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Abstract 

The design of robust controller for nonlinear uncertain system has three important challenges, namely, nonlinearity, parameter 

uncertainty and external disturbance. Hence implementing a control algorithm for nonlinear unstable system is always a 

challenging task. In this paper, we propose a nonlinear controller using State Dependent Riccati Equation (SDRE) technique for a 

ball and beam system, which is inherently nonlinear and unstable system. Using the first principles,the equation of motion of the 

ball and beam system is obtained, and the nonlinear dynamics of the system is transformed into State Dependent Coefficient 

(SDC) matrices using Extended Linearization Technique. One of the key advantages of expressing the dynamics of system in 

SDC is that it fully captures the nonlinear characteristics of the system. Moreover, in SDRE control, since the weighing matrices 

are also expressed as a function of state variables, it provides better tracking response than that of its linear counterpart, LQR. 

Simulations are carried out to assess the trajectory tracking response, disturbance rejection property of controller and robustness 

of the system against parameter uncertainty. Simulation results prove that the SDRE based control cannot only provide improved 

transient response but also make the system more robust against disturbance and parameter uncertainty. 
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1. Main text  

The ball and beam system is a nonlinear, unstable and under actuated system, which has been widely used 

in the control laboratories to test the effectiveness of control algorithms. The underlying concept of ball and beam 

system can be applied to a stabilization problem for various systems such as horizontally stabilizing an airplane 

during landing and in turbulent airflow, and the balance problem dealing with goods to be carried by robots [1-2]. 

One interesting property of ball and beam system which motivated much research is that it is a non-regular system, 

whose relative degree is not well defined. Therefore, conventional exact feedback linearization techniques cannot be  
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directly applied. Hauser et al [3] proposed an approximate feedback linearization technique by dropping certain 

terms which lead to the singularities, but this approach does not result in better performance when the system is 

away from singularities. Hence, in this paper we propose a nonlinear controller using modified SDRE techniquefor 

tracking control of ball and beam system.  

State dependent Riccati Equation technique, also known as Frozen Riccati equation, is one of the nonlinear 

control methods proposed by Pearson. SDRE strategy has become very popular in the control community during the 

last two decades because of its wider non linear applications such as missile guidance and control system [4], 

autopilot design [5], under actuated robot [6], magnetic levitation system [7], continuously stirred tank reactor [8], 

and guidance law design [9]. From a computational viewpoint, SDRE control, based on nonlinear parameterization, 

offers a numerically efficient method that solves only an Algebraic Riccati equation (ARE), which is an appealing 

alternative to tedious tasks involved with solving two-point boundary value problems or Hamilton-Jacobi-Bellman 

partial differential equations associated with nonlinear optimal control problems. Moreover, unlike the linear 

controllers such as PD and LQR, the SDRE technique can change the gain matrix corresponding to states of the 

controller at each time step so that the actuator can generate proper control signal according to the current state 

values. An exhaustive survey on SDRE control has been reported in [9]. The goal of this paper is to assess the 

performance of SDRE based nonlinear controller for three cases namely tracking control, disturbance rejection and 

robustness against parameter uncertainty for ball and beam system.  

The nonlinear dynamics of the ball and beam system obtained from first principles is given in section 2. The SDC 

matrices representation of the system obtained using extended linearization approach is given in section 3. Nonlinear 

controller design using SDRE technique is detailed in section 4. The simulation results of trajectory tracking, 

disturbance rejection and robustness of the controller against parameter uncertainty are illustrated in section 5, and 

the paper ends with the concluding remarks in section 6.  

