IOP Conference Series: Materials Science and Engineering

PAPER - OPEN ACCESS

State dependent arrival in bulk retrial queueing
system with immediate Bernoulli feedback,
multiple vacations and threshold

To cite this article: S P Niranjan et al 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263 042144

View the article online for updates and enhancements.

Related content

- An unreliable group arrival queue with k

stages of service. retrial under variant
vacation policy

J Radha, K Indhira and V M
Chandrasekaran

- A study on M/G/1 retrial G - gueue with

two phases of service, immediate
feedback and working vacations

M Varalakshmi, V M Chandrasekaran and
M C Saravanarajan

- Performance characteristics of a batch

service queueing system with functioning
server failure and multiple vacations

S. P. Niranjan, V. M. Chandrasekaran and
K. Indhira

\B) 240th ECS Meeting

Oct10-14, 2021, Orlando, Florida

Register early and save
up to 20% on registration costs

Early registration deadiine Sep 13
REGISTER NOW

This content was downloaded from IP address 157.49.64.244 on 03/08/2021 at 11:35



14th ICSET-2017 IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 263 (2017) 042144 doi:10.1088/1757-899X/263/4/042144

State dependent arrival in bulk retrial queueing system with
immediate Bernoulli feedback, multiple vacations and
threshold

S P Niranjan, V M Chandrasekaran and K Indhira
Department of Mathematics, School of advanced sciences, VIT University, Vellore-
632014, India.

E-mail: vmcsn@vit.ac.in

Abstract. The objective of this paper is to analyse state dependent arrival in bulk retrial queueing
system with immediate Bernoulli feedback, multiple vacations, threshold and constant retrial
policy. Primary customers are arriving into the system in bulk with different arrival rates A,
and A,,. If arriving customers find the server is busy then the entire batch will join to orbit.
Customer from orbit request service one by one with constant retrial rate y . On the other hand
if an arrival of customers finds the server is idle then customers will be served in batches
according to general bulk service rule. After service completion, customers may request service
again with probability § as feedback or leave from the system with probability 1 — &. In the
service completion epoch, if the orbit size is zero then the server leaves for multiple vacations.
The server continues the vacation until the orbit size reaches the value * N ( N > b ). At the
vacation completion, if the orbit size is ° N’ then the server becomes ready to provide service for
customers from the main pool or from the orbit. For the designed queueing model, probability
generating function of the queue size at an arbitrary time will be obtained by using supplementary
variable technique. Various performance measures will be derived with suitable numerical
illustrations.

1. Introduction

Mathematical modelling of queueing system with vacations is much more flexible and useful while
dealing with real time congestion problems. In vacation queueing systems the server directs to do few
supplementary works at the period of its idle time, which may improve the server performance. The
application of queueing system with vacations can be established from manufacturing industries,
production line systems, inventory management, communication networks, etc.

Analysis of retrial queues with secondary jobs (vacations) has been taken into account by many of
the researchers. Some of their works includes different models of retrial queueing systems given by
Falin and Templeton [10]. A brief survey and an overview of retrial queues have been explained by
Artalejo[2].Falin[9] was first introduced batch arrival retrial queueing system with the following rule:
“If the server is busy at the arrival epoch, then the whole batch joins the retrial group, whereas the server
is free, then one of the arriving units starts its service and the rest join the retrial group”.

In order to model and analyse queueing system with retrials, the method of retrials is required. Many
real time applications which exist in network systems illustrate that there are chances in queueing system
with retrials such that retrial rate is independent of number of items ( if any ) present in the orbit, which
is called constant retrial policy. Such kind of retrial policy was first constructed by Fayolle [11], who
investigated “M/M/1 retrial queue, where the queue will be formed by the retrial group of customers

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



14th ICSET-2017 IOP Publishing
IOP Conlf. Series: Materials Science and Engineering 263 (2017) 042144 doi:10.1088/1757-899X/263/4/042144

and request for service is possible only for customers at the head of the orbit queue after an exponentially
distributed retrial time” with rate ‘v’. Atencia et al. [3] have analysed bulk retrial queue with constant
retrial rate and server breakdowns. Recently Jailaxmi et al. [14] examined M/G/1 retrial queue with
modified vacations, collision and general retrial policy.

