential model and validate them with WPGSs.

Computational intelligence models that include artificial neural
networks (ANNs) are used to train and model the non-linear and
complex patterns, which helps to predict the complete information
on real-world problems [9, 10]. In contrast to the existing
approximations, any smooth continuous function that lies in the
compact domain can be approximated to an arbitrary accuracy via
ANNs. For example, in [11], authors have investigated the stability
and the optimised performance for the sampled-data neural-
network-based control system (NNBCS). In general, NNBCS
comprises the non-linear plant and neural-network-based controller
in the closed-loop form and they adapted the three-layer fully
connected feedforward neural network (TLFCFFNN) as an
approximation tool. In that work, two major approaches have been
combined, i.e. linear matrix inequality (LMI) and genetic algorithm
to obtain the largest sampling period and connection weights of the
neural network. Similar to the above work, authors in [12–14] have
proposed the delay-dependent stabilisation conditions based on
novel piecewise Lyapunov function. Particularly in [13], authors
have proposed the exponential stabilisation conditions for NNBCS
based on time-dependent Lyapunov functional (TDLF) which has
proven the asymptotical stability of the closed-loop system.

The common feature shared by these works is sampled-data
TLFCFFNN controller (time-triggered control, the control task is
performed in a periodic way, for more details, refer [15, 16]).
However, in some situations, control task will be operated in all
cases, i.e. sampling will be initiated at a fixed rate regardless
whether it is required or not which results in the wastage on both
computation and energy resources. To overcome this restriction,
the ET controller is the best option which automatically makes a
decision regarding the execution of the control task based on
predefined ET condition rather than some fixed time. Once the ET
condition is disturbed at some instant, which implies that the event
is triggered, the control task will be immediately initiated. A
detailed analysis of time-triggered and ET controllers are reported
in [17–27]. Also, with reference to the works in [11–13], all the
authors have designed the sampled-data neural-network-based
control (SDNNC) for only non-linear physical experiment problem
on the cart and inverted pendulum and to the different aspect, the
main motivation of our work relies on the investigation of non-
linear WPGS via the proposed ET NNBCS (ETNNBCSs).

Motivated by the aforementioned discussion, theoretical
investigation of ETNNBCSs needs much attention, so far only one
research report has been published in the literature when compared
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to SDNNC. In particular, the authors in [28] have introduced ET
scheme for TLFCFFNN-based controller and established the
stabilization criteria based on Lyapunov functional. However, in
this paper, the problem of stabilisation for ETNNBCS is
investigated. In addition, an ET scheme is introduced into the
neural-network-based controller which include the transmission
delay τ(t) with both lower and upper bounds but the authors in [28]
have considered only the upper bound which needs to be improved.
The proposed controller scheme guarantees the globally
asymptotically stable for the given closed-loop system. For
complete information, the motivation of the present work is that the
non-linear plants say, variable-speed wind turbine drive system and
permanent magnet synchronous motor (PMSM) ( [29, 30]) are
adapted for the investigation and the suitable ET-based neural
network control is designed. The sufficient condition in terms of
strict LMIs for considered ETNNBCS is derived through suitable
time-dependent LKF which include the information of lower and
upper bound of the transmission. Finally, the proposed sufficient
conditions are validated through numerical examples.

Notation: We start with an introduction of some common
notations used in the main results. Let ℝn be Euclidean n-
dimensional space and ℝn × m represents n × m real matrix. ∗
denotes symmetric term in the symmetric matrix.
X > 0( ≥ 0) ∈ ℝn × n denotes positive matrix (positive semi-definite
matrix) with n × n and I denotes the identity matrix with
appropriate dimension.

2 Preliminaries and problem formulation
Now, consider the non-linear plant (model) with control form as
follows:

ẋ(t) = f (x(t), u(t)), (1)

here, x(t) ∈ ℝn denotes the state vector of the non-linear model (1)
and the control input u(t) ∈ ℝm. The vector form of non-linear
function is f ( ⋅ ):ℝn × ℝm ⟶ ℝn. The following is the similar
model proposed in [11–13],

ẋ(t) = ∑
i = 1

p

ωi(x(t))(Aix(t) + Biu(t)), (2)

with Ai ∈ ℝn × n and Bi ∈ ℝn × m are known real matrices. p denotes
the positive integer, and ωi(x(t)) must satisfy the following
condition:

∑
i = 1

p

ωi(x(t)) = 1, ωi(x(t)) ∈ [0 1], i = 1, …, p . (3)

 
Remark 1: The authors in [11] have introduced a sampled-data

TLFCFFNN-based controller say, SDNNC to continuous time non-
linear plant and derived the stability conditions based on Lyapunov

stability which guarantees asymptotically stability. As an
improvement, in [12, 13], authors have been derived improved
stabilisation conditions based on input delay approach and TDLF
approach. Compared with the existing results, we inspired to
design the ET-TLFCFFNN controller as in u(t) that can be able to
acquire the information more accurately than sampled-data
TLFCFFNN.

The ET communication-based TLFCFFNN scheme of the plant
is consistitng of sensor, event generator, TLFCFFNN-based
controller and actuator, which is shown in Fig. 1. Inspired by the
recent works on ET scheme in [22] with their preliminary
assumptions in this work, the current transmitted state is denoted
by x(tkh) = [x1(tkh), x2(tkh), …, xn(tkh)]T at time instant tkh. Here, the
next triggered instant is calculated as given below

tk + 1h = tkh + min
m

mh ∣ eT(ikh)Φe(ikh)

≥ ϵxT(tkh)Φx(tkh) .
(4)

Here, h is sampling period, e(ikh) denotes error between the state
x(ikh) at current sampling instant and the state (x(tkh)) at the latest
transmitted sampling instant, i.e. e(ikh) = x(ikh) − x(tkh),
ikh = tkh + mh, m ∈ ℕ and 0 ≤ ϵ < 1 is scalar and Φ > 0 is weight
matrix.

The ET-TLFCFFNN controller for (2) is designed as follows

u(t) = ∑
j = 1

nh

m^
j(x(tkh))K jx(tkh), t ∈ Ξ ≜ tkh + τtk, tk + 1h + τtk + 1 ,

(5)

where

K j =

k1, j k2, j … kn, j

kn + 1, j kn + 2, j … k2n, j

⋮ ⋮ … ⋱
k(m − 1)n + 1, j k(m − 1)n + 2, j … kmn, j

,

m^
j(x(tkh)) =

tf ∑i = 1
n

m^
j, ixi(tkh) − bj

∑a = 1
nh tf ∑c = 1

n
m^

a, cxc(tkh) − ba

∈ [0 1],

tf ∑
i = 1

n

m^
j, ixi(tkh) − bj ≥ 0, j = 1, 2, …, nh .

Here, m^
j, i represents the connection weight between the jth hidden

node and ith input node. ka, j denotes the connection weight
between the ath output node and the jth hidden node. bj denotes the
bias for the jth hidden node. t f ( . ) denotes the activation function.
nh denotes the number of hidden nodes. τtk denotes the transmission
delay.

