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a b s t r a c t

In this paper, we consider a two-dimensional SIS model with vaccination. It is assumed that

vaccinated individuals become susceptible again when vaccine loses its protective proper-

ties with time. Here the rate at which vaccinated individual move to susceptible class

again, depends upon vaccine age and hence it is assumed to be a variable. This SIVS model

with treatment exhibits backward bifurcation under certain conditions on treatment

which complicate the criteria for the success of the treatment by making it possible to have

stable endemic states. We also show how the infectivity and the recovery function affect

the existence of backward bifurcation.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, the main aim of researchers is to analysis and predict the consequences of the strategies designed to con-

trol infections diseases, particularly TB and AIDS. Attention has been given to vaccination and treatment policies both in

terms of the different vaccine classes, vaccine efficacy (e.g. [1–4]) and also to application schedules and associated costs

(e.g. [5–9]). The study of vaccination, treatment and associated behavioral changes related to disease transmission has been

the subject of intense theoretical analysis.

The application of a vaccination and treatment programs has the likely effect of inducing behavioral changes in those

individuals subjected to it.

In particular, in the case of HIV, risk behavior can be combined with vaccination or treatment resulting in a possible harm-

ful effect in terms of disease prevalence.

Blower and McLean [10] have argued that a mass vaccination campaign can increase the severity of disease, if the vac-

cination is applied to only 50% of the population and vaccine efficacy is 60%. Velasco–Hernandez and Hsieh [11,12] con-

firmed this result in a theoretical mathematical model of disease transmission. They showed that a too-large case

treatment rate combined with lengthening of the infectious period could result in the increase of the treatment reproduction

number, i.e, treatment would contribute to the spread of disease rather than its elimination. Of course, these are theoretical

investigation on the plausible effects of vaccination and treatment programs. However, in our model, we investigate the im-

pact of a perfect vaccine, which means that vaccine confers a full protection against disease.
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Many population dynamics models have been developed considering age-structure. A simple model was first proposed by

Lotka and Von Foerster [13,14], where the birth and the death processes were independent of the total population size and so

the limitation of the resources were not taken into account. To overcome this deficiency, Gurtin and MacCamy [15], in their

pioneering work considered a nonlinear age-dependent model, where birth and death rates were function of the total

population.

The age-structure is a very important consideration in the models which describe the evolution of infection diseases. In

1974, a quite general age-dependent epidemic model was analyzed (see the pioneering work of Hoppensteadt [16,17]). Since

then, the interest in studying the effects of the age factor on the epidemic models arises. Many works have been carried out

on these models leading to quite complete epidemic models, for example, series of deterministic compartment models such

as SI, SIS, SIR, SIRS, SEIR etc. have been proposed and analyzed [18–22], and also the different modes of disease transmission,

vertical and horizontal are considered. However, the introduction of the age makes their analysis very complex, because of

this, it is supposed habitually that the age only affects the vaccinated population [23].

We know that, in simple epidemic models, typically when the reproduction number is below one, only the disease-free

equilibrium exists. This equilibrium is locally and globally stable, which implies that the disease will disappear from the pop-

ulation. Recommendations for disease control can be made based on that observation. In particular, measures which act to

reduce the reproduction number below one will lead to the disease disappearance. Recently, it has been observed in theo-

retical considerations that nontrivial equilibria can be present even when the reproduction number of the disease is smaller

than one. One way for this situation to occur is through a phenomenon called backward bifurcation. In the case of backward

bifurcation, the endemic equilibrium which bifurcates from the disease-free equilibrium at the critical value one of the

reproduction number, exists for values of the reproduction number smaller than one. In fact, for values of the reproduction

number between some minimal value, called the minimal transition value, and one there are two or more endemic equilib-

ria. If backward bifurcation occurs, it is not sufficient to reduce the reproduction number below one to eradicate the disease;

instead, it is necessary to reduce it below a much lower value, the minimal transition value. Although this phenomenon is

not as readily observed in data as oscillations, it plays a significant role in the dynamics of the disease and in our ability to

combat it effectively. In recent years, the presence of backward bifurcation in epidemic models has led to significant interest.

In many cases backward bifurcation seems to be caused by the presence of several classes with different susceptibilities to

the disease (see, for example, [23,24] and the references therein).

In [25], wang studied an SIR model with treatment of the form TðIÞ given by:

TðIÞ ¼ rI if 0 6 I 6 I0;

k if I > I0;

�

where k ¼ rI0. We also consider the same form of treatment, mainly to analysis the effect of vaccination on the reproduction

number.