In all the above queueing models server is able to serve one unit at a time. But in many practical
situations service is rendered in batches with different batch size. This type of models have applications
in inventory systems, manufacturing industries, communication networks, etc.

In classical queueing systems, many of the researchers have contributed in the study of
M?*/G(a,b)/1 queueing models. Bulk queue with setup times, closedown times, multiple vacations and
threshold have been studied by Arumuganathan and Jeyakumar[1]. Haridass and Arumuganathan[12]
analysed bulk arrival and batch service queueing model with interrupted vacation. In all the above
models they derived various performance characteristics of queueing system. They extended their
analysis with cost optimization. Extensive review on classical bulk arrival and batch service queueing
system was given by Niranjan and Indhira[19]. State dependent service in bulk queueing system with
vacation break-off was analysed by Niranjan et al [20].

Only few works have carried out in batch service queueing system with retrials. Batch service retrial
queueing model with constant retrial rate has been analysed by Haridass et al. [12]. They derived some
important performance measures. Cost analysis is also carried out in their work.

In the service completion, a batch of customers may seek for further service and adds to the head of
the queue and this system is called queueing system with feedback. Queueing model with customer
feedback will occur in many real time situations. Choi et al. [6] analysed queueing system with different
types of feedback, FCFS policy and gated vacations. Krishna Kumar et al. [15] studied feedback queue
with varying arrival rates and threshold policy. Recently Badamchi Zadeh [4] derived various
performance measures of batch arrival and multi-phase queueing system with random feedback in
service and single vacation policy. All the above feedback queueing models are considered as classical
queueing system. Only few works are carried out in retrial queueing models with feedback. Madan et
al. [18] analysed bulk queue with feedback and optional vacation policy. Krishna Kumar and Raja [16]
have studied multi server queue with retrials, balking and feedback.

In all the feedback retrial queueing models, batch service is not taken into consideration. This
stimulates authors to model such a queueing system called state dependent arrival in batch service retrial
queueing model with active Bernoulli feedback, multiple vacations, threshold and constant retrial rate.

2. Model description

In this paper state dependent arrival in bulk queueing system with retrial, active Bernoulli feedback,
multiple vacations and threshold are considered. Customers are arriving into the system in bulk with
rate A, when the server is idle and with rate A;, when the server is busy or in vacation. These type of
assumptions will give motivation in analysing real time applications.* An arrival of customers find the
server is free then customers are served in batches with minimum of one and maximum of ‘ b’ number
of customers according to general bulk service rule”. If 1 < & < b then entire batch will get service,
where ¢ is the queue length. Similarly, if € > b then service is possible only for ‘ b’ customers, and
then the remaining € — b customers will join to orbit. On the other hand if an arrival of customers finds
the server is busy or on vacation then entire customers will join to orbit to get service later. “Customers
from the orbit will request service one by one with constant retrial rate y .” An orbit is a virtual queue
formed by customers upon finding that the server is busy. On service completion epoch, the leaving
customers may either selects for additional service as a feedback with probability § or leave the system
with a probability of 1 — §. Customer who needs feedback will be taken for service immediately. After
service completion, if the orbit size is empty then the server goes for vacation (secondary job). The
vacation period will be continued until the orbit size reaches the threshold value * N’ ( N > b ). When
the server finds * N’ customers waiting in the orbit during vacation completion then the server will
switch on to serve customers either from orbit or from the primary pool. The pictorial representation of
the proposed model is depicted below
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Figure 1. Pictorial representation of the queueing system: J-orbit length

2.1. Notations

Let A be the Poisson arrival rate, when the server is in idle state and A, be the Poisson arrival rate,
when the server is busy or in vacation.

Let X be the Group size random variable of the arrival, g, be the probability that * k’ customers arrive
in a batch, X (z) be the probability generating function (PGF) of X.

“Ng4(t) be the number of customers waiting for service at time t”.

"N (t) be the number of customers under the service at time t”.

"N (t)be the number of customers in the orbit at time t”.

Let’y’ be the retrial rate (constant) of the customer from the orbit.

Let A(x) (a(x)) { A(0) } [ A°(x) ] be the cumulative distribution function ( probability density function)
{ Laplace-Stieltjes transform }[ remaining primary service time ] of service.