 

Nomenclature 

x  Ball position     A(x) System matrix 

  Ball velocity     B(x) Input matrix 

  Servo angle    Rm Motor armature resistance 

  Servo velocity    Lm          Motor armature inductance 

ζ  Damping ratio    Beq Equivalent damping coefficient 

n   Natural frequency of oscillation  Jm Moment of inertia of motor 

Vm  Motor voltage    Jl Moment of inertia of load 

K  State feedback gain   ts Settling time 

Q(x), R(x) Weighting matrices  α Beam angle 

J  Cost function    P(x) State transformation matrix 

 

2. System Modeling 

The benchmark ball and beam set up consists of a horizontal beam which can pivot about one end; a servo motor 

whose shaft is attached to the other end of the beam and a ball which can freely roll on top of the beam. The 

schematic diagram of ball and beam system is illustrated in Fig. 1. The beam rotates in the vertical plane, driven by 

a torque at the center of rotation created by a dc motor. The ball moves freely along the beam and in contact 

with the beam. There are two degrees of freedom in ball and beam system. One is the ball moving up and down 

the beam, and the other one is the beam rotating itself through the connected axis. The control objective is to govern 

the position of the ball by applying a suitable voltage to the DC servo motor. By adjusting the angle of the beam 

through the servo motor, the ball can be maintained at the desired position. The position of the ball is determined by 

measuring the voltage at the steel rod, whereas the angle of the servo motor is measured by the position encoder. 

The schematic diagram of the ball and beam system is shown in Fig. 2. 
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Fig. 1 Schematic diagram of ball and beam system   Fig. 2 Rolling ball free-body diagram 

 
Table 1. Parameters of Ball and Beam system 

Symbol Description Value/Unit 

 Beam length 42.55 cm 

 Link distance 2.54 cm 

 Radius of ball 1.27 cm 

 Mass of ball 0.064 kg 

 Mass of ball and beam module 0.65 kg 

 Moment of inertia of ball  4.129x10-6 kg/m2 

 Moment of inertia of beam 0.0172 kg/m2 

g Acceleration due to gravity 9.81 m/s2 

 Back EMF constant 7.68 x10-3V/rad/s 

 Torque constant 7.68 x10-3Nm/A 

 Gearbox efficiency 0.90 

 Motor efficiency 0.69 
 

 

The two forces which act on the system are translational force (Fx,t) acting along the x direction due to gravity and 

rotational force (Fx,r) produced by the acceleration of the ball. The translational force acting on the system is 

governed by the following expression: 

           (1) 

The force caused by the rotation of the ball is 

           (2) 

where  is the radius of the ball and  is the torque which equals 

          (3) 

where  is the beam angle. Using the sector formula , the angular displacement can be converted into 

linear displacement. Then, the force acting on the ball in the x direction from its momentum can be represented as 

  (4) 

By applying Newton’s second law of motion, 

  (5) 
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Substituting equations (1) and (4)into (5) results in 

  (6) 

Rearranging the equation (6) yields 

 (7) 

From Fig. 2, the beam angle can be written as  

 (8) 

The servo angle can be represented as 

 (9) 

Relation between the servo and beam angles is given by 

 (10) 

Substituting (10) into (7), the nonlinear equation of motion of the ball can be obtained as  

 (11) 

Similarly, the dynamic equation of the DC servo can be represented as 

 (12) 

 

where  and  

 

In order to obtain the state model of the system, the ball position, ball velocity, servo angle and servo velocity are 

chosen as state variables. Since the SDRE algorithm requires the dynamics of system to be represented in SDC 

matrices, in the following section SDC representation is obtained using extended linearization technique. 

3. Extended Linearization 

Extended linearization, also known as SDC parameterization, is the process of transforming a nonlinear system into 

linear like structure. By factorizing the nonlinear dynamics into the state vector and matrices which depend on the 

state itself, the SDC form is formulated. Consider the nonlinear state model of the system as 

          (13) 

The SDC parameterization yields the following system in which both the system and input matrices are explicit 

function of current state variables.  

         (14) 

Several approaches have been reported in [10] to obtain an optimal parameterization from a number of suboptimal 

ones.  By separating the inputs from states, one possible parameterization can be obtained. For this parameterization, 

an additional term  is included in the dynamic equation of ball and beam system such that the new function can 

be represented as 

      (15) 
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This removes the singularity when  is zero. Thus, thenonlinear equations of the ball and beam system such as (11) 

and (12) can be rewritten in the form of SDC as 

         (16) 

         (17) 

The controllability matrix pair of the parameterized model is given below. 