2. Model formulation

We introduce an SIS model with vaccination. We consider the total population size as NðtÞ whose demography is regu-

lated by a constant birth/recruitment rate A and a natural mortality rate l. The susceptible population is subjected to a vac-

cination campaign with the rate of vaccination as w. After vaccination, individuals move to the vaccinated class where they

are completely protected from the infection. However, the vaccine loses its protective properties with time and eventually

vaccinated individuals become susceptible again. We call the time individuals spend in the vaccinated class as vaccine-age

and denote it by h. The newly vaccinated individuals enter the vaccinated class Vðh; tÞ with vaccine-age equal to zero. The

rate at which the vaccine wanes is denoted by aðhÞ. The rate of transmission of the disease is b and the recovery rate is c.
Under these assumption, the model takes the following form:

dS

dt
¼ A� bSI � lS� wSþ cI þ TðIÞ þ

Z 1

0

aðhÞVðh; tÞdh;

dI

dt
¼ bSI � lI � cI � TðIÞ;

oV

oh
þ oV

ot
¼ �lVðh; tÞ � aðhÞVðh; tÞ;

Vð0; tÞ ¼ wSðtÞ;

ð1:1Þ

where

NðtÞ ¼ SðtÞ þ IðtÞ þ
Z 1

0

Vðh; tÞdh

and initial conditions are

Sð0Þ ¼ S0; Ið0Þ ¼ I0;Vðh;0Þ ¼ V0ðhÞ:
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We note that the equation for the total population is dN
dt
¼ A� lN. Thus, N ! A

l as t ! 1 i.e., the size of the population reaches

its limiting value N ¼ A
l.

Thus, we can assume that the initial value is N0 ¼ S0 þ I0 þ
R1
0

V0ðhÞdh ¼ A
l in order to have a population of constant size

N ¼ A
l. Furthermore, integrating the third equation in (1.1) along the characteristic line t � h ¼ constant, we get the following

formula:

Vðh; tÞ ¼ V0ðh� tÞ K0ðhÞ
K0ðh�tÞ for hP t;

wSðt � hÞK0ðhÞ for h < t;

(
ð1:2Þ

where

K0ðhÞ ¼ e
�lh�

R h

0
aðsÞds

:

Substituting (1.2) into the first equation in (1.1) we have

dS

dt
¼ A� bSI � lS� wSþ cI þ TðIÞ þ

Z t

0

K1ðhÞSðt � hÞdhþ F1ðtÞ; ð1:3Þ

where

K1ðhÞ ¼ waðhÞK0ðhÞ;

F1ðtÞ ¼
Z 1

t

aðhÞK0ðhÞV0ðh� tÞ
K0ðh� tÞ dh

ð1:4Þ

and F1ðtÞ satisfies

lim
t!1

F1ðtÞ ¼ 0:

Thus it is sufficient to consider the following system of equations:

dS

dt
¼ A� bSI � lS� wSþ cI þ TðIÞ þ

Z t

0

K1ðhÞSðt � hÞdhþ F1ðtÞ;

dI

dt
¼ bSI � lI � cI � TðIÞ:

ð1:5Þ

Here we have ignored the last equation of (1.1) as other equations in (1.1) do not contain Vðh; tÞ and once we solve the sys-

tem of Eq. (1.5), we can use (1.2) to obtain Vðh; tÞ. When TðIÞ ¼ rI, (1.5) becomes

dS

dt
¼ A� bSI � lS� wSþ cI þ rI þ

Z t

0

K1ðhÞSðt � hÞdhþ F1ðtÞ;

dI

dt
¼ bSI � lI � cI � rI:

ð1:6Þ

When TðIÞ ¼ k, (1.5) becomes

dS

dt
¼ A� bSI � lS� wSþ cI þ kþ

Z t

0

K1ðhÞSðt � hÞdhþ F1ðtÞ;

dI

dt
¼ bSI � lI � cI � k:

ð1:7Þ

This paper is organized as follows: in the next section, we present a qualitative analysis of the system (1.5). In Section 4, we

study the global analysis of disease-free equilibrium and the local asymptotic stability of the endemic equilibria. In Section 5,

using numerical simulation we demonstrate all theoretical results established in earlier sections. Finally we conclude our

results in Section 6.