Let B(x) (b(x)) { (B(0) } [ B%(x) ] be the cumulative distribution function ( probability density function
){ Laplace-Stieltjes-transform }[ remaining vacation time ] of vacation.

Let C (t) denotes different states of the server at time t.

0, if the server is busy with service
C(t) =11, if the server is on vacation
2, if the server is idle

Y(t) = j, if the server is on j" vacation

The state probabilities are defined to obtain governing equations:
Rij(x,t)dt = Pr{Ns(t) = i,Ny(t) = j,x <A°(t) < x+dt,C(t) =0};1<i<b,j=0
Sin(t)dt =Pr{N(®) =nx <B°(t) <x+dt,Ct) =1,Y()=j},n=0
I,(t)dt =Pr{N({t)=nC(t)=2}, n=0

3. System analysis
The following equations are obtained by using Supplementary variable technique

Ij(t+At):Ij(t)(l—/laAt—yAt)+(1—6)Z£’n=1RmJ-(0,t)At 1<j<N-1 (D

L(t+At) =1L(t)(1—-2At —yAt) + (1 —6)Z£’n=1ij(0,t)At+2;";151j(0,t)At ()
j=N

Rij(x —At,t +At) = R;j(x,t )(1 = ApAt ) + vl (t)a(x )AL + [;(t) A, 91 a(x)At 3)
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Riog(x —At,t + At ) = Rijp(x,t )(1 — ApAt ) + Iy (t )Aqgia( x )At + 6R;(0,t )a( x )At

2<i<bh

Rl-j(x — At t +At) = Rij(x,t)( 1 —AbAt) + I](t)lagla(x)At + 5Rl](0,t)a(x)At

+Z{c=1Rij_k(x,t)/1bgka(x)At 2<i<b-1, j=1
Rpj(x — At,t +At) = Ryj(x,t)(1 = ApAt) + Th_y Ry j_i (X, t) ApgiAt j=1

+Z{(:01j_k(t))lagb+ks(x)At+(SRb]-(O,t)a(x)At
Sio(x—=At, t +At) = S10(x,t)(1 —ApAt) + (1 —a)R;o(0,t )b(x )AL
Sy (x— At t+At) = S;;(x,t)(1 = ApAt) + X, Sy 1 (x,t) ApgiAt
Sio(x = At, t +At) = S;o(x, t )(1 = 2ApAt ) + 5,1 9(0,t )b(x) At 1>2
Sy (x = At t +At) = S;(x,t)(1— At ) + X0, Sy j i (x,t) ApgiAt

4811 j(0,t)b(x) At j=12..N—-1

Sl](x—At,t+At) =Slj(x,t)(1—AbAt)+Z£=151j_k(x,t)/1bgkAt ]2 N [>2

4. Steady state orbit size distribution
0=—(Aq+¥);+(1=6)Xh-1Rm;(0) 1<j<N-1

0=—(Aa+y)[+(1-6)0 1 Rpj(0) + X52,5,;(0) j=N
d .
—Ele(x) = —ApRyj(x) + vl (t)a(x)At + [jAag1a(x ) + 6R;;(0)a(x) j=0
~ 2z Rio(x) = =2, Rig(%) + IoAagia(x) + 8Rio( 0 a(x) 2<is<bh
p .
_aRij(x) = —ApR;j(x) + 6R;;(0)a(x) + Xioy Ry jr(x) Apgra(x)
2<i<bh-1,j>1
p . .
—aij(x) = —ApRp;(x) + Tici Ry joie (X)) Apgie + e Limie (£) Aagpsra(x)
+6R,;(0)a(x) j=1
d
——=S10(x) = =2ApS10(x) + (1 =6 )R;o(0)b(x)
d ' .
_aslj(x):_Abslj(x)+Z{<=151j—k(x)/1bgk j=z1
d
—ESIO(X)=—Awa(x)+ S1210(0)b(x) =2
d ' .
——=S1(x) = =2,5,(x) + Xhe1 St j-k(X) Apgre+Si—1 j(0)b(x)  j=12,..N—1
_:_xslj(x)=_Abslj(x)+Z{;=1Slj—k(x)/1bgk jzN 122

The Laplace — Stieltjes transform of R, (x) and S;, (x) are defined as

“
&)

(6)

(7
®)
€)

(10)
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(13)

(14)