For the computational convenience, we divide the whole
interval Ξ into sampling sub-intervals
Ξm = [ikh + τik, ikh + h + τik + 1) i.e.

Ξ = ∪ Ξm (6)

where ikh = tkh + mh, m = 0, 1, …, tk + 1 − tk − 1 means the
sampling instants from the current transmitted sampling instant tkh
to the future transmitted sampling instant tk + 1h; if m takes the
values of tk + 1 − tk − 1 then τik + 1 = τtk + 1, otherwise τik = τtk. The
illustration of sub-intervals as in the Fig. 2. Now, we define a
function

τ(t) = t − ikh, t ∈ Ξm (7)

where τ(t) denotes the induced delay that includes the network
transmission delays which satisfies the following condition

0 ≤ τL = infm {τik} ≤ τ(t) ≤ h + supm {τik + 1} = τU . (8)

Fig. 1  The schemetic diagram of ET-TLFCFFNN scheme
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From (7), we now re-design the controller as follows,

u(t) = ∑
j = 1

nh

m^
j(x(tkh))K j x(t − τ(t)) − e(ikh) , t ∈ Ξm . (9)

From (2) and (9), we can express as a closed-loop system in the
following form

ẋ(t) = ∑
i = 1

p

∑
j = 1

nh

ωi(x(t))m^
j(x(tkh)) Aix(t)

+BiK j x(t − τ(t)) − e(ikh)

(10)

To evaluate the system performance, we have consider the
following cost function as defined in [11]

J = ∫
t0

∞ x(s)
u(s)

T J1 J2

∗ J3

x(s)
u(s)

ds (11)

where J1, J2 and J3 are the given matrices with

J1 J2

∗ J3

> 0.

We will utilise the following Lemma [31], for deriving the main
results for the proposed model (10).

 
Lemma 1 (Matrix Cauchy inequality): For any x, y ∈ ℝn and

there exist a matrix R > 0 such that the following inequality holds

2xTy ≤ xTR
−1

x + yTRy .
Based on the non-linear model (2), ET-based control scheme (9)

and the cost function (11), this brief is dedicated to the following
ET-TLFCFFNN problem.

 
Problem 1: Given the non-linear system (1), to asymptotically

stabilise the states of the closed loop system with the following
design objectives.

• The designed ET-TLFCFFNN scheme ensure that the states x(t)
is closely convergent to the origin under the gain matrices
K j ( j = 1, …, nh).
• Under the cost function (11) and derived sufficient conditions, the
minimised value of the cost function is determined under given
initial conditions x(t0).

3 Main results
This section comprises the derivation of stability and stabilisation
criteria in terms of theorems based on suitable TDLF under the ET-
TLFCFFNN controller (9) that provides a solution to Problem 1.

3.1 Stability analysis

 
Theorem 1: For any given positive scalars τL, τU, and constants

αc, βc, γc, λc (c = 1, 2), and ϵ. If there exist the positive symmetric
matrices P, R1, R2, S, X5 Q ∈ ℝn × n, symmetric matrix G, any
matrices X1, X2, X3, X4, Mr and Nr, (r = 1…4) which satisfy the
following inequalities (i = 1, …, p and j = 1, …, nh) then the
system (10) is said to be asymptotically stable

Ψi jτL < 0, (12)

Ψi jτU < 0. (13)

(see equation below)
(see equation below)
All entries of Ψi jτL and Ψi jτU are given in Appendix 1.
In addition, if the proposed model (10) is asymptotically stable

then their corresponding value of the cost function (11) must
satisfy the following inequality

J ≤ xT(t0)Px(t0) . (14)
 

Proof: Consider the following LKFs

V(t) = V1(t) + V2(t) + V3(t) (15)

where

V1(t) = xT(t)Px(t) + ∫
t − τU

t

xT(s)R1x(s) ds + ∫
t − τL

t

xT(s)R2x(s) ds

V2(t) = ∫
t − τ(t)

t

xT(s)Qx(s) ds

+ τU − τ(t) ηT(t)Xη(t)

V3(t) = ∫
−τU

−τL

∫
t + θ

t

ẋ
T(s)Sẋ(s) ds dθ .

with

Fig. 2  Illsuration of subintervals Ξm with ZOH holding [22]
 

Ψi jτL =

π11
i jτL π12

i jτL π13
i jτL π14

i jτL π15
i jτL π16

i jτL π17
i j π18

i j τ
∗
M1

T 3J1 0 0

∗ π22
i jτL π23

i j π24
i j π25

i jτL π26
i jτL 0 0 τ

∗
M2

T
K j

T
J2

T
K j

T
J3

T
J3

T

∗ ∗ π33
i j π34

i j 0 0 π37
i jτL π38

i jτL τ
∗
M3

T 0 0 0

∗ ∗ ∗ π44
i j 0 0 π47

i jτL π48
i jτL τ

∗
M4

T 0 0 0

∗ ∗ ∗ ∗ π55
i jτL π56

i jτL π57
i jτL π58

i jτL 0 0 0 0

∗ ∗ ∗ ∗ ∗ π66
i jτL 0 0 0 K j

T
J2

T 2K j
T
J3

T 0

∗ ∗ ∗ ∗ ∗ ∗ π77
i j π78 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ π88 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −J3

,
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X =

X1 + X1
T −X1 − X2

T
X3

∗ X2 + X2
T

X4

∗ ∗ X5

and ηT(t) = xT(t) ∫t − τU

t − τ(t)
xT(s) ds ∫t − τ(t)

t − τL xT(s) ds .
Now, estimating the time derivative of (15) with respect to the

state trajectories of (10) will result as

V̇(t) = V̇1(t) + V̇2(t) + V̇3(t) . (16)

Here,

V̇1(t) = 2xT(t)Pẋ(t) + xT(t)(R1 + R2)x(t)

−xT(t − τU)R1x(t − τU) − xT(t − τL)R2x(t − τL),

V̇2(t) = xT(t)Qx(t)

−ηT(t)Xη(t) + 2[τU − τ(t)]ηT(t)Xη̇(t),

V̇3(t) = (τU − τL)ẋT(t)Sẋ(t) − ∫
t − τU

t − τL

ẋ
T(s)Sẋ(s) ds .

Also, the following integral term can be expressed into two integral
terms

−∫
t − τU

t − τL

ẋ
T(s)Sẋ(s) ds = −∫

t − τU

t − τ(t)

ẋ
T(s)Sẋ(s) ds

−∫
t − τ(t)

t − τL

ẋ
T(s)Sẋ(s) ds .