3. Equilibria

According to [26], any equilibrium ðS; IÞ of the system (1.5), if it exists, must be a constant solution of the following lim-

iting system associated with (1.5):

dS

dt
¼ A� bSI � ðlþ wÞSþ cI þ TðIÞ þ

Z 1

0

K1ðhÞSðt � hÞdh;

dI

dt
¼ bSI � ðlþ cÞI � TðIÞ:

ð2:1Þ

Thus we have to look for the solutions of the following system:
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A ¼ bSI þ ðlþ wÞS� cI � TðIÞ �R1S;

bSI ¼ ðlþ cÞI þ TðIÞ;

where

R1 ¼
Z 1

0

K1ðhÞdh ¼ w� wlR0 and R0 ¼
Z 1

0

K0ðhÞdh:

System (2.1) always has the disease-free equilibrium E0 ¼ ðS0;0Þ, where

S0 ¼ A

lð1þ wR0Þ
:

When 0 < I 6 I0; system (2.1) becomes

A ¼ bSI þ ðlþ wÞS� cI � rI �R1S;

bSI ¼ ðlþ cþ rÞI:

�
ð2:2Þ

When I > I0; system (2.1) becomes

A ¼ bSI þ ðlþ wÞS� cI � k�R1S:

bSI ¼ ðlþ cÞI þ k:

�
ð2:3Þ

Let

R0ðwÞ ¼
Ab

lðlþ cþ rÞð1þ wR0Þ
:

Then R0ðwÞ is a basic reproduction number of (1.5). If R0ðwÞ > 1; (2.2) admits a unique positive solution E� ¼ ðS�; I�Þ, where

S� ¼ lþ cþ r

b
;

I� ¼ Ab� ðlþ wÞðlþ cþ rÞ þR1ðlþ cþ rÞ
lb

¼ ðR0ðwÞ � 1Þðlþ cþ rÞð1þ wR0Þ
b

:

Clearly, E� is an endemic equilibrium of (1.6) if and only if

1 < R0ðwÞ 6 1þ bI0
ðlþ cþ rÞð1þ wR0Þ

: ð2:4Þ

In order to obtain positive solutions of system (2.3), we solve first equation of (2.3) for S to obtain

S ¼ Aþ cI þ k

lð1þ wR0Þ þ bI
:

Substituting it into the second equation, we have

lbI2 þ BI þ lkð1þ wR0Þ ¼ 0; ð2:5Þ

where

B ¼ lðlþ cÞð1þ wR0Þ � Ab:

If BP 0, it is clear that (2.5) does not have a positive solution. Let us consider the case where B < 0. If

D ¼ B2 � 4l2bkð1þ wR0Þ. It is easy to obtain

D ¼ ½lð1þ wR0Þðlþ c� R0ðwÞðlþ cþ rÞÞ�2 � 4l2bkð1þ wR0Þ: ð2:6Þ

It follows that DP 0 is equivalent to

R0ðwÞ 6 �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bk=ð1þ wR0Þ

p

lþ cþ r
þ lþ c
lþ cþ r

; ð2:7Þ

or

R0ðwÞP
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bk=ð1þ wR0Þ

p

lþ cþ r
þ lþ c
lþ cþ r

� p0 ðsayÞ: ð2:8Þ

It is noted that B < 0 is equivalent to

R0ðwÞ >
lþ c

lþ cþ r
:
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It follows that if the inequality (2.8) holds then B < 0 as well as DP 0. Let us assume that (2.8) holds, then (2.5) has two

positive solutions I1 and I2, where

I1 ¼ �B�
ffiffiffiffi
D

p

2lb
; I2 ¼ �Bþ

ffiffiffiffi
D

p

2lb
: ð2:9Þ

Let

Si ¼
Aþ cIi þ k

lð1þ wR0Þ þ bIi

and Ei ¼ ðSi; IiÞ for i ¼ 1;2. Then Ei is an endemic equilibrium of (1.5) if Ii P I0. Let us consider the conditions under which

I1 > I0. By the definitions, we see that it is equivalent to

�B�
ffiffiffiffi
D

p
> 2lbI0: ð2:10Þ

This implies that

2lbI0 þ B < 0: ð2:11Þ

It follows from the definition of B that

R0ðwÞ >
lþ c

lþ cþ r
þ 2bI0
ðlþ cþ rÞð1þ wR0Þ

� p1 ðsayÞ: ð2:12Þ

Further, (2.10) implies that

ð2lbI0 þ BÞ2 > D: ð2:13Þ
By direct calculations, we see that (2.13) is equivalent to

R0ðwÞ 6 1þ bI0
ðlþ cþ rÞð1þ wR0Þ

� p2 ðsayÞ: ð2:14Þ

Hence, I1 > I0 holds if and only if (2.12) and (2.14) are valid. Moreover, if R0ðwÞ 6 p1 or R0ðwÞP p2, we have I1 6 I0. By similar

arguments as above, we see that I0 < I2 if (2.12) holds or

p2 < R0ðwÞ 6 p1: ð2:15Þ

Furthermore, I2 6 I0 if

R0ðwÞ 6 min p1;p2f g: ð2:16Þ

Summarizing the discussions above, we have the following conclusions.

