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Abstract. Making use of certain linear operator, we define a new subclass of uniformly convex
functions with negative coefficients and obtain coefficient estimates, extreme points, closure
and inclusion theorems and the radii of star likeness and convexity for the new subclass.
Furthermore, results partial sums are discussed.

1.Introduction
Let A denote the class of functions of the form

f(Z)=Z+ianZ" (1.1)
n=2

which are analytic and univalent in the open disc E = {Z :zeC |Z| < 1}. Also denote by T the subclass

of A consisting of functions of the form

fR)=2-2a,7".(a,20) (12)
n=2
Following Goodman [2 and 3], Ronning [4 and 5] introduced and studied the following sub-classes

condition.

#'(z)

()A function f e A is said to be in the class S » (05 ) uniformly starlike functions if it satisfies the
———1

Re{%(zz))_“}> 7(2)
et

(i1) A function f e A is said to be in the class UCV( ), uniformly convex functions if it satisfies the

#'(z) | |#"(=)
Re{1+ f'(z) a}> f'(Z) ,z€ E, (1.4)

,z€E, (1.3)

condition.
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and —l<a<l1.
Indeed it follows from (1.3) and (1.4) that

feUcV(a)ef'es, (a). (1.5)

For functions f € A givenby (1.1) and g(z)e A givenby & (Z) =z+ anzn we define the
n=2
Hadamard product (or Convolution) of fand g by

f*g)(z) Z+Za b,z",z€E (1.6)

Let ¢(a;c;z) be the 1ncomplete beta function defined by

Hasc;z) z+n22: ): 11 7",c#0,~1-2,... (1.7)
Where (4), is the Pochhammer symbol defined interms of the Gamma functions, by
(4), =F(ﬁ(—;)”) ={,11(/1+1)(,1+2)...(/1+n—1)72 c 2} (1.8)
Further, for f e A
La,c)f(2)=dlase: 2)* Z+§2 j az (1.9)

where Z(a, ¢)) is called Carlson — Shaffer operator [1] and the operator * stands for the hadamard
product (or convolution product) of two power series is given by (1.6). We notice that

L(a,a)f(z)= f(2). L(2.1)f ()= 2 "(z)

Now, we define a Generalized carson — Shaffer operator Z(a;c:y) by

Lasc:y)f(z)=pla;c;z)* D, £(z) (1.10)

For a function f € A where

D, f(2)=0-7)f(2)+» o (z)n=0z € E)

So, we have

Lae:r)f(2)= z_g[n(n_l)r]((gnj . (1D

It is easy to observe that for } =0, we get the Carlson- Shaffer linear operator [1].

For —1<a <l welet S (cr,7) be the subclass of functions of the form (1.1) and

satisfying the analytic criterion.

Jraenrey | [HHeens ()

-1
L(a,c,}/) L(a,c;y/)

where ( L(a,c;7)f(z) we also let (1.11) we also let
TS(a.y)=S(a,y)NT



14th ICSET-2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 263 (2017) 042157 doi:10.1088/1757-899X/263/4/042157

By suitably specializing the values of (a) and (c), the class S (¢, ) can reduces to the class studied

earlier by Ronning [5,6]. Also choosing @ =0 and =1 the class coincides with the class studied in
[11] and [12] respectively.

2. Main Results
Theorem 2.1. A function f(z) of the form (1.1)isin § (a,y) if

Z[Zn (a+1)] [1+(n- 1y]

-1<a<l,y=0
Proof. It suffices to show that

-« 2.1)

(Llac)f () | AL@en @)
L(a.c;y) f(z) Ix L(a.c:y) f(z) i
We have
2(L(a.c.7) f(2)) ke z(L(ac.y) f(2)) 1
L(a,c,y) f(z) L(a.c.y7)f(z)
o [fltlaen) ()
<2 L(a,c,]/)f(z) :

2Z(n D[ 1+(n- 1)y]( n
< 1_;[1+ (n—1) y]ECi': a

This last expression is bounded above by (1-«)if

Z[zn (a+1)] [1+(n- 1y] ”1

and this completes the proof.
Theorem 2.2. A necessary and sufficient condition for f (z) of the form (1.2) to be in the class

TS(a 7). —1<a<l, ;/>Oisthat

4

[2n (a+1)] [1+(n-1 ;/] a <l-a (2.2)

n=2 )nl

The result is sharp
Proof: In view of Theorem 2.1, we need only to prove the necessity If f(z)e7S(«,y) and z is

real then
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l—gn[l-l—(n—l)}/}((j;":l 2

S (n-1)[1+(n-1)7]