(15)
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ﬁin(e) = fOOO e Rin(x)dx gln(e) = fOOO e o Sin(x)dx
(0 -2 )R1j(9) = R1j(0) —V1j+1A(9 ) — Ij/1a91/i(9) - 5Rij(0)A(9) j=0
(8 —2pRip(8) = Rio(0) — IAag:A(8) — SRip(0)A(H) 2<i<b

(6 —2,)R;j(6)=R;;(0) = 8R;(0)A(6) —TL_ Rij 1 (0)Adpgx 2<i<bhb-1,j2=1

(6 —2)Ry;(8) =Rpj(0) =X _ Ry ik (0) Ay — Sheo Lok 2agpsxAC6)
—8R,;(0)A(6) j=1

(60 —25)510(68) =S10(0)— (1 —=8)R;(0)B(6) 1<i<b
(0—25)81;(8) =S5(0) = Tiey 1 j-(0) Agi j=1
(6 —25)850(6) =S10(0) = S;-10(0)B(6) =2

(0= 25)8;(0) =5(0) =S4, Stk (0) Agi+S11 j(0)B(O)  j=12,..N-1

(6= 25)8,;(0) =S;(0) = T4y S1j-1(0) Ags j=N 122

5. Probability generating function _

Ri(2,6) = 270 Ry(6)7 Ri(2,0) = T2 Ry (0)7 1<i<b
5i(2,60) = %12, 04;(0)2/ Sj(2,0) = X2, Q;(0)2 j=z1

(A +¥)I(2) = ylo = (1= 8)(Zh=1Rm(20) = Rio(0))
+321(851(2,0) = %)= 5, 0)27)

(6 —2,)R,(26) =R1(z,0)—M(B)ﬁ(l(z)—Io)—(lagll(z)+6R1(z.0))A(9)
(60 —2p + px(2))Ri(2,60) =Ri(2,0) — 2,9:1(2)A(0) —6R;(2,0) 2<i<b-1

(60— + Apx(2) )Ry (2,60 ) =R,(2,0) — Aggblofi( 0) — Yo Aagp+r 2 1(2)A(6)
—5R, (2, 0)A(6)

(60— 2p + 2px(2))51(2,6) =S1(2,0) —B(6)(1—68) Rip(0)
(6 =2 +2x(2))51(2,6) =S5(2,0) = B(6) X)) Q-1;(0) 2
Substituting 8 = A, in equation (24)

Ap)(V2U(2)-1o)+2ag:1(2) )
1—5/‘1'( Ap)

R,(z,0) =

Substituting 8 = 4, — A, x(z) in from equation (25) and (28)

_ AQp=2px(@))2agil (2) .
Ri(2,0) = = 2 () 2<i<bh-1

(23)
(24)
(25)
(26)

27)

(28)
(29)
(30)
3D

(32)

(33)

(34)

(35)

(36)

(37

(3%)

(39)

(40)

(41)
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A(Ap=2px(2))(Aagplo+T o 2agp+k2* 1(2))
1—5/{( Ab—lbx(z))

Rb(Z,O) =

51(2,0) = B(4p = 4px(2))(1 = 8 )Ry (0)

51(z,0) = B(Ap — Apx(2)) Z;y;ol $1-1(0) 2/

By using (35) and (40)
- (A(2p)-A(0))( v3(1(2)=1o)+Aag11(2)
Rl(Z,9)= b (VZ Z~ 0 g1 Z)
(6-2p)(1-84(2p))
By using (36) and (41)
- A(Ap=2px(2))—A(0))Aagil(2)
Ri(2,6) = Al A0
( 9—/1b+/1bx(z))( 1—614( /'Lb—lbx(z)))
By using (37) and (42)
R,(2.0) = (A(Ap=2p%(2))~A(8))( Aagblo+Zieo Aagp+k7* 1(2) )

( 0—-Ap+Apx(z ))( 1-6 )A( Ap—Apx(z )))

By using (38), (39), (43) and (44), we get

w = B (A = 2px(2))=B(8))( (1-8)Rio(0)+%)55! S14 1(0)2/
Ziz151(2,0) = ( 3(—A+Ax(z) = : )