Consider the following zero equations for deriving the main results

0 = 2ξ
T(t)[M N]

x(t − τ(t)) − x(t − τU)

x(t − τL) − x(t − τ(t))

−
∫

t − τU

t − τ(t)

ẋ(s) ds

∫
t − τ(t)

t − τL

ẋ(s) ds

.
(17)

In addition, one can express S > 0,

−
∫

t − τU

t − τ(t)

ẋ
T(s)Sẋ(s) ds

∫
t − τ(t)

t − τL

ẋ
T(s)Sẋ(s) ds

≤ 2ξ
T(t)[M N]

×
x(t − τ(t)) − x(t − τU)

x(t − τL) − x(t − τ(t))

+ξ
T(t)[M N]S

~
τ(t)[M N]T

ξ(t)

(18)

where
ξ

T(t) = [xT(t) xT(t − τ(t)) xT(t − τU) xT(t − τL) ẋ
T(t) eT(ikh)∫t − τU

t − τ(t)
xT

(s) ds ∫t − τ(t)
t − τL xT(s) ds]

,

S
~

τ(t) =
(τU − τ(t))S−1 0

0 (τ(t) − τL)S−1
,

M = [M1
T

M2
T

M3
T

M4
T 0…0

4
]T and N = [N1

T
N2

T
N3

T
N4

T 0…0
4

].

From (10), we have

Ωc = 2[αcx
T(t) + βcx

T(t − τ(t)) + γcẋ
T(t)

+λce
T(ikh)]G − ẋ(t) + ∑

i = 1

p

∑
j = 1

nh

ωi(x(t))m^
j(x(tkh))

Aix(t) + BiK j x(t − τ(t)) − e(ikh) , (c = 1, 2.) .

and

τU − τ(t)
τU − τL

Ω1 +
τ(t) − τL

τU − τL
Ω2 = 0. (19)

From the ET communication (4), for t ∈ ikh + τtk, ik + 1h + τtk + 1 , it
is clear that

− eT(ikh)Φe(ikh)

+ε xT(t − τ(t)) − eT(ikh) Φ x(t − τ(t)) − e(ikh) ≥ 0.
(20)

Moreover,

uT(t)J3u(t) = ∑
j = 1

nh

m^
j(x(tkh)) x(t − τ(t)) − e(ikh) T

K j
T
J3

× ∑
ϖ = 1

nh

mϖ(x(tkh))Kϖ x(t − τ(t)) − e(ikh) ,

= ∑
j = 1

nh

∑
ϖ = 1

nh

m^
j(x(tkh))mϖ(x(tkh)) x(t − τ(t)) − e(ikh) T

K j
T

× J3Kϖ x(t − τ(t)) − e(ikh) .

Finally, (see (21)) . Based on the above,

Ψi jτU =

π11
i jτU π12

i jτU π13
i jτU π14

i jτU π15
i jτU π16

i jτU π17
i j π18

i j τ
∗
N1

T 3J1 0 0

∗ π22
i jτU π23

i j π24
i j π25τU

i j π26
i jτU 0 0 τ

∗
N2

T
K j

T
J2

T
K j

T
J3

T
J3

T

∗ ∗ π33
i j π34

i j 0 0 π37
i jτU π38

i jτU τ
∗
N3

T 0 0 0

∗ ∗ ∗ π44
i j 0 0 π47

i jτU π48
i jτU τ

∗
N4

T 0 0 0

∗ ∗ ∗ ∗ π55
i jτU π56

i jτU π57
i jτU π58

i jτU 0 0 0 0

∗ ∗ ∗ ∗ ∗ π66
i jτU 0 0 0 K j

T
J2

T 2K j
T
J3

T 0

∗ ∗ ∗ ∗ ∗ ∗ π77
i j π78 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ π88 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −J3

.
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x(t)
u(t)

T J1 J2

∗ J3

x(t)
u(t)

≤ xT(t)J1x(t)

+2xT(t)J2 ∑
j = 1

nh

m^
j(x(tkh))K j x(t − τ(t)) − e(ikh)

+ ∑
j = 1

nh

m^
j(x(tkh)) x(t − τ(t)) − e(ikh) T

K j
T
J3

× K j x(t − τ(t)) − e(ikh)

= ∑
j = 1

nh

m^
j(x(tkh))

x(t)
x(t − τ(t))

e(ikh)

T

×

J1 J2K j −J2K j

∗ K j
T
J3K j −K j

T
J3K j

∗ ∗ K j
T
J3K j

x(t)
x(t − τ(t))

e(ikh)
.

(22)

Based on Lemma 1, one can obtain,

2xT(t) J2K jx(t − τ(t)) ≤ xT(t)J1x(t)

+xT(t − τ(t))K j
T
J2

T
J1

−1
J2K jx(t − τ(t))

−2xT(t) J2K je(ikh) ≤ xT(t)J1x(t)

+eT(ikh)K j
T
J2

T
J1

−1
J2K je(ikh)

−2xT(t − τ(t)) K j
T
J3K je(ikh) ≤ xT(t − τ(t))J3x(t − τ(t))

+eT(ikh)K j
T
J3

T
J3

−1
J3K je(ikh) .

(23)

Now, rewrite the inequality (22) as follows

x(t)
u(t)

T J1 J2

∗ J3

x(t)
u(t)

≤ ∑
j = 1

nh

m^
j(x(tkh)) 3xT(t)J1x(t)

+xT(t − τ(t)) K j
T
J2

T
J1

−1
J2K j + J3 + K jJ3K j

T

× x(t − τ(t)) + eT(ikh) K j
T
J2

T
J1

−1
J2K j + K j

T
J3

T
J3

−1
J3K j

+K j
T
J3K j e(ikh) .

Also,

x(t)
u(t)

T J1 J2

∗ J3

x(t)
u(t)

≤ ∑
j = 1

nh

m^
j(x(tkh)) xT(t)( 3J1)J1

−1

× (J1
T 3)x(t) + xT(t − τ(t)) K j

T
J2

T
J1

−1
J2K j

+J3
T
J3

−1
J3 + (J3K j)

T
J3

−1(J3TK j) x(t − τ(t))

+eT(ikh) (J2K j)
T
J1

−1
J2K j

+( 2J3K j)
T
J3

−1( 2J3K j) e(ikh) .

(24)

Here, we would like to mention J1, J2 are known matrices with
appropriate dimension and J3 is a positive scalar.

Adding (19) and (20) into (16), and from (24), we get

V̇ (t) +
x(t)
u(t)

T J1 J2

∗ J3

x(t)
u(t)

≤ ∑
i = 1

p

∑
j = 1

nh

ωi(x(t))m^
j(x(tkh))ξT(t) Πτ(t)

i j + (τU − τ(t))MS
−1

M
T

+(τ(t) − τL)NS
−1

N
T

ξ(t),

(25)

where

Πτ(t)
i j =

π̄11
i jτ(t)

π12
i jτ(t) π13

i jτ(t) π14
i jτ(t) π15

i jτ(t) π16
i jτ(t) π17

i j π18
i j

∗ π̄22
i jτ(t)

π23
i j π24

i j π25
i j, τ(t) π26

i j 0 0

∗ ∗ π33
i j π34

i j 0 0 π37
i jτ(t) π38

i jτ(t)

∗ ∗ ∗ π44
i j 0 0 π47

i jτ(t) π48
i jτ(t)

∗ ∗ ∗ ∗ π55
i jτ(t) π56

i jτ(t) π57
i jτ(t) π58

i jτ(t)

∗ ∗ ∗ ∗ ∗ π̄66τ(t)
i j 0 0

∗ ∗ ∗ ∗ ∗ ∗ π77
i jτ(t) π78

∗ ∗ ∗ ∗ ∗ ∗ ∗ π88

with

π̄11
i jτ(t) = π11

i jτ(t) + ( 3J1)J1
−1(J1

T 3),

π̄22
i jτ(t) = π22

i jτ(t) + (J2K j)
T
J1

−1
J2K j

+J3J3
−1

J3 + (J3K j)
T
J3

−1
K jJ3,

π̄66
i jτ(t) = π̄66

i jτ(t) + (J2K j)
T
J1

−1
J2K j + ( 2J3K j)

T
J3

−1( 2K jJ3) .