Theorem 2.1. E� ¼ ðS�; I�Þ is an endemic equilibrium of (1.6) if and only if 1 < R0ðwÞ 6 p2. Furthermore, E� is the unique endemic

equilibrium of (1.6) if 1 < R0ðwÞ 6 p2 and one of the following conditions is satisfied: (i) R0ðwÞ < p0, (ii) p0 6 R0ðwÞ < p1.

Theorem 2.2. Endemic equilibria E1 and E2 do not exist if R0ðwÞ < p0. Further, if R0ðwÞP p0, we have the following:

(i) if p1 < p2, then both E1 and E2 exist when p1 < R0ðwÞ < p2.

(ii) if p1 < p2, then E1 does not exist but E2 exists if R0ðwÞP p2.

(iii) Let p1 P p2. Then E1 does not exist. Further, E2 exists when p2 < R0ðwÞ, and E2 does not exist when R0ðwÞ 6 p2.

From Theorem 2.2(i), we can easily get the following corollary.

Corollary 2.3. The system (1.7) has a backward bifurcation with endemic equilibria when R0ðwÞ < 1 if p1 < p2 and p0 < 1.

4. Stability analysis

Theorem 3.1. The disease free equilibrium point E0 is locally asymptotically stable if R0ðwÞ < 1 and is unstable if R0ðwÞ > 1.

Proof. It is easy to see that the linearizing system of (2.1) at the equilibrium ðS�; I�Þ takes the following form (here we take

TðIÞ ¼ rI)

ds

dt
¼ �bS�iðtÞ � bI�sðtÞ � ðlþ wÞsðtÞ þ ðcþ rÞiðtÞ þ

Z 1

0

K1ðhÞsðt � hÞdh;

di

dt
¼ bS�iðtÞ þ bI�sðtÞ � ðlþ cþ rÞiðtÞ:
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In order to get the characteristic equation of the disease free equilibrium E0ðS0;0Þ, we linearize the system about E0 and

look for the following kind of solution of the system:

sðtÞ ¼ ekts; iðtÞ ¼ ekti:

We get the following characteristic equation corresponding to the equilibrium point E0:

kþ ðlþ wÞ � bK 1ðkÞ bS0

0 kþ lþ cþ r � bS0

�����

����� ¼ 0; ð3:1Þ

where bK 1ðkÞ denotes the Laplace transform of K1ðhÞ. Now noting the expression of S0 and R0ðwÞ, the Eq. (3.1) can be written as

follows:

ðkþ lþ w� bK 1ðkÞÞðkþ ðlþ cþ rÞð1� R0ðwÞÞÞ ¼ 0:

If R0ðwÞ > 1, then the above characteristic equation has at least one positive root k ¼ �ðlþ cþ rÞð1� R0ðwÞÞ implying E0 is

unstable. If R0ðwÞ < 1, then, obviously, all the solution of the characteristic equation have negative real parts provided all the

roots of the equation

kþ lþ w� bK 1ðkÞ ¼ 0 ð3:2Þ

have negative real parts.

In fact, if we assume RekP 0, then we have following two inequalities:

jbK 1ðkÞj ¼ w

Z 1

0

aðhÞe�khe�lhe
�
R h

0
aðsÞds

dh

����
���� < w

Z 1

0

aðhÞe�
R h

0
aðsÞds

dh ¼ w

and

jkþ lþ wjP lþ w > w

implying k cannot be a root of Eq. (3.2). From which we conclude that all the roots of (3.2) have negative real parts. This

completes the proof. h

Theorem 3.2. The disease free equilibrium point E0 is a global attractor if R0ð0Þ < 1.

Proof. Note that

I0 ¼ bSI � ðlþ cþ rÞI 6 Ab

l
I � ðlþ cþ rÞI ¼ ðlþ cþ rÞ Ab=ðlþ cþ rÞ � 1

l

� �
I:

Also R0ð0Þ ¼ Ab
lðlþcþrÞ < 1 implies IðtÞ ! 0 as t ! 1.

Let S1 ¼ limt!1 inf SðtÞ; S1 ¼ limt!1 sup SðtÞ. As in [23, Theorem 2], we choose the sequence t1n ! 1, t2n ! 1 such that

Sðt1nÞ ! S1; Sðt2nÞ ! S1, and S0ðt1nÞ ! 0; S0ðt2nÞ ! 0. Then, from the first equation of (1.5), noticing that IðtÞ and F1ðtÞ go to 0 as

t ! 1, it follows that

0 6 A� ðlþ wÞS1 þ ðw� wlR0ÞS1;

0P A� ðlþ wÞS1 þ ðw� wlR0ÞS1:

So, we get S1 ¼ S1 ¼ A
lð1þwR0Þ

, and this completes the proof. h

Theorem 3.3. The endemic equilibrium point E� is locally asymptotically stable if the equation

kð1þ wK̂0ðkÞÞ þ bI� ¼ 0

has no roots with non-negative real parts. If aðhÞ ¼ a ðconstantÞ, then E� is always locally asymptotically stable.