Substituting equations (40), (41), (42) and (44) in equation (34), we get
2y(1-84(4)) (1-84(Ap-Apx(2)))
zPIy ~(1-8)(1-6A(Ap-2px(2)) ) A(A)
+A(Ap=2px(2))2agp(1-84(Ap))z
+2P L (B(Ap—Apx(2))-1) TNt 5527
2P+ (A0 +y)(1-84(A)) (1-84(Ap-2px(2)) ) ~22 (1-8)AAp) (Y +20291) (1-5A(Ap-Apx(2)) )
+A(Ap=Apx(2)) (1-8AAp))Aa (2241 202} gi-2(X(2)-3821 g2/))

I(z) =

The PGF of the orbit size at an arbitrary time is given by
P(2) =1(2) + Ry (2,0) + 572, Ri(2,0) + Ry (2,0) + 272, 51(2, 0)

Substituting 8 = 0 in equations from (45) to (48), then equation (50) is simplified as
P =1 [G(Z)H1+R1K(z) Hy My + M, 53 (—Ap) (1-6A(Ap))(1-8A(Ap—2px(2)))
2) =10 [Traank@) F(z,Ap)K(2)

where
Ry = (40) = 1) (1) (2 + px() (1 = 84(2 - 1,x(2)))
+(Ap — Apx(2)) — 1)2e9p (=2p) (1 — 5A(4))
Hy = F(z,2,) + (A(1,) — 1) (g + a291) (=Ap + 2x(2)) (1 = 84(2y — 2,x(2)))

+(A(Ab = px(2)) — 1)(2?:0 AaGpriz® + X023 Aagi)(_lb)(l - 51‘1(/11:))

(42)

(43)

(44)

(45)

(46)

47)

(48)

(49)

(50)

(D
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( zy (1 - 84()) (1 - 64(2, — Abx(z))))
G(2)=| —(1-8)(1-84(2 — 1x(2))) Ap) |2
+A(2p = Ap2(2) 108y (1 — 6A(Ay)) 2
K(z) = 221 +7) (1 - 64 (1 = 64(2, — 1px(2)))
—2"(1 = YA (r + 1az9:) (1 — 842, — Apx(2)))
+A(1y = 252@) (1 = 8A@y) ) A (22 5057 g; — 2(X(2) - £zt g;2))
F(z,4p) = (~2)(1 = 84(4)) (1 = 8A(2 — 2x(2)) ) (=2p + Apx(2))
M, = 2P (BAp — Apx(2)) — 1) X5 S 27

M, = (B(Ap — Apx(2)) — 1) ((1 ~ )Ry + XNAS zf)

6. Performance measures
In this section some important performance characteristics are derived from the steady-state
probability distribution function given in equation (51),

6.1. Expected orbit length
EWQ) = lim P'(z)
zZ—

MK, - MoKy MLy
EQ) =1, [ R ] o2
where
S; = E(A) L,E(X) S, = E(A) 1,E(X) S, = E(B) ,E(X)
Vi = E(A)ApX" (1) + E(A%)A,° (E(X))? V, = E(B)ApX" (1) + E(B?)A,*(E(X))?

Vs = E(AAX" (1) + EADAE?  Vy=(1-64())
Ky = GiH," + R,'U; Gy =yVa(1—=6) — (1 = 8)?A(Ap) + 2095Va
Hy' =F'(z,25) + (AAp) = 1)y + 209)EX) (1 = 8) + S1d1(=2,)V,

Gy =YVs — 64 (L) — (1= 8) (1 = )A' (A) — A(4,)85) )
+1a85(Va = 64 (Ap) + S1V3) + b (Vs = (1 = 8)?A(4p) + 20 gp(1 — 8))

Ry =—(A(A) — DyLEX)(1 - 6)
Uy = (g + Va1 =8) — (1 = 8)2AM) (¥ + 2091) + 2. (B0 9: — (1 = 2221 g)))

Kz = GlHlu + 2G2H1, + 2R1,U2 + R1”U1
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"no__ o i 2()/ + Aag )A E(X)(_(S)S
" = B2+ (B0 = 1) (1 2 gy o) 4 2800)(1 - 6)
+24' Q) (¥ + Aag) W EX) (1 = 8) + $1(2d; + 2d, Y (Ap) (=) A’ (Ap) + Vi)
—V,d AV,
Uy = (v +20) (1 = 8)(=O)A' (Rp) = 8V4S1 ) + (b + D)y + Aa)Va(1 - 6)

