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a b s t r a c t

Using the generalized hypergeometric function, we study a class Φ
p

k (q, s; A, B, λ) of

analytic functions with negative coefficients. Coefficient estimates, distortion theorem,

extreme points and the radii of close-to-convexity and convexity for this class are given.

We also derive many results for the modified Hadamard product of functions belonging to

the class Φ
p

k (q, s; A, B, λ).
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1. Introduction

Let A(p, k) denote the class of functions of the form:

f (z) = zp +
∞
∑

n=k

anz
n (p < k; p, k ∈ N = {1, 2, . . .}), (1.1)

which are analytic in U = U(1), where U(r) = {z : z ∈ C and |z| < r}. Also let us put A(p) = A(p, p + 1) and A = A(1). Let
the functions f (z) and g(z) be analytic in U . Then the function f (z) is said to be subordinate to g(z) if there exists a function
w(z) analytic in U , withw(0) = 0 and |w(z)| < 1 (z ∈ U), such that f (z) = g(w(z)) (z ∈ U). We denote this subordination
by f (z) ≺ g(z).

A function f (z) belonging to the class A(p) is said to be p-valent starlike of order α in U(r) if and only if

Re

{

zf ′(z)

f (z)

}

> α (z ∈ U(r); 0 < r ≤ 1; 0 ≤ α < p), (1.2)

and a function f (z) belonging to the class A(p) is said to be p-valent convex of order α in U(r) if and only if

Re

{

1 +
zf ′′(z)

f ′(z)

}

> α (z ∈ U(r); 0 < r ≤ 1; 0 ≤ α < p). (1.3)

Also a function belonging to the class A(p) is said to be p-valent close-to-convex of order α in U(r) if and only if

Re

{

f ′(z)

zp−1

}

> α (z ∈ U(r); 0 < r ≤ 1; 0 ≤ α < p). (1.4)
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We denote by S∗
p (α) the class of all functions in A(p) which are p-valent starlike of order α in U , by Scp(α) the class of all

functions in A(p) which are p-valent convex of order α in U and by Skp(α) the class of all functions in A(p) which are p-valent
close-to-convex functions of order α in U . We also set

S∗
p = S∗

p (0), S∗(α) = S∗
1 (α), Scp = Scp(0), C(α) = Sc1(α),

Skp = Skp(0) and K(α) = Sk1(α).

Let G be a subclass of the class A. We define the radius of starlikeness R∗(G), the radius of convexity Rc(G) and the radius
of close-to-convexity Rk(G) for the class G by

R∗(G) = inf
f∈G

(sup{r ∈ (0, 1] : f is starlike in U(r)}),

Rc(G) = inf
f∈G

(sup{r ∈ (0, 1] : f is convex in U(r)}),

and

Rk(G) = inf
f∈G

(sup{r ∈ (0, 1] : f is close-to-convex in U(r)}).

For analytic functions f (z) =
∑∞

n=0 anz
n and g(z) =

∑∞
n=0 bnz

n, by (f ∗ g)(z) we denote the Hadamard product (or
convolution) of f (z) and g(z), defined by

(f ∗ g)(z) =
∞
∑

n=0

anbnz
n .

For complex parameters α1, . . . , αq and β1, . . . , βs (βj 6= 0, −1, −2, . . . ; j = 1, . . . , s), we define the generalized
hypergeometric function qFs(α1, . . . αq; β1, . . . , βs; z) by

qFs(α1, . . . αq; β1, . . . , βs; z) =
∞
∑

n=0

(α1)n...(αq)n

(β1)n...(βs)n
·
zn

n!
(q ≤ s + 1; q, s ∈ N0 = N ∪ {0}; z ∈ U), (1.5)

where (θ)n is the Pochhammer symbol defined, in terms of the Gamma function Ŵ, by

(θ)n =
Ŵ(θ + n)

Ŵ(θ)
=
{

1 (n = 0)
θ(θ + 1)...(θ + n − 1) (n ∈ N).