Proof. The linearization of (1.6) at E� gives the following characteristic equation:

kþ lþ w� bK 1ðkÞ þ bI� bS� � c� r

�bI� kþ lþ cþ r � bS�

�����

����� ¼ 0: ð3:3Þ

Note that bS� ¼ lþ cþ r and

bK 1ðkÞ ¼ w� ðkþ lÞwbK 0ðkÞ;

where bK 0ðkÞ denotes the Laplace transform of K0ðhÞ. Eq. (3.3) is equivalent to
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ðkþ lÞ 1þ wbK 0ðkÞ 1

�bI� k

�����

����� ¼ 0:

Hence we have one root as k ¼ �l, and if the following equation:

kð1þ wK̂0ðkÞÞ þ bI� ¼ 0

has no roots with non-negative real parts, then E� is locally asymptotically stable. If aðhÞ ¼ a ðconstantÞ, then above equation

reduces to

k2 þ ðlþ aþ wþ bI�Þkþ ðaþ lÞbI� ¼ 0:

Obviously, this equation has no roots with nonnegative real parts. This completes the proof of the theorem. h

Theorem 3.4. The nontrivial equilibrium point E1 is unstable whenever it exists. And the nontrivial equilibrium point E2 is locally

asymptotically stable provided all roots of the following equation has negative real parts.

k ¼ �ðlþ c� bS2Þ �
bI2

1þ wbK 0ðkÞ
:

Especially, when aðhÞ ¼ a, the equilibrium point E2 is always locally asymptotically stable.

Proof. The linearization of (1.7) at Ei gives the following characteristic equation:

kþ ðlþ wÞ � bK 1ðkÞ þ bIi bSi � c

�bIi kþ lþ c� bSi

�����

����� ¼ 0; ð3:4Þ

which is equivalent to

ðkþ lÞ 1þ wbK 0ðkÞ 1

�bIi kþ lþ c� bSi

�����

����� ¼ 0: ð3:5Þ

Clearly, one root of the last equation is �l. Now we just need to analyze roots distribution of the following equation

k ¼ �ðlþ c� bSiÞ �
bIi

1þ wbK 0ðkÞ
: ð3:6Þ

Let us first consider the stability of the equilibrium point E1. Let

FðkÞ ¼ �ðlþ c� bS1Þ �
bI1

1þ wbK 0ðkÞ
� k:

If k is a real number, then

F 0ðkÞ ¼ �1þ wcK0
0ðkÞbI1

ð1þ wbK 0ðkÞÞ2
< 0

implying FðkÞ is a monotonic decreasing function for real k. Also we note that

Fð0Þ ¼ �ðlþ c� bS1Þ �
bI1

1þ wR0

¼ k

I1
� bI1
1þ /R0

¼ 2lkð1þ wbK 0Þ þ BI1

lI1ð1þ wbK 0Þ
> 0:

Hence the equation FðkÞ ¼ 0 must have a positive root, implying that the equilibrium E1 is unstable.

Secondly, for the equilibrium E2, if

k ¼ �ðlþ c� bS2Þ �
bI2

1þ wbK 0ðkÞ

has all roots with negative real parts, then this equilibrium point E2 is locally asymptotically stable.

In the following, we discuss a special cease, aðhÞ ¼ aðconstantÞ, i.e., the rate at which the vaccine wanes is a constant. Then

Eq. (3.6) reduces to

k2 þ ðlþ aþ wþ lþ cþ bI2 � bS2Þkþ ðlþ aþ wÞðlþ c� bS2Þ þ bI2ðlþ aÞ ¼ 0:

Let

A ¼ lþ aþ wþ lþ cþ bI2 � bS2; B ¼ ðlþ aþ wÞðlþ c� bS2Þ þ bI2ðlþ aÞ:

It is easy to see that
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A ¼ lþ aþ wþ lþ cþ bI2 � R0ðlþ cþ rÞ þ bI2
1þ wR0

> lþ aþ w� 2bI0
1þ wR0

þ bI2
1þ wR0

þ bI2 > 0 ðI2 > I0Þ;