Notice that, right side of (25) is convex combination of the terms
Πτ(t)

i j , (τU − τ(t))MS
−1

M
T and (τU − τ(t))NS

−1
N

T with respect to
τ(t) ∈ [τL, τU]. Finally, we have derived the following LMIs

ΠτL

i j + (τU − τL)MS
−1

M
T < 0, (26)

ΠτU

i j + (τU − τL)NS
−1

N
T < 0. (27)

The above inequalities (26) and (27) is equivalent to (12) and (13)
according to Schur complement lemma. From (12) and (13), one
can conclude that

V̇(t) +
x(t)
u(t)

T J1 J2

∗ J3

x(t)
u(t)

< 0. (28)

This implies that, system (10) is globally asymptotically stable. □
 

Remark 2: Theorem 1 contains a delay dependent based
stability condition for ET-neural networks based control system. It
should be mentioned that the proposed TDLF has the information
of both lower and upper bounds of transmission delay τ(t). Also,
the sufficient condition depends on some tuning parameters such as
αc, βc, γc, λc in the zero-equation (19) and ϵ in (20). During the
derivation of the feasible solutions, we will change the tuning
parameter values by trial and error method until the better feasible
stability region is reached, i.e. maximum bound of τU. Hence, the
tuning parameters play a significant role in this work.

uT(t)J3u(t) ≤ 1
2 ∑

j = 1

nh

m^
j(x(tkh)) x(t − τ(t)) − e(ikh) T

K j
T
J3K j

× x(t − τ(t)) − e(ikh) + 1
2 ∑

ϖ = 1

nh

mϖ(x(tkh)) x(t − τ(t)) − e(ikh) T

× Kϖ
T

J3Kϖ x(t − τ(t)) − e(ikh)

= ∑
j = 1

nh

m^
j(x(tkh)) x(t − τ(t)) − e(ikh) T

× K j
T
J3K j x(t − τ(t)) − e(ikh) .

(21)
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Remark 3: The presence of x(t − τ(t)) and e(ikh) in controller

u(t), the term
x(t)
u(t)

T J1 J2

∗ J3

x(t)
u(t)

 have turns into highly complex in terms of

matrix inequalities. To solve such complexity, we utilised Lemma 1
and Schur complement lemma that can be represented as (22) in
the proof of Theorem 1.

3.2 Control design

In this section, we will derive the stabilisation condition of the
closed-loop (10) system based on Theorem 1. The outcomes of the
derivations are summarised in the following theorem.
 

Theorem 2: For any given positive scalars τL, τU and any
constants αc, βc, γc, λc (c = 1, 2) and ϵ, the system (10) is said to be
asymptotically stable, if there exist positive symmetric matrices
P
^
, R

^
1, R

^
2, S

^
, X

^
5 Q

^
∈ ℝn × n, and symmetric matrix G

^ , any matrices
X

^
1, X

^
2, X

^
3, X

^
4, M

^

r, N
^

r, (r = 1…4) which satisfies the following
LMIs (i = 1, …, p and j = 1, …, nh)

Ψ
^ i jτL

< 0, (29)

Ψ
^ i jτU

< 0. (30)

(see equation below)

All entries of Ψ
^ i jτL and Ψ

^ i jτU are given in Appendix 2.
Then, the proposed model (10) is said to be asymptotically

stable with control gain matrices K j calculated through

K j = LjG
^ −1 (31)

and the corresponding value of the cost function (11) must satisfy
the following inequality

J ≤ xT(t0)G
^ −T

P
^
G

^ −1
x(t0) .

 
Proof: Let G

^
= G

−1, P
^

= G
^ T

PG
^ , S

^
= G

^ T
SG

^ , Q
^

= G
^ T

QG
^ ,

R
^

= G
^ T

RbG
^

(b = 1, …, 6) X
^

5 = G
^ T

X5G
^ , X

^
1 = G

^ T
X1G

^ , X
^

2 = G
^ T

X2G
^ ,

X
^

3 = G
^ T

X3G
^ , X

^
4 = G

^ T
X4G

^ , M
^

c = G
^ T

McG
^ , N

^

c = G
^ T

NcG
^ ,

c = 1, …4., Φ
^

= G
^ T

ΦG
^  and

∐ = diag{G
^
, G

^
, G

^
, G

^
, G

^
, G

^
, G

^
, G

^
, G

^
, I, I, I}. Pre and post

multiplying (12) and (13) by ∐T and ∐, we can get the LMIs
(29)–(30). □

Also, Theorem 2 proposes the sufficient condition with neural-
network-based ET controller (9) and the cost function (11). Also,
the proposed controller ensures that the closed-loop system is
asymptotically stable. To find an optimal controller to minimise the
upper bound of a given cost function. In this regard, we consider a
scalar κ > 0 such that

xT(t0)G
^ −1

P
^
G

^ −T
x(t0) < κ . (32)

The above inequality can be rewritten with Schur complement
lemma as follows,

−κ xT(t0)

∗ −G
^ T

P
^ −1

G
^

< 0. (33)

Through utilising the condition −G
^ T

P
^ −1

G
^

≤ − G
^ T

− G
^

+ P
^ , one

can obtain that

−κ xT(t0)

∗ −G
^ T

− G
^

+ P
^

< 0. (34)

From Theorem 2 and controller gain matrices K j, the optimal value
of cost function can be determined by solving the following
optimisation problem

Ψ
^ i jτL

=

π^ 11
i jτL π^ 12

i jτL π^ 13
i jτL π^ 14

i jτL π^ 15
i jτL π^ 16

i jτL π^ 17
i j

π^ 18
i j

τ
∗
M

^
1
T

3G
^
J1 0 0

∗ π^ 22
i jτL π^ 23

i j
π^ 24

i j
π^ 25

i jτL π^ 26
i jτL 0 0 τ

∗
M

^
2
T

Lj
T
J2

T
Lj

T
J3

T
G

^
J3

∗ ∗ π^ 33
i j

π^ 34
i j 0 0 π^ 37

i jτL π^ 38
i jτL τ

∗
M

^
3
T

0 0 0

∗ ∗ ∗ π^ 44
i j 0 0 π^ 47

i jτL π^ 48
i jτL τ

∗
M

^
4
T

0 0 0

∗ ∗ ∗ ∗ π^ 55
i jτL π^ 56

i jτL π^ 57
i jτL π^ 58

i jτL 0 0 0 0

∗ ∗ ∗ ∗ ∗ π^ 66
i jτL 0 0 0 Lj

T
J2

T 2Lj
T
J3

T 0

∗ ∗ ∗ ∗ ∗ ∗ π^ 77
i j

π^ 78 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ π^ 88 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S
^