+(1 - 5)1‘1@13)(]/ + /1991)551 — (1 - 8)AAp)29:(1 — 5)) + 51Vady A,
—(1=8)(A'(Ap) + ALY + 2091) (A = 8) + (Vo — SA' (Ap))Aa(dy" + dy

Ry = (Ap) — 1)y(26,E(X)S1 + X" (1)(1 — 8) + 24, E(X)(1 - §))
—2YA' Qp)E(X)(1 = 6)

M, = 2,2 E(X)(1 = 8§V, Uy di = X0 AaGpric + 2027 Aabi
d1’ = Zliozo kAqGp+xk d1” = Zlocozo k(k —1)Aa9p+k
d =+ DX 9 —(1-21g) - (EXD) -X02tjgy) do=%0 g9 —(1-201g;)

My = (=2, REX)(82(1 = 8)A' (Ap) + V4S1) + X" (1)1 = 5)V,) ) Uy
+2(=2y"E(X) (1 = 5)Va) U

Ly = STy SN3 S + 81Ty + (1= 8)V, (1 = $)Ro + BN S ;) (w4 ECO(1 = 8)V,)
T, = —AbZE(X)(l - 8)V,U; + (A(/lb) - 1)(]’ + 2ag)MBEX)(A = 8) — S1d1 A,V
Ty = ((1= ORe + T3S ) (~A*EX)(1 = 8)V,) (—(1 = 6)84' (1) — V,$16)

6.2. Probability that the server is busy
P(B) = 1im2$n 14,,(2,0)
(S(/l)l)l +y(1-1p) )
P(B) = —= (_l:{il rat)) | EMI)(Z= gi + Aagplo + Zio0 b Ib+ic)
1o((1-84(2p)) (y (1-8)+Aa95)~(1-8)? A(Ap))

1-84(7 (aty)(1-0) 1-8)24(7 A
(1-64( b))(M (Zf’ 1 g ( Zf 1g1))>—( =86)2A(Ap) (¥ +24a91)

where 1(1) =

6.3. Probability that the server is idle
P(D) = lin} 1(2)
VA

p(D) = Iy ((1 - 514(/113)) (y(1—8) + Aag,) — (1 — 5)2/1(,11)))

~ (/‘t +y)(1-6) -
(1 — (SA()Lb)) <+/1 (Xt gi— (1- Z] 1 g,))) — (1 -84 + 2291

6.4. Probability that the server is on vacation

P(V) = ii_r)r}z $,(z,6)
=1
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P(V) = E(B)A, ((1 — 8)R0 + 27:_015]')

6.5. Steady state condition

The steady state condition for the proposed model can be obtained from the above expression
lirr} P(z) =1,
VAd

Therefore the steady state condition is derived as p = A, E(A)E(X) < 1

_ —AEX)(1-8)V,Uy
T GuH;'+UsR,’

Iy

where
Uy = (g + Va1 = 68) — (1 = )2 A (¥ + 2091) + A (B25 9: — (1 - 2021 9)))

Hy' = F'(z,2) + (AQhp) = 1) (¥ + 2eg)AWEC) (1 = 8) + S1d1 (= 4)V,
Ry = —(AA) = 1Y MWEX)(1 = 8) Gy =yVa(1—8) — (1 = 8)2A(Ap) + AagpVa

Result 1
An unknown constant c,, is expressed in terms of known termD,,. “Let [3,, be the probability that ‘n’
customers arrive into the system during an idle period”, then.

_ Bnlo +Z?=_01 qjBn-j

Cp = F0) , n=1,2... N-1

7. Special cases

The proposed model is developed with the assumption that the service time is arbitrary. However to
analyse real time system, proper distribution is mandatory. This segment presents some distinct cases
of the proposed system via indicating service time as “exponential distribution, hyper exponential
distribution, Erlangian distribution.”