B ¼ ðlþ aþ wÞ lþ c� bA

lð1þ wR0Þ
þ bI2
1þ wR0

� �
þ bI2ðlþ aÞ

¼ ðlþ aþ wÞ lþ c� R0ðlþ cþ rÞ þ bI2
1þ wR0

� �
þ bI2ðlþ aÞ

> ðlþ aþ wÞ � 2bI0
1þ wR0

þ bI2
1þ wR0

þ bI2ðlþ aÞ
� �

¼ �2bI0ðlþ aÞ þ 2bI2ðlþ aÞ > 0 ðI2 > I0Þ:

So eigenvalues are either negative or have negative real parts, implying asymptotic stability of the equilibrium point E2 when

aðhÞ ¼ aðconstantÞ. This completes the proof. h

5. Simulation

The system (2.1) is simulated by considering a as constant i.e., the vaccine wanes at a constant rate. Simulation is per-

formed using the package XPP (see [27]). The simulation results are consistent with the analytical results. In Figs. 1–8,

(S, I) phase planes including nullclines are drawn which confer the existence and the stability of different equilibria of the

system (2.1). In each of these figures, the red curve represents the S-nullcline and the green one represents the I-nullcline

and obviously the intersection of these two curves gives the equilibria of the system. Here the Fig. 1, shows the local

asymptotic stability of the infection-free equilibrium E0ð258:0645; 0Þ when the reproduction number R0ðwÞ ¼ 0:1281171

for the parameter values as follows: r ¼ 1:2;A ¼ 80; b ¼ 0:0007;l ¼ 0:01;w ¼ 0:9; c ¼ 0:2;a ¼ 0:02; I0 ¼ 150. Here, Fig. 2,

is describing the situation when the equilibrium E�ð163:75;61:25Þ is locally asymptotically stable and the infection-free

equilibria E0 is unstable where R0ðwÞ ¼ 1:0178117 for the parameter values r ¼ 1:2;A ¼ 35; b ¼ 0:008;l ¼ 0:01;

w ¼ 0:8; c ¼ 0:1;a ¼ 0:03; I0 ¼ 1000. and all conditions stated in Theorem 2.1(i) are satisfied. The equilibria E1 and E2 do

not exist in this case.

Fig. 3 is describing the situation when the equilibrium E�ð54:0001170:286Þ is locally asymptotically stable and the infec-

tion-free equilibria E0 is unstable where R0ðwÞ ¼ 2:194517 and all conditions stated in Theorem 2.1(ii) are satisfied. The equi-

libria E1 and E2 do not exist in this case. Bi-stability is shown in Figs. 4, 5. Fig. 4 is describing the situation when

1 < R0ðwÞ ¼ p0 ¼ 1:3888889 and p1 < R0ðwÞ < p2 where Theorem 2.2 (i) holds. Here it is found that both the equilibria

E1 ¼ E2 ¼ ð45:249;676:01Þ and E� ¼ ð63;392Þ are locally asymptotically stable. Here Fig. 5 too describes the same situation

Fig. 1. Phase plot of I verses S including nullclines showing infection free equilibrium to be stable when R0ðwÞ < 1.
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except in this case the equilibria E1 and E2 are distinct. It is observed that the equilibrium E�ð63;392Þ and the equilibrium

E2ð29:516;927:75Þ are stable and the equilibrium E1ð60:98412;424:254Þ is unstable which lies in between E� and E2.

In Fig. 6, existence of E1, E2 and the infection free equilibrium E0 is shown. Here R0ðwÞ < 1 which implies E� does not

exist. It is found that the equilibria E0ð276:5957; 0Þ and E2ð188:7547;2064:264Þ are stable and the equilibrium

E1ð237:841;910:7364Þ is unstable. Fig. 7 describes the situation where Theorem 2.2(ii) holds, i.e. in this case the equilibrium

E2ð75:9514;1779:379Þ exists and is asymptotically stable. Obviously the infection-free equilibrium E0ð688:52;0Þ exists but is
unstable as R0 > p2 > 1. Finally, the Fig. 8 describes the situation where the Theorem 2.2 (iii) holds, i.e., when the equilibrium

E2ð145:3867;1167:062Þ exists and is stable. Obviously from all these plots, it is clear that if E2 exists, the number of infectives

i.e. I2 is always greater than the number of infectives corresponding to other equilibria when they exist. These facts are dem-

onstrated in the following bifurcation diagrams (see Figs. 9–11). The first bifurcation diagram (see Fig. 9) is obtained by tak-

ing the constant recruitment rate A as the critical parameter. The other parameter values are as follows:

Fig. 2. Phase plot of I verses S including nullclines showing the existence of only E� which is globally stable when 1 < R0ðwÞ < p2 and R0ðwÞ < p0 .