0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −J3In

,

Ψ
^ i jτU

=

π^ 11
i jτU π^ 12

i jτU π^ 13
i jτU π^ 14

i jτU π^ 15
i jτU π^ 16

i jτU π^ 17
i j

π^ 18
i j

τ
∗
N

^
1
T

3G
^
J1 0 0

∗ π^ 22
i jτU π^ 23

i j
π^ 24

i j
π^ 25

i jτU π^ 26
i jτU 0 0 τ

∗
N

^
2
T

Lj
T
J2

T
Lj

T
J3

T
G

^
J3

∗ ∗ π^ 33
i j

π^ 34
i j 0 0 π^ 37

i jτU π^ 38
i jτU τ

∗
N

^
3
T

0 0 0

∗ ∗ ∗ π^ 44
i j 0 0 π^ 47

i jτU π^ 48
i jτU τ

∗
N

^
4
T

0 0 0

∗ ∗ ∗ ∗ π^ 55
i jτU π^ 56

i jτU π^ 57
i jτU π^ 58

i jτU 0 0 0 0

∗ ∗ ∗ ∗ ∗ π^ 66
i jτU 0 0 0 Lj

T
J2

T 2Lj
T
J3

T 0

∗ ∗ ∗ ∗ ∗ ∗ π^ 77
i j

π^ 78 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ π^ 88 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S
^

0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −J3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −J3In

.
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Theorem 3: For any given positive scalars τL, τU and any

constants αc, βc, γc, λc (c = 1, 2) and ϵ, if the following
optimisation problem

min Jmin = κ

subject to : (29)‐‐(30), (34)

P
^

> 0, R
^

1 > 0, R
^

2 > 0, S, X
^

5 > 0, Q
^

> 0,

G
^
, M

^

r, N
^

r, (r = 1, …, 4)

(35)

has a solution
P
^

> 0, R
^

1 > 0, R
^

2 > 0, S, X
^

5 > 0, Q
^

> 0, G
^
, X

^
1, X

^
2, X

^
3, X

^
4, M

^

r

and N
^

r, (r = 1…4), then K j = LjG
^ −1

 is the desired connection
weights that ensure the optimal value of the cost function (11) for
the system (10).

 
Remark 4: The main contribution of the present work is

summarised as follows:

(i) An ET-TLFCFFNN based controller is designed to improve the
stability performance of proposed (9).
(ii) The TDLF is introduced involving the information of lower and
upper bound in the transmissions and also introduced some tuning
parameters in the proposed sufficient conditions.
(iii) Optimise the cost function J

∗ in Theorem 3 that depends on
P, G

^  and initial conditions x(t0) and we can easily find the optimal
value of κ by using Algorithm 1 (see Fig. 3).
(iv) Finally, the theoretical conditions will be validated with the
help of WPGS models, that is, variable-speed wind turbine drive
system, PMSM model. Besides that a inverted pendulum model
will be considered (as a similar example of [11, 12] to show the
less conservatism of the derived conditions.

In the following sections, we have been picturised the analysis
of dynamical models, a variable-speed wind turbine drive system
and PMSM model in terms of derived sufficient conditions
provided in Theorems 1–3 on an individual manner. Finally, in
order to prove the conservatism, an inverted pendulum model is
conducted (as a similar example in [11, 12]) validated the sufficient
conditions.

4 Applications
4.1 Modelling of variable-speed wind turbine drive system

In this section, we introduce the variable-speed wind turbine drive
system and design a suitable control design with a three bladed
horizontal-axis 60 KW wind turbine. The following state-space
model of variable-speed wind turbine drive system was adapted
from the works [29, 30].

QA − Q = JTω̇t,
Q − QE = Jgω̇g,

Q = Qs + Qd = Ks∫
0

t

(ωt − ωg)dt + Bs(ωt − ωg),
(36)

where the description of parameters QA, QE, ωt, ωg, Ks, Bs, Q, JT

and Jg are discussed in the Nomenclature section
The power generation of the wind turbine is given by

PW(V , λ) = 1
2πρℛ2

Cp(λ)V3, (37)

where Cp, the power coefficient of the turbine. The tip speed ratio
λ, is given by

λ =
ℛωt

V
. (38)

In aerodynamics, variable torque coefficient function Cq(λ) has a
significant role in the conversion of kinetic energy from the
moving air into the mechanical torque QA. The 1 − 1
corresponding power coefficient function is defined as
CP(λ) = λCq(λ) and it is maximum power coefficient function is
CP(λ). Moreover, the aerodynamic torque is given by

QA = CCq(λ), (39)

where C = 1
2 ρAℛ, where A is the rotor disc area. Moreover, the

generator torque is denoted by

QE = β(ωg − ωs), (40)

with ωs, the synchronous speed. Now, we can rewrite the above
model (36) into a state-space model with an assumption β = 0, as
follows:

ẋ1 =
(υ − Bs)

JT
x1 +

Bs

JT
x2 + 1

JT
x3,

ẋ2 =
Bs

Jg
x1 −

Bs

Jg
x2 + 1

Jg
x3 − 1

Jg
u,

ẋ3 = Ksx1 − Ksx2,

(41)

where x = [x1 x2 x3]
T = [ωt ωg Qs]

T, υ = 0.5ρAℛ3(Cp(λopt)/λopt
2 )x1

and u = QR. Here, the non-linear term QA is described as the
convex combination of the valid operating points. In order to
express it as linear model for (41), we assume that x1 ∈ [M1 M2]
with the following functions similar to result in [30]:

ω1(x(t)) =
−x1 + M2

M2 − M1
, ω2(x(t)) =

x1 − M1

M2 − M1
. (42)

The state-space model (41) can be described in terms of (42) as

ẋ(t) = ∑
i = 1

2

ωi(x(t))(Aix(t) + Biu(t)), (43)

where

A1 =

υ1 − Bs

JT

Bs

JT

1
JT

Bs

Jg
−

Bs

Jg

1
Jg

Ks −Ks 0

, A2 =

υ2 − Bs

JT

Bs

JT

1
JT

Bs

Jg
−

Bs

Jg

1
Jg

Ks −Ks 0

,

B1 = B2 = 0 − 1
Jg

0 T .

From (5), the controller is given by

Fig. 3  Algorithm 1: Finding the optimal value of the cost function
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u(t) = ∑
j = 1

2

m^
j(x(tkh))K jx(tkh),

where

t f ∑
i = 1

3

mj, ixi(tkh) − bj = 1
1 + exp[ − ∑i = 1

3
mj, ixi(tkh) − bj]

.

4.1.1 Simulation results: This section contains the numerical
simulation results in order to validate the effectiveness of the
derived sufficient conditions (in Section 2). The parameter values
of the proposed model (36) were extracted from Table 1. 