    (18) 

4. SDRE Controller 

 

SDRE technique is the extension of LQR design to nonlinear systems and it provides a suboptimal solution 

for the optimal control problem with a linear quadratic cost function. The design involves transforming the system 

dynamic equations into a pseudo-linear or state dependent coefficient (SDC) form, in which system matrices are 

represented explicitly as a function of state variables [11]. Assuming the system matrices as constant from the 

current time step, the optimal state feedback gain is determined for the parameterized system, and this procedure is 

repeated at each time step.Unlike LQR, in SDRE technique the system matrices A(x),B(x) and the penalty matrices 

Q(x) and R(x) areexpressed as functions of the states, which enables the design to capture the nonlinearity of the 

system at each time interval. The general SDRE problem is the infinite-horizon regulation of autonomous non linear 

input-affine systems. Consider the system equations are 

          (19) 

where . The idea behind the method is to extend the applicability of the Algebraic Riccati equation (ARE) 

for the control design of linear systems to a class of nonlinear systems that can be expressed in a state-dependent 

linear form as 

          (20) 

           (21) 

where  (the choice of the matrix A(x) is not unique) and g(x)=B(x). The former parameterization is 

possible if and only if f(0)=0 and f (x) is continuously differentiable. The goal is to find a state feedback control law 

that minimizes a cost function given by   

        (22) 

where a symmetric positive semi-definite matrix and R is  is a symmetric positive definite matrix. 

Moreover,  is a measure of control accuracy and  is a measure of control effort. It should be noted 

that the SDRE formulation allows one to tradeoff between the control accuracy and control effort, which is a 

property not generally found in other nonlinear control design methods. To minimize the above cost function, a state 

feedback control law can be given as 

        (23) 

where P(x) is the unique, symmetric and positive-definite solution of the State-Dependent Riccati equation. The 

optimal state feedback control gain matrix K of LQR can be determined by solving the following Algebraic Riccati 

Equation (ARE).  

     (24) 



1901 E. Vinodh Kumar et al.  /  Procedia Engineering   97  ( 2014 )  1896 – 1905 

This method requires that the full state measurement vector be available and that the pair be 

pointwise controllable in the linear sense x. This can be checked by forming the controllability matrix as in the 

linear systems sense and making sure that it has full rank in the domain of interest .This condition simply ensures 

that the Algebraic Riccati Equation has a solution at the particular state x. The point wise controllability condition is 

not necessarily equivalent to nonlinear controllability. Due to the non-uniqueness of A(x), different A(x) choices 

may yield different controllability matrices and thus different controllability characteristics.  

5. Results and Discussion 

One of the key advantages offered by SDRE is the tradeoff between control effort and state errors, and it 

can be achieved through tuning of weighting matrices Q(x) and R(x). In addition, these weighting matrices can be 

chosen to be either constant or function of state variables so as to obtain the desired response. Hence, different 

modes of behaviour can be imposed in different regions of state space. Global minimization of cost functions relies 

on the convexity of the Hamiltonian function with respect to both state vector and control input. So, it is desirable to 

choose Q(x) and R(x) according to the following proposition.Assume the scalar function . Let 

, where  is any constant symmetric positive definite matrix with 

, i=1,2, …  , n and  is such that each  takes the following form. 

        (25) 

With , j=2,4,… . Then the scalar function   is globally convex with respect to state vector x.According 

to the above proposition, in the proposed modified SDRE (MSDRE), the weighting matrices are chosen as function 

of state variables, and the performance of the MSDRE are compared with that of the standard LQR and SDRE 

whose weighting matrices are assumed to be constant. The tracking response of the LQR controller and SDRE 

controllers whose weighting matrices are chosen to be constant are illustrated in Fig. 3 and 4 respectively. Fig. 5 

shows the response of the MSDRE whose weighting matrices are chosen as function of state variables. It can be 

observed from Table 2, which gives the Q and R matrices of the three controllers along with the corresponding time 

domain analysis and the tracking error, that the tracking error and overshoot of the MSDRE controller is the least of 

the three controllers. Reduced tracking error accentuates that if the weighting matrices of SDRE are selected as 

function of state variables, it will significantly improve the performance of the system because the variations in the 

state vector is simultaneously updated during the controller gain calculation in each time instant. 
 