7.1. Exponential bulk service time
The PDF of exponential distribution is defined as
A(x) = e™™ where u is parameter

) _ u
Ay = 2px(2)) = (M + (A — Abx(Z))>

The PGF of the orbit size for exponential service time is derived by substituting the expression for
A (A — Ax(z)) in equation (51)

u 2
COHy + RiK(zy] Myt MaSi(= o) (1 -0 (m)> <1 -0 (u+(ab—sz(z)))>
F(z,Ap)K(2) * F(z,Ap)K(2)

P(Z) - 10 [
Where

R = () 1) (2 o+ 20 (1-0 ()
+ <<#+(lb—#/1bx(z))) N 1) Aagb(_lb) (1 —9 (ufﬂ))
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Hy = F(z,4,) + <<u f Ab) - 1) (g +az1) (<20 + 2px(2)) <1 -0 <u + (A fﬂbx@)))

+ ((m) - 1) (ZI?:O )Lagb+kzk + Z?;zl Aagi)(_’lb) (1 -9 (uf/lb)>
U U

2y (1 =9 <# + /1,,)) <1 0 (u + (A — 1px(2) )

G(z)=| —(1-9) <1 -6 (H + (A E)be(z)))) (,u flb) z

+ (,u + (A f /'lbx(z))) Aagp (1 =9 (u fﬁ,)) z

K@) = 20+ ) (1-040) (1 -8 (rrer)

ool sori)

() (170 (7)) a2t 01 200 ~ 535 0,27)

_ _ u _ u _
F(z 1) = (=) (1 5 (# : lb)) <1 5 (u o Abx(z))))( Ly + 1px(2))

M; = z°*1(B(4, — Apx(2)) — 1) Z?';Ol S; z/

My = (B — 25x(2)) — 1) (1 = §)Ro + )5S 20)

7.2. Hyper exponential bulk service time
When the service time follows hyper exponential distribution with probability density function,
then a(x) = cde™%* + (1 — ¢) fe /*, where d and f are parameters, then,

A(hy = Apx(2)) = ( de ) + ( fa-o >

d+ (A — Ax(2)) f+ (A — px(2))

The PGF of the orbit size for hyper exponential service time is derived by substituting the expression
for A(/lb — Abx(z)) in equation (51), then

P() = | G(2)H, + RiK(2)| | HiMy + MpS,(=Ap)M3M,
@) =1 [ F(z A))K(2) F(z,2,)K(2)
Where B = (5 +5552) ~1) (-2) (o + Ao,

dc f(1-0)
* <<(d+(/1b—/1bx(z))> + <f+(/1b—/1bx(z))>> - 1) Aagp(—Ap) M3
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Hy = F(z,4) + (AQp) = 1) (L4 24291 ) (=2 + Apx(2))M,

dc f(1-o) . © k b—1 Y2
+ <<(d+(lb—lbx(z))) + (f+(lb—lbx(z))>> 1) X (Zk:o Aagb+kz + Zi:z Aagl)( Ab)M3

de_, f1-0)
2yMsMy — (1= M, (55 +572)

— b
N\ () () i)
d+(lb—/1bx(z)) f+(Ab—Abx(z)) agb 3Z
d 1-
K(2) = 201 (A +1IMsMy = 28 (1= 8) (5 + Z52) (0 + Zazg)M,

+ <(d+(/1bff1bx(z))) + (f+()j;,(i;;36(z))>> M3la(zb+1 Z?z_Zl gi - Z(X(Z) - Z?z_ll g]ZJ))
F(z,Ap) = (—Ab)M3M4(—/'lb + Abx(z)) M, = Zb“(é(/lb — Apx(2)) — 1) Z?L'Ol S; zJ

—(1_ dc | f(-9 _ (4 _ dc f(1—c)
M3 = <1 8 (d+/1b * [+ )) My = (1 8 (d+(/1b—,1bx(z)) + f+(/1b—,1bx(z)))>

My = (B(Ap — Apx(2)) — 1) ((1 ~ )Ry + XN1S zf)

7.3. K-Erlangian bulk service time
Let us consider that service time follows K - Erlang distribution with probability density function

ko k—1,—(kux)
a(x) = %, k > 0; where u is the parameter, then

k
- ku
A Ab - lbx(Z) = < )
( ) k‘Ll + (Ab - AbX(Z))
The PGF of the orbit size K-Erlangian bulk service time is derived by substituting the expression for

A(Ap — Apx(2)) in equation (51)

8. Numerical illustration
In this section, obtained theoretical results are validated with suitable numerical example. Numerical
results are derived with the following assumptions

Mean arrival rate when the system is idle

Mean arrival rate when the system is busy or on vacation

Service time follows exponential distribution with parameter
Batch size of the arrival followsgeometric distribution with mean
Retrial rate

Vacation time follows exponential distribution with parameter
Maximum server capacity

[S S

TCI R WE >

8. 1. Effects of various parameters on performance measures
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Effects of arrival rates with respect to expected orbit length is given in table 1 and table 2 with parameters
n =2, u=3, b=4, 6§ = 0.4 .From tables it is observed that mean orbit size increases when the arrival
rate increases and mean orbit size decreases when retrial rate increases.