The main task to find the largest value of τU based on the
derived results (in Theorem 2) may ensure that the closed-loop
system is asymptotically stable. Besides that, we choose
α1 = β1 = γ1 = λ1 = c̄1 with c̄1 = 1.5 and α2 = β2 = γ2 = λ2 = c̄2,
c̄2 = 1.1, J1 = δ1I > 0, J2 = [0 0 0]T and J3 = δ1 > 0 where
δ1 ⟶ ∞, the corresponding calculated maximum value of time-
delay τ(t) is given in Table 2. Here, we would like to mention that,
from Table 2, the value of δ1 is inversely proportional to value of
τU. For different matrix values of J1 with J2 = [0 0 0]T, J3 = 0.01,
c̄1 = 1.5 c̄1 = 1.1 and τL = 0.1, the large upper bounds of the time-

delay τ(t) and listed in the Table 3. Moreover, we have calculated
the large upper bound values τU under different values of lower
bound τL and J1 = I, J2 = [0 0 0]T, and J3 = 1.0 (refer Table 4). 

Now, let us consider the cost function value κ = 150, the upper
bound value and lower bound value is assumed to be τL = 0.1 and
τU = 0.2, respectively with J1 = δ1I > 0, J3 = δ1 > 0 and δ1 = 0.1,
x(t0) = [ − 2 5 − 3]T and tuning parameters are fixed c̄1 = 0.45 and
c̄2 = 0.65, the control gain matrices K j are calculated from
Theorem 3.

K1 = 1.1244 −2.9188 0.7384 ,
K2 = −0.8843 −0.5207 0.1666

Finally, we have chosen the weight parameters as
m^

1, 1 = − 0.251, m^
1, 2 = − 0.655, m^

1, 3 = − 0.356, m^
2, 1 = − 0.554,

m^
2, 2 = − 0.756, m^

2, 3 = − 0.658, b1 = − 0.654, b2 = − 0.425 and
using the above gain matrices K1 and K2, the state trajectories of the
model (43) shows the asymptotically stability behaviour under the
proposed ET-neural-network-based controllers (9) in the Fig. 4. 
Fig. 5 depicts the response of the release instants and time
intervals. 

4.2 Modelling of non-linear permanent magnet synchronous
motors

This section contains the investigation of the stabilisation for
PMSM model through derived sufficient conditions. A lot of
research works have been done on the analysis of dynamical
behaviours becuase their non-linearities ( [32–37]) and its
compatibility with various industrial applications include wind
energy conversion systems. To validate the derived sufficient
conditons, we approximate the non-linear PMSM model (which is
adapted from [33, 34]) with help of (3) and the obtained model is
as follows

Ld

did
dt

= − Rsid + npωLqiq + ud

Ld

diq
dt

= − Rsiq − npωLdid − npωΦ + uq

J
dω

dt
= np (Ld − Lq)idiq + Φiq − βω − TL .

(44)

We can get the following equations by using an affine
transformation and time-scalling transformation as in [33, 35],

ẋ1(t) = −
Lq

Ld
x1(t) + x2(t)x3(t) + ūd

ẋ2(t) = − x2(t) − x1(t)x3(t) + γ̄x3(t) + ūq

ẋ3(t) = σ̄(x2(t) − x3(t)) + ϵx1(t)x2(t) − T̄L

(45)

with

γ̄ =
npΦ2

Rsβ
, σ̄ =

Lqβ

RsJ
, ūq =

npLqΦuq

Rs
2
β

,

ūd =
npLqΦud

Rs
2
β

, ϵ =
Lqβ

2(Ld − Lq)
LdJnpΦ2 , T̄L =

Lq
2
TL

Rs
2
J

,

np = 1, [x1(t) x2(t) x3(t)]
T = [id iq ω]T .

The descriptions of model is given in Table 5. If we assume the
smooth-air-gap condition, i.e. Lq = Ld, the following equation will
be obtained (see for more details, [35]) and the external inputs are
assumed to be zero as ūd = ūq = T̄L = 0 in (45),

ẋ1(t) = − x1(t) + x2(t)x3(t)
ẋ2(t) = − x2(t) − x1(t)x3(t) + γ̄x3(t)
ẋ3(t) = σ̄(x2(t) − x3(t))

(46)

Table 1 The parameter values of the model
S.No. Parameter Value
1. JT 400,000 kg m2

2. JG 65 kg m2

3. Ks 100 N ms/rad
4. Bs 1800 N ms/rad
5. R 35 m
6. ρ 1.225 kg/m3

 

Table 2 The large upper bound of τ(t) with
J1 = δ1I, J2 = [0 0 0]T, J3 = δ1 and τL = 0.1
δ1 τU

10 0.2663
1 0.2736
0.1 0.2750
0.0001 0.2760

 

Table 3 The large upper bound of τ(t) with
J2 = [0 0 0], J3 = 0.01
τL J1 τU

0.1 10 0 0

0 1 0

0 0 1

0.2747

0.1 100 0 0

0 1 0

0 0 1

0.2720

0.1 1000 0 0

0 1 0

0 0 1

0.2680

 

Table 4 The large upper bound of τ(t) with different values
of lower bound τL

τL τU

0 0.1821
0.1 0.2739
1 1.1516
10 10.0741
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Here, γ̄ and σ̄ are positive constants. Kindly note the considered
model (46) exhibits the chaotic solutions in nature. Hence, in order

to stabilise the chaotic model, we have designed the controls for
linear sub-models with help of (3) as,

ẋ(t) = ∑
i = 1

2

wi(x3(t)) Aix(t) + Biu(t) (47)

where

A1 =

−1 d̄1 0

−d̄1 −1 γ̄

0 σ̄ −σ̄

, A2 =

−1 −d̄1 0

d̄1 −1 γ̄

0 σ̄ −σ̄

,

B1 = B2 =
1
1
0

.

and

w1(x3(t)) = 1
2 1 +

x3(t)
d̄1

, w2(x3(t)) = 1 − w1(x3(t)) .

Moreover, from (5), the controller is given by

u(t) = ∑
j = 1

2

m^
j(x(tkh))K jx(tkh),

where

t f ∑
i = 1

3

m^
j, ixi(tkh) − bj = 1

1 + exp − ∑i = 1
3

m^
j, ixi(tkh) − bj

.

4.2.1 Simulation: The validation the PMSM model (47) under the
proposed conditions along with the parameters values
σ̄ = 10, γ̄ = 1.1, d̄1 = 10 are discussed in this section. Now, we
start with the determination of largest value of τU that can be
derived with Theorem 2 which guarantees the global asymptotic
stability of the closed-loop system. Here, we assume
J1 = δ1I > 0, J2 = [0 0 0]T, c̄1 = 0.80, c̄2 = 0.75 and J3 = δ1 > 0
where δ1 ⟶ ∞, and the corresponding large values of time-delay
τ(t) are listed in Table 6. For different matrix values of J1,
J2 = [0 0 0]T, J3 = 0.01 and τL = 0.1, the large upper bound of the
time-delay τ(t) is listed in the Table 7. Moreover, we have also
calculated the large upper bound value τU for different values of
lower bound τL, J1 = I, J2 = [0 0 0]T, and J3 = 1.0 and listed in
Table 8. 