(1.6)

Corresponding to a function hp(α1, . . . αq; β1, . . . , βs; z) defined by

hp(α1, . . . αq; β1, . . . , βs; z) = zp qFs(α1, . . . αq; β1, . . . , βs; z),
we consider a linear operator Hp(α1, . . . αq; β1, . . . , βs) : A(p) → A(p), defined by the convolution

Hp(α1, . . . αq; β1, . . . , βs)f (z) = hp(α1, . . . αq; β1, . . . , βs; z) ∗ f (z). (1.7)

We observe that, for a function f (z) of the form (1.1), we have

Hp(α1, . . . αq; β1, . . . , βs)f (z) = zp +
∞
∑

n=k

Ŵnanz
n, (1.8)

where

Ŵn =
(α1)n−p...(αq)n−p

(β1)n−p...(βs)n−p(n − p)!
. (1.9)

If, for convenience, we write

Hp,q,s(α1) = Hp(α1, . . . αq; β1, . . . , βs), (1.10)

then one can easily verify from the definition (1.7) that

z(Hp,q,s(α1)f (z))
′ = α1Hp,q,s(α1 + 1)f (z) − (α1 − p)Hp,q,s(α1)f (z). (1.11)

The linear operator Hp(α1, . . . αq; β1, . . . , βs) was introduced and studied by Dziok and Srivastava [1].
We note that, for f (z) ∈ A(p, p + 1) = A(p), we have :
(i) Hp,2,1(a, 1; c) = Lp(a, c) (a > 0; c > 0) Saitoh [2];
(ii)Hp,2,1(ν+p, 1; ν+p+1)f (z) = Jν,p(f ), where Jν,p(f ) is the generalized Bernari–Libera–Livingston operator (see [3–5])

defined by

(Jν,pf )(z) =
ν + p

zν

∫ z

0

tν−1f (t)dt (ν > −p; p ∈ N); (1.12)
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(iii)Hp,2,1(µ+p, 1; 1)f (z) = Dµ+p−1f (z) (µ > −p), whereDµ+p−1f (z) is the (µ+p−1)th order Ruscheweyh derivative
of a function f (z) ∈ A(p) (see Kumar and Shukla [6,7]);

(iv) Hp,2,1(1 + p, 1; 1 + p − µ) = Ω
(µ,p)
z f (z), where the operator Ω

(µ,p)
z f (z) is defined by (see Srivastava and Aouf [8])

Ω(µ,p)
z f (z) =

Ŵ(1 + p − µ)

Ŵ(1 + p)
zµDµ

z f (z) (0 ≤ µ ≤ 1; p ∈ N), (1.13)

where D
µ
z is the fractional derivative operator (see, for details, [9,10]).

Making use of the operator Hp,q,s(α1), we say that a function f (z) ∈ A(p, k) is in the class Ψ
p

k (q, s; A, B, λ) if it satisfies
the following condition :

1

p − λ

(

(Hp,q,s(α1)f (z))
′

zp−1
− λ

)

≺
1 + Az

1 + Bz
(z ∈ U)

(0 ≤ B ≤ 1; −B ≤ A < B; 0 ≤ λ < p; p, k, q, s ∈ N) (1.14)

or, equivalently, if

∣

∣

∣

∣

∣

∣

(Hp,q,s(α1)f (z))
′

zp−1 − p

B
(Hp,q,s(α1)f (z))

′

zp−1 − [pB + (A − B)(p − λ)]

∣

∣

∣

∣

∣

∣

< 1. (1.15)

Furthermore, we say that a function f (z) ∈ Ψ
p

k (q, s; A, B, λ) is in the subclass Φ
p

k (q, s; A, B, λ) of Ψ
p

k (q, s; A, B, λ) if f (z)
is of the following form :

{

f ∈ T (p, k) : f (z) = zp −
∞
∑

n=k

anz
n (an ≥ 0; n = k, k + 1, k + 2, . . .)

}

. (1.16)

In particular, for q = s + 1 and αs+1 = 1, we write Φ
p

k (s; A, B, λ) = Φ
p

k (s + 1, s; A, B, λ).