Fig. 3. Phase plot of I verses S including nullclines showing the existence of only E� which is globally stable when 1 < R0ðwÞ < p2 and p0 6 R0ðwÞ < p1 for the

parameter values r ¼ 0:7;A ¼ 21:5; b ¼ 0:015;l ¼ 0:01;w ¼ 0:6; c ¼ 0:1;a ¼ 0:025; I0 ¼ 1175.
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r ¼ 1:2; b ¼ 0:02; l ¼ 0:05; w ¼ 0:9; c ¼ 0:01; a ¼ 0:01; I0 ¼ 476:0166665:

The horizontal axis is labelled with the appropriate value of the reproduction number R0 corresponding to this bifurcation

parameter A. It is observed that when the reproduction number is between 0 and 1, we have a stable infection free equilib-

rium. At the point where R0ðwÞ ¼ 1 which corresponds to A ¼ 50:4, we have forward bifurcation and this onwards, endemic

equilibrium E� is stable until R0ðwÞ reaches to R0ðwÞ ¼ 1:389 which corresponds to A ¼ 70. Here we get backward bifurcation

which leads to the existence of multiple endemic equilibria. Thus we get bistability for 1:389 < R0ðwÞ < 1:468254 where the

equilibria E� and E2 are stable and the equilibrium E1 is unstable. For R0ðwÞ > 1:468254, there exists only one equilibrium

point E2 which is stable. Fig. 10, is also showing the backward bifurcation from the endemic equilibrium. This diagram is

drawn by considering the contact rate b as the bifurcation parameter and other parameter values are as follows:

Fig. 4. Phase plot of I verses S including nullclines showing bi-stability when R0ðwÞ ¼ p0 and p1 < R0ðwÞ < p2 for the parameter values

r ¼ 1:2;A ¼ 70; b ¼ 0:02;l ¼ 0:05;w ¼ 0:9; c ¼ 0:01;a ¼ 0:01; I0 ¼ 476:0166665.

Fig. 5. Phase plot of I verses S including nullclines showing bi-stability when R0ðwÞ ¼ p0 and p1 < R0ðwÞ < p2 for the parameter values

r ¼ 1:2;A ¼ 70; b ¼ 0:02;l ¼ 0:05;w ¼ 0:9; c ¼ 0:01;a ¼ 0:01; I0 ¼ 410.
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r ¼ 1:2; A ¼ 130; l ¼ 0:02; w ¼ 0:9; c ¼ 0:25; a ¼ 0:02; I0 ¼ 120:

As in the previous diagram, the horizontal axis is labelled with the appropriate value of the reproduction number R0 corre-

sponding to this bifurcation parameter b. Here we see that even for R0ðwÞ < 1, we get stable endemic equilibria E� and E2 and

unstable equilibrium E1 in between. This shows that by reducing the reproduction number R0ðwÞ below one is not sufficient

to eliminate the disease from the population. Hence we need to study the dynamics of the disease carefully before applying

any control measures which cause the decrease in R0ðwÞ. As in the situation described in Fig. 1, where there is a forward

bifurcation at R0ðwÞ ¼ 1 it is sufficient to decrease R0ðwÞ to 1 but in the case of backward bifurcation described in Fig. 10,

we need to make R0ðwÞ well below 1. In Fig. 11, bifurcation is performed by taking the threshold value of the infective pop-

ulation I0 as the critical parameter. Here it is noted that this parameter is involved in the treatment. As it is assumed that

Fig. 6. Phase plot of I verses S including nullclines showing the existence of E1 and E2 and the stability of E2 and the infection free equilibrium E0 when

p0 < R0 < 1 and p1 < R0 < p2 for the parameter values r ¼ 1:2;A ¼ 130; b ¼ 0:0018;l ¼ 0:02;w ¼ 0:9; c ¼ 0:25;a ¼ 0:02; I0 ¼ 120.

Fig. 7. Phase plot of I verses S including nullclines showing the existence of only E2 which is stable when p1 < p2 , p0 < R0 and R0 > p2 > 1 for the parameter

values r ¼ 1:2;A ¼ 20;b ¼ 0:005;l ¼ 0:01;w ¼ 0:4; c ¼ 0:1;a ¼ 0:2; I0 ¼ 400.
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treatment is proportional to the number of infective until the infective population reaches a threshold value I0 and after that

the treatment function is a constant. Due to this fact in this figure we see that the equilibrium level of the infective popu-

lation decreases with the increase in I0 until it comes to a saturation point (in our case I0 ¼ 392) where increasing it further

gives bistability until I0 reaches to 476.0166 and after that the equilibrium level of the infective population stabilizes i.e,

there is no effect of increasing I0 further. This is the situation when the medical facilities are more than sufficient and hence

there is no effect of improving it further. Now we summarize our simulation results in Table 1.