Next, let us consider cost function value κ = 50 and the upper
bound value and lower bound value are assumed to be τL = 0.0 and
τU = 0.01, respectively. And also, J1 = δ1I > 0, J3 = δ1 > 0,
δ1 = 0.1, x(t0) = [20 0.1 5]T and tuning parameters are fixed as
c̄1 = 0.80, c̄2 = 0.75 and finally the control gain matrices K j are
calculated via Theorem 3.

K1 = 0.0035 −0.0037 0.0294 ,
K2 = −0.0118 −0.0180 −0.0233 .

We have chosen the weight parameter values as m^
1, 1 = − 2.56,

m^
1, 2 = − 1.55, m^

1, 3 = − 2.634, m^
2, 1 = − 0.124,, m^

2, 2 = − 0.250,
m^

2, 3 = − 0.254,, b1 = − 0.8541,, b2 = − 0.92 and with above gain
matrices K1, K2, the state trajectories of the model (47) shows the
asymptotic stability behaviour under the proposed ET-neural-
network-based controllers (9) (see Fig. 6). In the Fig. 7, the
response of the release instants and time intervals are depicted. 

5 A comparison example
In the previous two sections, we have validated the derived
sufficient conditions with variable-speed wind turbine drive system

Fig. 4  State response of the model (43) clearly shows that the state
trajectories are congvergence to the origin for initial condition
x(t0) = [ − 2 5 − 3]T

 

Fig. 5  The response of release instants and release intervals based on
proposed contoller is depicted

 
Table 5 Description of model parameters (44)
Notations Description
ω rotor angular velocity
id and iq d–q axis currents
ud and uq d–q axis voltages
Rs Stator resistance
Ld and Lq d–q axis stator inductors
np pole pair
J rotor moment of inertia
β viscous friction coefficient
TL load torque
Φ magnet flux linkage

 

Table 6 The large upper bound of τ(t) with
J1 = δ1I, J2 = [0 0 0]T, J3 = δ1 and τL = 0.1
δ1 τU

10 0.3157
1 0.3157
0.1 0.3157
0.0001 0.3157
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and PMSM models. In order to prove the conservatism of the
derived conditions, we have considered an inverted pendulum
model as in [11, 12].

θ̈(t) =
gsin(θ(t)) − ampLθ̇

2
(t) sin(2θ(t))

2 − acos(θ(t))u(t)
4L

3 − ampLcos2(θ(t))
(48)

here θ(t) is angular displacement of the pendulum and g = 9.8m/s2

denotes the acceleration of gravity, mp ∈ [2, 5] kg is the mass of the
pendulum, Mc ∈ [Mcmin, Mcmax] = [30, 35] kg is the mass of the cart.
2L = 1 m is the length of the pendulum. u(t) denotes force input.
mp, and Mc are regarded the parameter uncertainties.
a = 1/(mp + Mc). The inverted pendulum can be expressed as
dynamical equations by letting [x1

T(t) x2
T(t)]T = [θT(t) θ̇

T(t)]T as
given below

ẋ(t) = ∑
i = 1

4

ωi(x(t))(Aix(t) + Biu(t)), (49)

where x1(t) ∈ [x1min, x1max] = [ − π /3, π /3] and
x2(t) ∈ [x2min, x2max] = [ − 5, 5]. The remaining parameters are

chosen as in [11, 12],

A1 = A2 =
0 1

f 1min 0
, A3 = A4 =

0 1
f 1max 0

,

B1 = B3 =
0

f 2min

, B2 = B4 =
0

f 2max

.

and

ωi(x(t)) =
μi( f 1(x(t)) × vi( f 2(x(t))

∑ j = 1
4

μj( f 1(x(t)) × vj( f 2(x(t)))

in which f 1min = 11.3533, f 1max = 16.4640, f 2min = − 0.0192,
f 1max = − 0.0492 and

μj( f 1(x(t))) =
− f 1(x(t) + f 1max

f 1max − f 1min
, j = 1, 2

μj( f 1(x(t))) = 1 − μ1( f 1(x(t))), j = 3, 4

vj( f 2(x(t))) =
− f 2(x(t) + f 2max

f 2max − f 2min
, j = 1, 3

vj( f 2(x(t))) = 1 − v1( f 2(x(t))), j = 2, 4

f 1(x(t)) =
g − ampLx2

2(t)cos(x(t))
4L/3 − ampLcos2(x1(t))

sin(x1(t))
x1(t)

f 2(x(t)) = acos(x(t))
4L/3 − ampLcos2(x1(t))

.

Moreover, we have proposed an ET-neural network-based
controller in the form of (5) with four hidden nodes is used to
stabilise the model (49), which is given by

u(t) = ∑
j = 1

4

m^
j(x(tkh))K jx(tkh), (50)

where

tf ∑
i = 1

2

m^
j, ixi(tkh) − bj = 1

1 + exp − ∑i = 1
3

m^
j, ixi(tkh) − bj

.

with the corresponding parameter values are

m^
1, 1 = − 0.0591, m^

1, 2 = 0.5511, m^
2, 1 = − 0.9863, m^

2, 2 = 0.5118,
m^

3, 1 = 0.3058, m^
3, 2 = 0.1582, m^

4, 1 = − 0.6254, m^
4, 2 = − 0.7569,

b1 = − 0.2765, b2 = − 0.3234, b3 = − 0.7899, b4 = 0.4423,

and mp = 2 kg, Mc = 30 kg. The authors in [11, 12] have been
validated the model (49) with same parameter values under the
SDNNC. However, in this paper, we have validate the sufficient

Table 7 The large upper bound of τ(t) with
J2 = [0 0 0], J3 = 0.01
τL J1 τU

0.1 10 0 0

0 1 0

0 0 1

0.3157

0.1 100 0 0

0 1 0

0 0 1

0.3154

0.1 1000 0 0

0 1 0

0 0 1

0.3145

 

Table 8 The large upper bound of τ(t) with different value of
lower bound τL

τL τU

0 0.2242
0.1 0.3157
1 1.1743
10 10.0737
 

Fig. 6  State response of the model (47) and it clearly shows that the state
trajectories are converged to the origin for initial conditions [20 0.1 − 5]T

 

Fig. 7  Shows the response of release instants and release intervals based
on proposed controller
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condition with the proposed model (49) under the ET-Neural
Network-based controller (50). For the comparison results, let use
chose the same parameter values i.e. J1 = δ1I > 0, J2 = [0 0]T, and
J3 = δ1 = 10−6 as in [11, 12]. The solving the LMIs in Theorem 2
with triggered parameters ϵ = 1 and tuning parameters are chosen
α1 = β1 = γ1 = λ1 = c̄1 with c̄1 = 0.25 and α2 = β2 = γ2 = λ2 = c̄2,
c̄2 = 0.35, the maximum upper bound τU is calculated, which are
listed in the Table 9. From the table, we can conclude that the
derived sufficient conditions can produce a large upper bound than
existing works.