Table 2. Weighting matrices and transient performance of LQR, SDRE and MSDRE 

Controller Weighting matrices 

Position Tracking error 

Settling 

time (sec) 

Over 

shoot 

(%) 

IAE ISE 

LQR       R=1 7.73 8.75 1.06 0.2592 

SDRE       R=  8.61 3.3 0.519 0.0598 

MSDRE 
 

 
10.6 3.11 0.487 0.0546 
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Fig. 3 Response of LQR controller 
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Fig. 4 Response of SDRE controller with constant weighting matrices 
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Fig. 5 Response of MSDRE with weighting matrices function of state variables 

 

5.1Disturbance Rejection 

 

To assess the robustness of the controller against disturbance, a harmonic signal with a frequency of f=0.2 Hz is 

introduced into the system at time t=30sec, and the performances of the three controllers are evaluated using the 

error performance indices such as IAE, ISE, ITAE, ITSE and RMSE.Fig. 6 shows the disturbance rejection 

performance of three controllers and the corresponding error performance indices of the LQR, SDRE and MSDRE 

controllers are given in Table 3. It can be noted that the MSDRE controller takes less time than that of the other two 

controllers to arrest the deviation from reference trajectory. Moreover, the peak to peak change during disturbance is 

the least of all three in MSDRE. To highlight the effect of disturbance and the ability of the controllers to arrest the 

disturbance in short time the, the zoomed view of the ball position response is shown in Fig. 7. 

 

Table 3. Error performance indices during external disturbance 

Controller RMSE IAE ISE ITAE ITSE 
Change In 

Set point (Peak to Peak) 

LQR  4.641e-13 4.034 1.524 105.9 43.39 1.04 

SDRE 4.495e-14 1.243 0.1629 25.92 3.469 0.111 

MSDRE 2.2205e-16 1.213 0.1561 25.56 3.411 0.099 
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Fig. 6 Response of LQR, SDRE and MSDRE during external disturbance 
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Fig. 7 Zoomed view of position during external disturbance 

 

5.2 Parameter Uncertainty 

To evaluate the robustness of the controller against parameter uncertainty, three levels of uncertainty such 

as 10%, 20% and 30% are considered, and the tracking performance of the controller is plotted and shown in Fig. 8. 

Table 4 gives the error performance indices of MSDRE for the three levels of parameter uncertainties. It has been 

found that the controller is able to provide satisfactory response until 30% change in parameter uncertainty, which 

proves that the proposed controller cannot only provide desired transient performance but it can also significantly 

improve the robustness of the controller against parameter uncertainty.  

 

Table 4. Error performance indices of MSDRE during parameter uncertainty 
Parameter 

Uncertainty 
IAE ISE ITAE ITSE RMSE 

+10% 4.401 1.552 232.5 86.82 0.0548 

+20% 4.441 1.624 235.1 90.89 0.0731 

+30% 4.492 1.698 238.8 94.64 0.0816 
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Fig. 8 Response of MSDRE for parameter uncertainty 

6. Conclusion 

A nonlinear controller, based on modified State Dependent Riccati Equation algorithm, has been proposed for 

trajectory tracking of ball and beam system. The SDRE controller is the extended form of LQR for nonlinear 

systems, and it can significantly improve the robustness of the system against disturbance and parameter uncertainty 

by capturing the nonlinear dynamics of the plant in state dependent coefficient form. The nonlinear equation of 

motion of ball has been obtained from the first principles and transformed into State dependent coefficient matrices 

using extended linearization approach. The performance of the controller is validated for three cases, namely, 

trajectory tracking, disturbance rejection and robustness against parameter uncertainty. The results of modified 

SDRE have been compared with those of the LQR and standard SDRE. The reduced tracking error and increased 

robustness of the system for MSDRE suggest that it can significantly improve both the trajectory tracking behaviour 

and robustness of the system against disturbances and parameter variation.  
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