We note that :

(i) The subclass V
p

k (q, s; A, B, λ) of T (p, k) obtained by replacing
(Hp,q,s(α1)f (z))

′

zp−1 with
z(Hp,q,s(α1)f (z))

′

Hp,q,s(α1)f (z)
in (1.15) was studied

by Aouf [11];

(ii) The subclass V
p

k (q, s; A, B) of T (p, k) obtained by replacing
(Hp,q,s(α1)f (z))

′

zp−1 by
z(Hp,q,s(α1)f (z))

′

Hp,q,s(α1)f (z)
in (1.15) (with λ = 0) was

studied by Dziok and Srivastava [1].

We note that for k = p + 1, q = 2 and s = 1, we obtain the following interesting relationships with some of the special
classes which were investigated recently :

(i) Taking α1 = β1 and α2 = 1, we obtain :

Φ
p

p+1(2, 1; A, B, λ) = P∗(p, A, B, λ) (Aouf [12]);

(ii) Taking α1 = β1, α2 = 1, A = −β and B = β (0 < β ≤ 1), we obtain :

Φ
p

p+1(2, 1; −β, β, λ) = T ∗
p (λ, β) (Aouf [13]);

(iii) Taking α1 = β1, α2 = 1, A = −1 and B = 1, we obtain :

Φ
p

p+1(2, 1; −1, 1, λ) = T ∗
p (λ) (Aouf [13] and Lee et al. [14]);

=
{

f (z) ∈ T (p) : Re
{

f ′(z)

zp−1

}

> λ, 0 ≤ λ < p, z ∈ U

}

; (1.17)

(iv) Taking α1 = ν + p(ν > −p), α2 = 1, β1 = 1, A = −1 and B = 1

Φ
p

p+1(2, 1; −1, 1, λ) = Qν+p−1( Aouf and Darwish [15])

=
{

f (z) ∈ T (p) : Re
{

(Dν+p−1f (z))′

zp−1

}

> λ, 0 ≤ λ < p, ν > −p, z ∈ U

}

. (1.18)

Also we note that :

Φ
p

k (q, s; −ρ, ρ, λ) = Φ
p

k (q, s; λ, ρ)

=







f ∈ T (p, k) :

∣

∣

∣

∣

∣

∣

(Hp,q,s(α1)f (z))
′

zp−1 − p

(Hp,q,s(α1)f (z))
′

zp−1 + p − 2λ

∣

∣

∣

∣

∣

∣

< ρ, (z ∈ U; 0 ≤ λ < p; 0 < ρ ≤ 1; p ∈ N)







. (1.19)
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2. Coefficient estimates

Theorem 1. A function f (z) of the form (1.16) belongs to the class Φ
p

k (q, s; A, B, λ) if and only if

∞
∑

n=k

n(1 + B)Ŵnan ≤ (B − A)(p − λ), (2.1)

where Ŵn is given by (1.9).

Proof. Let |z| = r (0 ≤ r < 1). If (2.1) holds, we find from (1.15) and (1.16) that
∣

∣(Hp,q,s(α1)f (z))
′ − pzp−1

∣

∣−
∣

∣B(Hp,q,s(α1)f (z))
′ − [pB + (A − B)(p − λ)]zp−1

∣

∣

=

∣

∣

∣

∣

∣

−
∞
∑

n=k

nŴnanz
n−1

∣

∣

∣

∣

∣

−

∣

∣

∣

∣

∣

(B − A)(p − λ)zp−1 −
∞
∑

n=k

BnŴnanz
n−1

∣

∣

∣

∣

∣

≤
∞
∑

n=k

nŴnanr
n−1 −

{

(B − A)(p − λ)rp−1 −
∞
∑

n=k

BnŴnanr
n−1

}

= rp−1

(

∞
∑

n=k

n(1 + B)Ŵnanr
n−p − (B − A)(p − λ)

)

<

∞
∑

n=k

n(1 + B)Ŵnan − (B − A)(p − λ) ≤ 0.