Next, let us consider cost function value κ = 25.50 and the
upper bound value and lower bound value are assumed to be
τL = 0.0 and τU = 0.2, respectively. And also, J1 = δ1I > 0,
J3 = δ1 > 0, δ1 = 0.1, x(t0) = [π /6 0]T and tuning parameters are
fixed as c̄1 = 0.25, c̄2 = 0.35 and finally the control gain matrices
K j are calculated via Theorem 3.

K1 = −0.0105 0.0237 , K2 = −0.0105 0.0237 .

Here, it should be mentioned that the state response of the
simulation results is omitted due to the reduced number of pages.
Form this example, it is clearly observed that the derived sufficient
conditions give significantly improved results than existing works
[11, 12, 28].

6 Conclusion
The paper dealt with the stabilisation problem for an ET-Neural
Network-based control system and its direct application to
variable-speed wind turbine drive system, PMSM and inverted
pendulum model. The novel controller is designed under the ET
scheme for TLFCFFNN. Based on suitable TDLF and performance
cost function, some novel stability and stabilisation criteria have
formulated in terms of solvable LMIs. The control gain matrices K j

have been calculated through the derived sufficient conditions
which result in the global asymptotic stable performance of the
closed-loop system. To validate the conditions, these non-linear
models are taken into the analysis and their corresponding
feasibility is guaranteed with the proposed LMIs. The numerical
results support the effectiveness and show the merit of the derived
conditions. For further improvement of this study, we will focus on
how to validate the presented models with experimental data and
the corresponding results will be summarised in the future.
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9 Appendix
 

9.1 Appendix 1

For τ(t) = τL, τ(t) = τU as in the following terms, we can get the
terms of Ψi jτL and Ψi jτU.

(see equation below)

9.2 Appendix 2

For τ(t) = τL, τ(t) = τU as in the following terms, we can get the

terms of Ψ
^ i jτL and Ψ

^ i jτU.
(see equation below)

π11
i jτ(t) = − (X1 + X1

T) +
τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 (GAi + Ai

T
G

T) + Q + R1 + R2,

π12
i jτ(t) =

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2

× Ai
T
G

T +
τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 GBiK j + M1 − N1,

π13
i jτ(t) = (τU − τ(t))(X1 + X2

T) − M1, π14
i jτ(t) = (τU − τ(t))X3 + N1,

π15
i jτ(t) = P −

τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 G +

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 Ai

T
G

T + (τU − τ(t))(X1 + X1
T),

π16
i jτ(t) =

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 Ai

T
G

T −
τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 GBiK j, π17

i j = X1 + X2
T, π18

i j = − X3,

π22
i jτ(t) = M2 + M2

T − N2 − N2
T + 2

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 GBiK j + ϵΦ,

π23
i j = − M2 + M3

T − N3
T, π24

i j = N2 − N4
T + M4

T,

π25
i jτ(t) = −

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 G +

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 K j

T
Bi

T
G

T,

π26
i jτ(t) = −

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 GBiK j +

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 K j

T
Bi

T
G

T − ϵΦ,

π33
i j = − R1 − M3 − M3

T, π34
i j = − M4

T + N3, π37
i jτ(t) = − (τU − τ(t))(X2 + X2

T),

π38
i jτ(t) = − (τU − τ(t))X4, π44

i j = − R2 + N4 + N4
T,

π47
i jτ(t) = (τU − τ(t))X4, π48

i jτ(t) = (τU − τ(t))X5, π55
i jτ(t) = −

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 (G + G

T) + τ
∗
S,

π56
i jτ(t) = −

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 G

T −
τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 GBiK j,

π57
i jτ(t) = − (τU − τ(t))(X1

T + X2), π58
i jτ(t) = (τU − τ(t))X3,

π66
i jτ(t) = −

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 (G + G

T) + (ϵ − 1)Φ, π77
i j = − (X2 + X2

T),

π78
i j = − X4, π88

i j = − X5 and τ
∗ = τU − τL .
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π^ 11
i jτ(t) = − (X

^
1 + X

^
1
T
) +

τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 (AiG

^ T
+ G

^
Ai

T) + Q
^

+ R
^

1 + R
^

2,

π^ 12
i jτ(t) =

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 G

^
Ai

T +
τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 BiLj + M

^
1 − N

^
1,

π^ 13
i jτ(t) = (τU − τ(t))(X

^
1 + X

^
2
T
) − M

^
1, π^ 14

i jτ(t) = (τU − τ(t))X
^

3 + N
^

1,

π^ 15
i jτ(t) = P

^
−

τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 G

^
+

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 G

^
Ai

T + (τU − τ(t))(X
^

1 + X
^

1
T
),

π^ 16
i jτ(t) =

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 G

^
Ai

T −
τU − τ(t)
τU − τL

α1 +
τ(t) − τL

τU − τL
α2 BiLj,

π^ 17
i j = X

^
1 + X

^
2
T
, π^ 18

i j = − X
^

3,

π^ 22
i jτ(t) = M

^
2 + M

^
2
T

− N
^

2 − N
^

2
T

+ 2
τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 BiLj + ϵΦ,

π^ 23
i j = − M

^
2 + M

^
3
T

− N
^

3
T
, π^ 24

i j = N
^

2 − N
^

4
T

+ M
^

4
T
,

π^ 25
i jτ(t) = −

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 G

^
+

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 Lj

T
Bi

T,

π^ 26
i jτ(t) = −

τU − τ(t)
τU − τL

β1 +
τ(t) − τL

τU − τL
β2 BiLj +

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 Lj

T
Bi

T − ϵΦ
^

,

π^ 33
i j = − R

^
1 − M

^
3 − M

^
3
T
, π^ 34

i j = − M
^

4
T

+ N
^

3, π^ 37
i jτ(t) = − (τU − τ(t))(X

^
2 + X

^
2
T
),

π^ 38
i jτ(t) = − (τU − τ(t))X

^
4, π^ 44

i j = − R
^

2 + N
^

4 + N
^

4
T
,

π^ 47
i jτ(t) = (τU − τ(t))X

^
4, π^ 48

i jτ(t) = (τU − τ(t))X
^

5, π^ 55
i jτ(t) = −

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 (G

^
+ G

^ T
) + τ

∗
S
^
,

π^ 56
i jτ(t) = −

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 G

^ T
−

τU − τ(t)
τU − τL

γ1 +
τ(t) − τL

τU − τL
γ2 BiLj,

π^ 57
i jτ(t) = − (τU − τ(t))(X

^
1
T

+ X
^

2), π^ 58
i jτ(t) = (τU − τ(t))X

^
3,

π^ 66
i jτ(t) = −

τU − τ(t)
τU − τL

λ1 +
τ(t) − τL

τU − τL
λ2 (G

^
+ G

^ T
) + (ϵ − 1)Φ

^
,

π^ 77
i j = − (X

^
2 + X

^
2
T
), π^ 78

i j = − X
^

4,

π^ 88
i j = − X

^
5 and τ

∗ = τU − τL .
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