(),

a,z

n-1

1- i[1+n 1) ]E;‘

n=

Letting 7 —> 1 along the real axis we obtain the desired inequality

ZZn (a+1)[1+(n-1) y] ) La, <1-a
n=2 -1
Corollary 2.1 If f(z) TS (. ) then
(1-)
a < forn>2

[2n—(a+1)] [1+(n=1)] (4),.
The result is sharp for the function

F(e)=2- o
[2n—(a+1)] [1+(n-1)y]

(e),.,

If » =0 we get the following result of [1]

Corollary 2.2.If £(z)eTS(a, ) then
(1-a)
a < n=>2

” [2n - (a + 1)] (a)”‘l

The result is sharp for the function

F(e) - —=2)

7", n=2

Theorem 2.3. Let f(z) defined by (1.2) and g(z) defined

g(z)=

h(z)=(1-2)f(z)+ 4 g(2)

n=2

an

where ¢, = (l—ﬂ«)an +1b,,0< ﬂ <I isalsoin the class 7S (a.7)

Theorem 2.4. Let f,(z)=z and

1—%[“(;1—1)@8“%%‘

(2.3)

(2.4)

(2.5)

(2.6)

s Zb,,z" be in the class 7S (cr, ) - Then the function h(z) defined by
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@)
&)= )] [ (a1 ()., 2

For n=2,3,4.....
Then f(z)eTS(a,y) ifandonlyit f(z) can be expressed in the form

=34, £,(c)where 2, > 0and 3 4, =1
=

n=1
The proof of the Theorem 2.4, follows on line similar to the proof of the theorem on extreme points
given in silverman [9].

We prove the following theorem by defining f ( )( J=12..... m) of the form

fﬂdzz—}}yﬂ”ﬂnaMZOgeE 2.8)
n=2

Theorem 2.5 Let the function f f (Z)( Jj= 1,2..J71) defined by (2.8) be in the class 1S (0! It 7/)
( j =1,2,.....m) respectively. Then the function #(z) defined by

) b

n=2\_j=1
is in the class 7S (a, )
min
where O = {a.} where-1< . <1
1<j<m’ !

Proof:
Since fj (Z) elS (a’j,jf), Jj= (1, 2,3.... m) TS(OCj,I’) by applying theorem 2.2 to (2.8) we observe
that

=§lmr{a+1] [1+(n- Qy]j%l(
)

which in view of Theorem 2.2 again implies that 4 (z) e TS (. y)

Hence the theorem follows

Theorem 2.6 Let the function f(z) defined by (1.2) be in the class 7S (a, ).

Then f(z)close to convex of order 5(0 <6< 1) |Z| <1, where
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(a),, )"
(<),

- (1-0)[2n—(a+1)] [1+(n-1)7]

n>2 n(l-a)

}'i:

The result is sharp, with the extremal function f(z) given by (2.4)

Proof: We must show that

f(z)-1<1-0 for|g<r,

where 1, is given by (2.9), Indeed we have

f’(z)—1| < in a,
n=2

Thus

f2)-1<1-6

= n
(e
1 ;(1_5}”

Using the fact, that f € 7'S («r, ) if and only if

;[2”_(0‘“)1 [1+(n_1)7] ((i))n:l

-«

n-1

<

-1

Z

a <1

n

we can say (2.11) is true if

(1_:15] " <[2n—(a+1)] [1+(n_1)7](a),,1

(o),
l-a
that is, if
(a),.,] ™
(1-08)[2n—(a+1)] [1+(n—1)y](c)"-1
< n(1-a) o2

This completes the proof of Theorem

doi:10.1088/1757-899X/263/4/042157

(2.9)

(2.10)

2.11)

Theorem 2.7: Let the function f(z) defined by (1.2) be in the class 7S (e, )

Then f(z) is strarlike of order §(0<&<1)in |Z| <71, where

1
Cinf |[(1-6) [2n—(a+1)] [1+(n-1)7](a) e
22 (n—5) (1-a) (C)n_1

The result is sharp with the extermal function f£(z) given by (2.4)

2
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Proof: Given f e A and fis starlike of order O , we have

#'(z)
f(2)
For the left hand side of (2.12) we have
> (n-

< n=2

~1<1-6 (2.12)

2f'(z)
)

n

The last expression is less than 1-0 if

S N—0
2wl
n=2 1-o6

Using the fact that f € 7S («, ) if and only

i[Zn—(a +1)] [1+(n—1)y]%an <
n=2 ¢ n—1
we can say (2.12) is true if

n-8 _IS[Zn—(a—i-l)] [1—1— (n—-1)y ](a)nil
1-0 -«

or equivalently,

|Z|<{(1—5)[2n—(0(+1)] [(1+n—1)7/] (a)nl}%l
< (n—5) (l—a) (C)n_l

which yields the starliekness of the family

n-1

<1

Using the fact that f(z) is convex if and only if z £'(z) is stalike, we get the following corollary.