Hence, by the maximummodulus theorem, f (z) ∈ Φ
p

k (q, s; A, B, λ).

Conversely, let f (z) ∈ Φ
p

k (q, s; A, B, λ) be given by (1.16). Then, from (1.15) and (1.16), we have

∣

∣

∣

∣

(Hp,q,s(α1)f (z))
′ − pzp−1

B(Hp,q,s(α1)f (z))
′ − [pB + (A − B)(p − λ)]zp−1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

−
∞
∑

n=k

nŴnanz
n−p

(B − A)(p − λ) −
∞
∑

n=k

BnŴnanz
n−p

∣

∣

∣

∣

∣

∣

∣

∣

< 1 (z ∈ U), (2.2)

where Ŵn is defined by (1.9). Putting z = r (0 ≤ r < 1), we obtain

∞
∑

n=k

nŴnanr
n−p < (B − A)(p − λ) −

∞
∑

n=k

BnŴnanr
n−p,

which, upon letting r → 1−, readily yields the assertion (2.1). This completes the proof of Theorem 1. �

Since nŴn, where Ŵn is defined by (1.9) is a decreasing function with respect to βj (j = 1, . . . , s) and an increasing function
with respect to αℓ (ℓ = 1, . . . , q), from Theorem 1, we obtain :

Corollary 1. If ℓ ∈ {1, . . . , q}, j ∈ {1, . . . , s}, 0 ≤ α′
ℓ ≤ αℓ and β ′

j ≥ βj, β j > 0, then the class Φ
p

k (q, s; A, B, λ) (for the

parameters α1, . . . , αq and β1, . . . , βs) is included in the class Φ
p

k (q, s; A, B, λ) for the parameters

α1, . . . , αℓ−1, α
′
ℓ, αℓ+1, . . . , αq and β1, . . . , βj−1, β

′
j , βj+1, . . . , βs.

From Theorem 1, we also have the following corollary:

Corollary 2. If a function f (z) of the form (1.16) belongs to the class Φ
p

k (q, s; A, B, λ), then

an ≤
(B − A)(p − λ)

n(1 + B)Ŵn

(n = k, k + 1, k + 2, . . .), (2.3)

where Ŵn is defined by (1.9). The result is sharp, the functions fn(z) of the form :

fn(z) = zp −
(B − A)(p − λ)

n(1 + B)Ŵn

zn (n ≥ k) (2.4)

being the extremal function.
Let f (z) be defined by (1.16) with k = p + 1, p ∈ N and for A = −1 and B = 1, the condition (1.16) is equivalent to :

Hp(α1)f (z) ∈ T ∗
p (λ) (0 ≤ λ < p). (2.5)
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Thus we have the following lemma:

Lemma 1. If αj = βj (j = 1, 2, . . . , s), then

Φ
p

k (s; −1, 1, λ) ⊂ T ∗
p (λ) (0 ≤ λ < p).

By the definition of the class Φ
p

k (q, s; A, B, λ), we have the following lemma.

Lemma 2. If A1 ≤ A2, B1 ≥ B2 and 0 ≤ λ1 < λ2 < p, then

Φ
p

k (q, s; A1, B1, λ2) ⊂ Φ
p

k (q, s; A2, B2, λ1) ⊂ Φ
p

k (q, s; −1, 1, 0).

3. Distortion theorem and extreme points

Theorem 2. Let a function f (z) of the form (1.16) belong to the class Φ
p

k (q, s; A, B, λ). If the sequence {nŴn} is nondecreasing,
then

rp −
(B − A)(p − λ)

k(1 + B)Ŵk

rk ≤ |f (z)| ≤ rp +
(B − A)(p − λ)

k(1 + B)Ŵk

rk (|z| = r < 1). (3.1)

If the sequence {Ŵn} is nondecreasing, then

prp−1 −
(B − A)(p − λ)

(1 + B)Ŵk

rk−1 ≤ |f ′(z)| ≤ prp−1 +
(B − A)(p − λ)