From Table 1, we observe that when a i.e., the rate at which vaccine wanes is high, only E2 exists which is locally

asymptotically stable and in this case other equilibria do not exist. The equilibrium E� is stable when I0 is very large and

in this case E1 and E2 do not exist. When I0 is somewhat reasonable neither very high nor very low, there is a possibility

of existence of all nontrivial equilibria and in this case E� and E2 become stable and E1 always remains unstable. When

the recovery rate c is very high, then R0ðwÞ becomes small and in this case E� do not exist but E1 and E2 can exist and E0

and E2 can be stable.

Fig. 8. Phase plot of I verses S including nullclines showing the existence of only E2 which is stable when R0 > p0 , p1 > p2 and p2 < R0 for the parameter

values r ¼ 1:2;A ¼ 15;b ¼ 0:005;l ¼ 0:01;w ¼ 0:4; c ¼ 0:1;a ¼ 0:3; I0 ¼ 600.
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Fig. 9. The variation of equilibrium level of the infective population with the reproduction number showing the backward bifurcation from an endemic

equilibrium at R0ðwÞ ¼ 1:389 where Theorems 2.1 and 2.2 hold.

448 X.-Z. Li et al. / Applied Mathematical Modelling 34 (2010) 437–450



6. Concluding remarks

In this paper, we have proposed an age-structured model by incorporating the vaccine age in the model. The local and

global stability of the equilibria of the model are discussed. In epidemiological modelling, the sensitivity of the results to
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Fig. 10. The variation of equilibrium level of the infective population with the reproduction number showing the backward bifurcation from an endemic

equilibrium at R0ðwÞ ¼ 1:0187002 where Corollary 2.3 holds.
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Fig. 11. The variation of equilibrium level of the infective population with I0 showing the bifurcation at I0 ¼ 392 from where we have bistability until

I0 ¼ 476:0166 for the parameters r ¼ 1:2;A ¼ 70; b ¼ 0:02;l ¼ 0:05;w ¼ 0:9; c ¼ 0:01;a ¼ 0:01.

Table 1

Simulation results.

r A b l w c a I0 R0ðwÞ p0 p1 p2 Result

1.2 80 0.0007 0.01 0.9 0.2 0.02 150 0.128 0.239 0.153 1.0024 E0 stable

1.2 35 0.008 0.01 0.8 0.1 0.03 1000 1.0178 1.116 0.665 1.29 E� stable and E1 , E2 do not exist

0.7 21.5 0.015 0.01 0.6 0.1 0.025 1175 2.194 2.172 2.534 2.199 E� stable and E1 , E2 do not exist

1.2 70 0.02 0.05 0.9 0.01 0.01 476.0167 1.388 1.388 0.992 1.472 E1 ¼ E2 and E� are stable

1.2 70 0.02 0.05 0.9 0.01 0.01 410 1.388 1.292 0.861 1.406 E� and E2 are stable and E1 is unstable

1.2 130 0.0018 0.02 0.9 0.25 0.02 120 0.338 0.326 0.196 1.006 E0 and E2 are stable E1 is unstable, E� does not exist

1.2 20 0.005 0.01 0.4 0.1 0.2 400 2.628 1.471 1.135 1.525 Only E2 exists and is stable E0 is unstable

1.2 15 0.005 0.01 0.4 0.1 0.3 600 2.628 1.471 1.135 1.525 Only E2 exists and is stable E0 is unstable
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the parameter’s values are very important in planning the control strategies. This model is simulated for the various set of

parameters and results are consistent with the analytical results. It is found that the model shows backward bifurcation for

various critical parameters such as the rate of recruitment in the population, the contact rate, the rate of vaccination and the

rate at which vaccine wanes. As the treatment depends upon the threshold value of the infective population, we get bifur-

cation and bistability by considering this as the critical parameter. Here it is found that initially the equilibrium level of the

infectives decreases with the increase in the I0 that means providing more facilities/beds reduces the epidemic until this

threshold I0 coincides with the equilibrium level of the epidemic. Then for a small range of the threshold value I0 we get

bistability and after that increasing I0 further does not affect the equilibrium level of the epidemic i.e. a saturation arrives

where by increasing the medical facilities/beds one cannot reduce the severity of the epidemic. This is easy to visualize

as when the medical facilities are more than sufficient then there is no use of improving it further.

Hence in the case of limited medical facilities, one should try to lower the level of initial infectious invasion to the thresh-

old I0 to minimize the number of infectives at the endemic steady state. From all these simulation results we conclude that

one need to plan the control strategies depending upon the situation as just lowering the reproduction number to one is not

always sufficient to eliminate the disease from the population.
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