Corollary 2.3: Let the function f(z) defined by (1.2)
be in the class 7S (e, 7). Then f(z) is convex of order & (0 <o < 1) |Z| <r; where

(1-8)[2n~(a+1)] [1+(n-1)y] Dor -
inf (c)
nx?2 n(n—5) (l—a)

}’%:

The result is sharp with external function f(z) given by (2.4).

3. Partial Sums
Following the earlier works by Silverman [9] and Silvia [10] on partial sums of analytic functions.
We consider in this section partial sums of functions in this class 7S («,y) and obtain sharp lower

bounds for the ratios of real part of f(z) to fi (Z) and f'(z) to fk,(z)



14th ICSET-2017

IOP Publishing

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042157 doi:10.1088/1757-899X/263/4/042157

Theorem 3.1: Let f(z)eTS(«,y) be giving by (1.1) and

define the partial sums f(z) and fi (Z) by f,(z)=z and
f.(2) Z+Za 2" (keN/1)

n=2
Suppose also that

Where d, {%}[u(ml)ﬂ%

Then f eTS(a,y) Further more,

[ 2B) 1

and

Re{fk (Z)} > din
f(Z) 1+d,,,

Proof: For the coefficients d » given by (3.2) it is not difficult to verify that

d,>d >1

n+l

Therefore we have

k+1

Zd |a |<1
n=2 n=k+1

by using the hypothesis (3.2). By setting

&(2)= dkn{j;((Z)) [1_dk1+1}

n—1
d., z a,z

:1+ n=k+1
1+Zaz

and applymg (3.6), we find that

o0

Il

|g1 < _1| dan k+1an
|g2Z+1| 2 22|a| d., N a,
n=k+1
<l,zeFE

which ready yields the assertion (3.3) of Theorem 3.1. In order to see that

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7

(3.8)
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flz)=z+>— (3.9)

i
gives sharp result, we observe that for z =re 7 that

k
f(z) :1+Z——>1—Lasz—>1’
Ji (Z) dy, dy. Similarly, if we take
S (Z) dy .

—(1+d _
gz(z) ( + k+1){ f(Z) 1+d, .,

(1+ dn+1) ianzn_l
=1— _ n=k+1 (3.10)

1+> az""

And making use of (3.6) we can deduce that

(1+d.,)Y

)_1| < n=k+1
z)+1| 2_221‘:

a, _(1_dk+l)i

n=2 n=k+1

an

A\

|gz( (3.11)
gz(

al’l

which leads is immediately to the assertion (3.4) of Theorem 3.1

The bound in (3.4) is sharp for eachk € N with the extermal function f(z) given by (3.9).
The proof of the Theorem 3.1. is thus complete.

Theorem 3.2:If f(z)of the form (1.1) satisfies the condition (2.1) then

f'(z) k+1
Req—<t>1——— 3.12
e{ fkr(z)} dy., ( :
Proof:
By setting
f’(Z)} k+1
=d, " >1——
g(Z) ‘ {fk (Z) d,

d o0 o0
k+1 n—1 n—1
1+—k+1 E na,z  + E na,z
_ n=k+1 n=2

k
1+ z na,z""
n=2

d o0
I+ %1 N pg 77!
k+1 Z "

n=k+1

k
1+ Z na,z""
n=2
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dk+l S
| z)—1|< k+1,,§11n !
|g Z)+1| 2—2Zk:nan—d"“ in .
n=2 k 1n:k+l
Now
g(z)—l <1
g(z)+1
If
ina +h ina <1
n=2 ! k+1n:k+l !
k
Since the left hand side of (4.14) is bounded above by z d,la, if
n=2
i(d —n)a,|+ id —%na >0
= S k1T

k+1
and the proof is complete. The result is sharp for the extremal function f (z) =z+

k+1
Theorem 3.3: If f(z) of the form (1.1) satisfies the condition (2.1) then

Re fk’(z)} > dy.
f,(Z) k+1+d,,,
Proof: By setting

g(z)= [(k +1)+ dkﬂ]{fk'(z)_

dk+1
f’(Z) k+1+d, .,
d ©
14+ L na 7"
_1_ ( k +1)Zn:k+1 n

k n-1
1+ ZM na,z
and making use of (3.15), we deduce that

1+ d"”j Z na,
k+1).55,

k dk+] *®
2Zn=2n _(1_‘_ k +1j2n=k+ln a
which leads us immediately to the assertion of the Theorem 3.3
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