(1 + B)Ŵk

rk−1 (|z| = r < 1), (3.2)

where Ŵn is defined by (1.9). The result is sharp, with the extremal function f (z) given by

f (z) = zp −
(B − A)(p − λ)

k(1 + B)Ŵk

zk (k, p ∈ N). (3.3)

Proof. Let a function f (z) of the form (1.16) belongs to the class Φ
p

k (q, s; A, B, λ). If the sequence {nŴn} is nondecreasing
and positive, by Theorem 1, we have

∞
∑

n=k

an ≤
(B − A)(p − λ)

k(1 + B)Ŵk

, (3.4)

and if the sequence {Ŵn} is nondecreasing and positive, by Theorem 1, we have

∞
∑

n=k

nan ≤
(B − A)(p − λ)

(1 + B)Ŵk

. � (3.5)

Making use of the conditions (3.4) and (3.5), in conjunction with the definition (1.16), we readily obtain the assertions
(3.1) and (3.2) of Theorem 2.

Corollary 3. Let a function f (z) of the form (1.16) belong to the class Φ
p

k (s; A, B, λ). If α1 ≥ β1 + 1, and αj ≥ βj (j = 2, . . . , s),
then the assertion (3.1) holds true. Moreover, if α1 ≥ β1, then the assertion (3.2) holds true.

Proof. If q = s, α1 ≥ β1 + 1, and αj ≥ βj (j = 2, . . . , s), then the sequence {nŴn} is nondecreasing. Moreover, if α1 ≥ β1,
then the sequence {Ŵn} is nondecreasing. Thus, by Theorem 2, we have Corollary 3. �

Theorem 3. Let Ŵn be defined by (1.9) and let us put

fk−1(z) = zp (3.6)

and

fn(z) = zp −
(B − A)(p − λ)

n(1 + B)Ŵn

zn (n = k, k + 1, k + 2, . . .). (3.7)
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A function f (z) belongs to the class Φ
p

k (q, s; A, B, λ) if and only if it is of the form :

f (z) =
∞
∑

n=k−1

µnfn(z) (z ∈ U), (3.8)

where

∞
∑

n=k−1

µn = 1 (µn ≥ 0; n = k − 1, k, k + 1, . . .). (3.9)

Proof. Let a function f (z) of the form (1.16) belong to the class Φ
p

k (q, s; A, B, λ). Setting

µn =
n(1 + B)Ŵn

(B − A)(p − λ)
an (n = k, k + 1, k + 2, . . .) and µk−1 = 1 −

∞
∑

n=k

µn,

we see that µn ≥ 0 (n = k, k + 1, k + 2, . . .). Since µk−1 ≥ 0, by (2.1), we thus have

∞
∑

n=k−1

µnfn(z) =

(

1 −
∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
an

)

zp +
∞
∑

n=k

(

zp −
(B − A)(p − λ)

n(1 + B)Ŵn

zn
)

n(1 + B)Ŵn

(B − A)(p − λ)
an

= zp −
∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
anz

p +
∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
anz

p −
∞
∑

n=k

anz
n

= zp −
∞
∑

n=k

anz
n = f (z),

and the condition holds true.
Next, let a function f (z) satisfy the condition (3.8). Then we have

f (z) =
∞
∑

n=k−1

µnfn(z) = µk−1fk−1(z) +
∞
∑

n=k

µnfn(z)

=

(

1 −
∞
∑

n=k

µn

)

zp +
∞
∑

n=k

µn

(

zp −
(B − A)(p − λ)

n(1 + B)Ŵn

zn
)

= zp −
∞
∑

n=k

µn

(B − A)(p − λ)

n(1 + B)Ŵn

zn.

Thus the function f (z) is of the form (1.16), where

an =
(B − A)(p − λ)µn

n(1 + B)Ŵn

(n = k, k + 1, k + 2, . . .).