Table 3 and Figure 4 show the way in which the orbit size changes for different values of arrival
rate 1, (when the server is idle). Considering the service times as exponential, Erlang-2 and hyper
exponential with parameters 1, = 2,y = 5, = 2, u=3, b=4, N=7, § = 0.4, it can be observed that the
mean orbit size increases when the arrival rate A, increases.

Table 4 and Figure 5 show the way in which the orbit size changes for different values of arrival
rate A, (when the server is busy or in vacation). Considering the service times as exponential, Erlang-2
and hyper exponential with parameters A, = 2,y = 5,7 = 2, u=3, b=4, N=7, § = 0.4, it can be
observed that the mean orbit size increases when the arrival rate A, increases.

Table 1.Retrial rate Vs Mean orbit size (Arrival rate 4, = 2)

Retrial Expected orbit length E(Q)
rate
Arrival rates(1,)
y 2 3 4 5 6
1 3.9261 4.7963 5.8321 6.5920 8.1928
2 3.2351 4.1641 5.2193 6.0821 7.6291
3 2.7936 3.9365 4.9287 5.9768 7.4362
4 2.3261 3.7590 47981 5.7989 7.3190
5 2.0982 3.6963 4.6362 5.6923 7.1982
6 1.5391 3.3872 4.4902 5.4329 6.9360
7 1.1972 3.2015 4.3198 5.0763 6.2769

Table 2.Retrial rate Vs Mean orbit size (Arrival rate 4, = 2)
Retrial Expected orbit length E(Q)
rate

Arrival rates(1;)

Yo 2 3 4 5 6
4.6321 | 5.7962 | 6.0361 | 6.5328 | 7.7912 | 8.3792
4.4982 | 5.5728 | 5.9253 | 6.3291 | 7.6324 | 8.0523
4.3026 | 5.3264 | 5.7421 | 6.0328 | 7.4561 | 7.8392
4.1982 | 5.1920 | 5.6378 | 5.8391 | 7.2793 | 7.5091
3.9751 | 49324 | 54231 | 5.5923 | 6.9261 | 7.2592
3.7782 | 4.8396 | 5.3438 | 5.3792 | 6.7938 | 6.9132
3.5329 | 4.6523 | 5.0632 | 5.1902 | 6.4982 | 6.7981

NN R[N -

Table 3. Arrival rate (1,) Vs Expected orbit length

Aa Expected orbit length
Exponential Erlang Hyper-exponential

0.2 0.0572 0.0612 0.0644
04 0.0831 0.0874 0.0892
0.6 0.1357 0.2461 0.3195
0.8 0.3492 0.3964 0.4263
1.0 0.5763 0.6297 0.6921
1.2 0.8324 0.8921 0.9035
1.4 1.2497 1.3592 1.4257
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Table 4. Arrival rate (1;,) Vs Expected orbit length

Ap Expected orbit length
Exponential Erlang Hyper-
exponential
0.2 0.0652 0.0735 0.0943
04 0.0839 0.0962 0.2361
0.6 0.1368 0.2437 0.4495
0.8 0.2764 0.3984 0.5327
1.0 0.4985 0.5321 0.6792
1.2 0.5362 0.7092 0.8321
14 0.6952 0.8361 0.9067

L [—#—2—1:-3 - —h— 6|

RETRIAL RATE

Figure 2. Retrial rate Vs Expected orbit length
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Figure 3. Retrial rate Vs Expected orbit length
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A,
Figure 5. Arrival rate(1,) Vs Expected orbit length

9. Conclusions

In this paper, “state dependent arrival in batch service retrial queueing system with active Bernoulli
feedback, multiple vacations and threshold” is analysed. The PGF describes the orbit size is obtained by
using supplementary variable technique. Various performance characteristics are also presented with
appropriate numerical illustrations.
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