It is sufficient to prove that the assertion (2.1) holds true. Since

∞
∑

n=k

n(1 + B)Ŵnan =
∞
∑

n=k

(B − A)(p − λ)µn = (B − A)(p − λ)(1 − µk−1) ≤ (B − A)(p − λ),

the required condition is indeed true. �

From Theorem 3, we obtain the following corollary.

Corollary 4. The class Φ
p

k (q, s; A, B, λ) is convex. The extremal points are the functions fk−1(z) and fn(z)(n ≥ k) given by (3.6)
and (3.7), respectively.

4. The radii of close-to-convexity and convexity

Theorem 4. The radius of p-valently close-to-convex for the class Φ
p

k (q, s; A, B, λ) is given by

R∗ (Φ
p

k (q, s; A, B, λ)
)

= inf
n≥k

[

p(1 + B)Ŵn

(B − A)(p − λ)

]
1

(n−p)

, (4.1)

where Ŵn is defined by (1.9). The result is sharp.



362 M.K. Aouf, H.E. Darwish / Computers and Mathematics with Applications 57 (2009) 356–366

Proof. It is sufficient to show that
∣

∣

∣

∣

f ′(z)

zp−1
− p

∣

∣

∣

∣

< p (z ∈ U(r); 0 < r ≤ 1). (4.2)

Since
∣

∣

∣

∣

f ′(z)

zp−1
− p

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
∞
∑

n=k

nanz
n−p

∣

∣

∣

∣

∣

,

putting |z| = r , the condition (4.2) is true if

∞
∑

n=k

n

p
anr

n−p ≤ 1. (4.3)

By Theorem 1, we have

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
an ≤ 1,

where Ŵn is defined by (1.9). Thus the condition (4.3) is true if

n

p
rn−p ≤

n(1 + B)Ŵn

(B − A)(p − λ)
(n = k, k + 1, k + 2, . . .),

that is, if

r ≤
[

p(1 + B)Ŵn

(B − A)(p − λ)

]
1

(n−p)

(n = k, k + 1, k + 2, . . .). �

It follows that any function f (z) ∈ Φ
p

k (q, s; A, B, λ) is p-valently close-to-convex in the disc U
(

R∗(Φ
p

k (q, s; A, B, λ))
)

,

where R∗ (Φ
p

k (q, s; A, B, λ)
)

is defined by (4.1).

Corollary 5.

R∗ (Φ
p

k (s; A, B, λ)
)

=















1, (αj ≥ βj, j = 1, . . . , s),

min
n≥k

[

p(1 + B)Ŵn

(B − A)(p − λ)

]
1

(n−p)

, (αj < βj, j = 1, . . . , s),

(4.4)

where Ŵn is defined by (1.9). The result is sharp.

Proof. By Corollary 1 and Lemmas 1 and 2, we have

Φ
p

k (s; A, B, λ) ⊂ T ∗
p (λ) (αj ≥ βj, j = 1, . . . , s).

By Theorem 4, any function f (z) ∈ Φ
p

k (s; A, B, λ) is p-valently close-to-convex in the disc U(r), where

r = inf
n≥k

(dn)
1

(n−p)

(

dn =
p(1 + B)Ŵn

(B − A)(p − λ)

)

.

Since, for αj < βj (j = 1, . . . , s), we have

lim
n→∞

dn = d < 1, lim
n→∞

(dn)
1

n−p = 1 and dn > 0 (n = k, k + 1, k + 2, . . .),

the infimum of the set

{

(dn)
1

(n−p) : n ≥ k

}

is realized for an element of this set for some n = n0. Moreover, the function

fn0(z) = zp −
(B − A)(p − λ)

n0(1 + B)Ŵn0

zn0 ,

belongs to the class Φ
p

k (s; A, B, λ), and for z =
(

dn0

)
1

(n0−p) , we have

Re

{

f ′
n0

(z)

zp−1

}

= 0.

Thus the result is sharp. �
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From Theorem 4 we can obtain direct estimation of the radius of p-valently close-to-convex for the class Φ
p

k (s; A, B, λ)
with αj ≤ βj (j = 1, . . . , s).

Corollary 6. If a function f (z) belongs to the class Φ
p

k (s; A, B, λ) with αj ≤ βj (j = 1, . . . , s), then f (z) is p-valently close-to-

convex in the disc U(r∗), where

r∗ =
α1......αs

β1......βs

. (4.5)

Proof. Since

p(1 + B)

(B − A)(p − λ)
> 1 (0 ≤ B ≤ 1; −B ≤ A < B; 0 ≤ λ < p; p ∈ N) (4.6)

and, for αj ≤ βj (j = 1, . . . , s),

Ŵn =
(α1)n−p.....(αs)n−p

(β1)n−p.....(βs)n−p

≥
(α1)

n−p.....(αs)
n−p

(β1)
n−p.....(βs)

n−p

=
(

α1......αs

β1......βs

)n−p

,

we obtain

R∗(Φ
p

k (s; A, B, λ)) = inf
n≥k

[

p(1 + B)Ŵn

(B − A)(p − λ)

]
1

(n−p)

≥
α1......αs

β1......βs

,

which completes the proof of Corollary 6. �

Theorem 5. The radius of p-valently convex for the class Φ
p

k (q, s; A, B, λ) is given by

Rc(Φ
p

k (q, s; A, B, λ)) = inf
n≥k

[

p2(1 + B)Ŵn

n(B − A)(p − λ)

]

1
(n−p)

, (4.7)

where Ŵn is defined by (1.9). The result is sharp.

Proof. It is sufficient to show that

∣

∣

∣
1 + zf ′′(z)

f ′(z) − p

∣

∣

∣
< p (z ∈ U(r); 0 < r ≤ 1). Using similar arguments as given by

Theorem 4, we can get the result. �

From Theorem 5 we can obtain direct estimation of the radius of p-valently convex for the class Φ
p

k (s; A, B, λ).

Corollary 7. If a function f (z) belongs to the class Φ
p

k (s; A, B, λ)(α1 ≤ β1 + 1); α1 ≤ p + 1; αj ≤ βj (j = 2, . . . , s), then f (z)
is p-valently convex in the disc U(r), where

r =
(α1 − 1)(α2).....(αs)

(β1)(β2)...............(βs)
. (4.8)

Proof. For α1 ≤ p + 1, we have

p

n

(

α1 + n − p − 1

α1 − 1

)

≥ 1.

Since

p

n
Ŵn =

p

n

(

(α1)n−p.....(αs)n−p

(β1)n−p.....(βs)n−p

)

=
p

n

(

α1 + n − p − 1

α1 − 1

)

(α1 − 1)n−p(α2)n−p...(αs)n−p

(β1)n−p......................(βs)n−p

≥
p

n

(

α1 + n − p − 1

α1 − 1

)

(α1 − 1)n−pα
n−p

2 ...α
n−p
s

β
n−p

1 ......................β
n−p
s

≥
(

(α1 − 1)α2...αs

β1................βs

)n−p
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by (4.6), we have

Rc(Φ
p

k (s; A, B, λ)) = inf
n≥k

[

p2(1 + B)Ŵn

n(B − A)(p − λ)

]

1
(n−p)

= inf
n≥k

[

p(1 + B)

(B − A)(p − λ)
·
pŴn

n

]
1

(n−p)

≥
(α1 − 1)(α2)...(αs)

(β1)(β2)...............(βs)
,

which completes the proof of Corollary 7. �

5. Modified Hadamard product

For the functions

fj(z) = zp −
∞
∑

n=k

an,jz
n (an,j ≥ 0; j = 1, 2; k, p ∈ N), (5.1)

we denote by (f1 ⊗ f2)(z) the modified Hadamard product (or convolution) of the functions f1(z) and f2(z), that is,

(f1 ⊗ f2)(z) = zp −
∞
∑

n=k

an,1an,2z
n. (5.2)

Theorem 6. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the class Φ
p

k (q, s; A, B, λ). If the sequence {nŴn} is

nondecreasing, then (f1 ⊗ f2)(z) ∈ Φ
p

k (q, s; A, B, δ), where

δ = p −
(B − A)(p − λ)2

k(1 + B)Ŵk

. (5.3)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [16], we need to find the largest δ such that

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − δ)
an,1an,2 ≤ 1. (5.4)

Since

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
an,1 ≤ 1 (5.5)

and

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
an,2 ≤ 1, (5.6)

by the Cauchy–Schwarz inequality, we have

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)

√
an,1an,2 ≤ 1. (5.7)

Thus it is sufficient to show that

n(1 + B)Ŵn

(B − A)(p − δ)
an,1an,2 ≤

n(1 + B)Ŵn

(B − A)(p − λ)

√
an,1an,2 (n ≥ k) (5.8)

that is, that

√
an,1an,2 ≤

(p − δ)

(p − λ)
(n ≥ k). (5.9)
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Note that

√
an,1an,2 ≤

(B − A)(p − λ)

n(1 + B)Ŵn

(n ≥ k). (5.10)

Consequently, we need only to prove that

(B − A)(p − λ)

n(1 + B)Ŵn

≤
(p − δ)

(p − λ)
(n ≥ k), (5.11)

or, equivalently, that

δ ≤ p −
(B − A)(p − λ)2

n(1 + B)Ŵn

(n ≥ k). (5.12)

Since

Φ(n) = p −
(B − A)(p − λ)2

n(1 + B)Ŵn

(5.13)

is an increasing function of n (n ≥ k), letting n = k in (5.13), we obtain

δ ≤ Φ(k) = p −
(B − A)(p − λ)2

k(1 + B)Ŵk

, (5.14)

which proves the main assertion of Theorem 6.

Finally, by taking the functions fj(z) (j = 1, 2) given by

fj(z) = zp −
(B − A)(p − λ)

k(1 + B)Ŵk

zk (j = 1, 2; k, p ∈ N) (5.15)

we can see that the result is sharp. �

Theorem 7. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the class Φ
p

k (q, s; A, B, λ). If the sequence {nŴn} is

nondecreasing. Then the function

h(z) = zp −
∞
∑

n=k

(a2n,1 + a2n,2)z
n (5.16)

belongs to the class Φ
p

k (q, s; A, B, τ ), where

τ = p −
2(B − A)(p − λ)2

k(1 + B)Ŵk

. (5.17)

The result is sharp for the functions fj(z) (j = 1, 2) defined by (5.15).

Proof. By virtue of Theorem 1, we obtain

∞
∑

n=k

{

n(1 + B)Ŵn

(B − A)(p − λ)

}2

a2n,1 ≤

{

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
an,1

}2

≤ 1 (5.18)

and

∞
∑

n=k

{

n(1 + B)Ŵn

(B − A)(p − λ)

}2

a2n,2 ≤

{

∞
∑

n=k

n(1 + B)Ŵn

(B − A)(p − λ)
an,2

}2

≤ 1. (5.19)

It follows from (5.18) and (5.19) that

∞
∑

n=k

1

2

{

n(1 + B)Ŵn

(B − A)(p − λ)

}2

(a2n,1 + a2n,2) ≤ 1. (5.20)

Therefore, we need to find the largest τ such that

n(1 + B)Ŵn

(B − A)(p − τ)
≤

1

2

{

n(1 + B)Ŵn

(B − A)(p − λ)

}2

(n ≥ k), (5.21)
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that is,

τ ≤ p −
2(B − A)(p − λ)2

n(1 + B)Ŵn

(n ≥ k). (5.22)

Since

D(n) = p −
2(B − A)(p − λ)2

n(1 + B)Ŵn

, (5.23)

is an increasing function of n (n ≥ k), we readily have

τ ≤ D(k) = p −
2(B − A)(p − λ)2

k(1 + B)Ŵk

, (5.24)

and Theorem 8 follows at once. �

Remark 1. Taking A = −ρ and B = ρ (0 < ρ ≤ 1) in the above results, we obtain the corresponding results for the class
Φ

p

k (q, s; λ, ρ).
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