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1. Introduction

Let A(p, k) denote the class of functions of the form:

o0
f(z):z”+Zanz” p<kpkeN={1,2,...]), (1.1)
n=k
which are analyticin U = U(1), where U(r) = {z : z € C and |z| < r}. Also let us put A(p) = A(p,p + 1) and A = A(1). Let
the functions f (z) and g(z) be analytic in U. Then the function f (z) is said to be subordinate to g(z) if there exists a function
w(z) analytic in U, with w(0) = 0and |w(z)| < 1(z € U), such thatf(z) = g(w(z)) (z € U). We denote this subordination
by f(z) < g(2).
A function f (z) belonging to the class A(p) is said to be p-valent starlike of order « in U(r) if and only if

7f'(2)
Re >a (zeU@); 0<r<1,0<a<p), (1.2)
f@
and a function f (z) belonging to the class A(p) is said to be p-valent convex of order « in U(r) if and only if
zf"(z
Re +f()}>oe (zeU(m);0<r=10=<a<p). (13)
f'(@)
Also a function belonging to the class A(p) is said to be p-valent close-to-convex of order « in U(r) if and only if
f
Re el feglcd (zeU@); 0<r<1,0=<a<p). (1.4)
z
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We denote by S;‘ () the class of all functions in A(p) which are p-valent starlike of order « in U, by S{, (@) the class of all

functions in A(p) which are p-valent convex of order « in U and by Sl’,f (@) the class of all functions in A(p) which are p-valent
close-to-convex functions of order « in U. We also set

Sy=5:0), S*@=Sj(@)., S5=5S50), Cla)=S(),
Sy =S5(0) and K(a) = S;(a).

Let G be a subclass of the class A. We define the radius of starlikeness R*(G), the radius of convexity R°(G) and the radius
of close-to-convexity R¥(G) for the class G by

R*(G) :fing(sup{r € (0, 1] : f is starlike in U(r)}),
€
R°(G) =}n(f;(sup{r € (0, 1] : f is convex in U(r)}),
€
and

R¥(G) :}ng(sup{r € (0, 1] : f is close-to-convex in U(r)}).
€

For analytic functions f(z) = Zﬁio a,z" and g(z) = Z;’io b,z", by (f * g)(z) we denote the Hadamard product (or
convolution) of f (z) and g(z), defined by

(f*2) @) =) abpz".
n=0

For complex parameters oy, ..., and Bq,...,Bs (B; # 0,—1,-2,...;j = 1,...,5), we define the generalized
hypergeometric function oFs (a1, ... og; B1, ..., Bs; 2) by

(oo (g 2"
qu(al,--~aq;ﬁ1,---,ﬁs;2)=;m-E @<s+1;¢.s€Ng=NU{0};z € U), (15)

where (0), is the Pochhammer symbol defined, in terms of the Gamma function I', by

r'© +n 1 (n=0)
On="FG = {9(9+1)...(9+n—1) (neN). (16)
Corresponding to a function hy (a1, . .. og; B1, .. ., Bs; z) defined by
hp(Ol1, .. .Olq; ﬂ1, ey ﬂs; Z) = quFs(Ol1, .. .O(q; ,3], ey ,33; Z),
we consider a linear operator H, (a1, ... ag; B1, ..., Bs) : A(p) — A(p), defined by the convolution
Hp (@1, .0 Bra e BOF@) = hp(@r, .. g B ... B 2) [ (2. (1.7)
We observe that, for a function f (z) of the form (1.1), we have
o0
Hp(as, ...aq: Br. ... B)f (@) =2 + ) Tyanz", (18)
n=k
where
r, = (ot1)n—p--.(otq)n—p . (1.9)
(,Bl)nfp---(ﬁs)nfp(n - P)!
If, for convenience, we write
Hp,q,s(al) =Hp(0517 -~-05q;,31» ---s,Bs)’ (110)
then one can easily verify from the definition (1.7) that
Z(Hp,q.s(al)f(z)), = O‘al,q,s(O‘I + Df (@) — (o1 — p)Hp,q,s(O‘l)f(z)- (1.11)
The linear operator Hy (a1, . .. og; B1, . . ., Bs) was introduced and studied by Dziok and Srivastava [1].

We note that, for f(z) € A(p,p + 1) = A(p), we have :

(i) Hp2,1(a, 1; ¢) = Ly(a, ¢) (a > 0; c > 0) Saitoh [2];

(ii)Hp21(v+p, 1; v+p+1)f (2) =], p(f), where], , (f) is the generalized Bernari-Libera-Livingston operator (see [3-5])
defined by

vV+p
ZU

Uoa§)@) = / EF(OdE (v > —pip € N); (112)
0



358 M.K. Aouf, H.E. Darwish / Computers and Mathematics with Applications 57 (2009) 356-366

(iii)Hp 1 (u+p, 1; Df (2) = DHFP=1f(7) (u > —p), where D**P~1f () is the (u+p — 1)th order Ruscheweyh derivative
of a function f (z) € A(p) (see Kumar and Shukla [6,7]);

(iV)Hp21(1+p, L14+p—p) = 2P (z), where the operator £2!“'f (z) is defined by (see Srivastava and Aouf[8])

rd+p-—nw

20"@ = — i

Z'Dif(z) 0<pu<1;peN), (1.13)
where DY is the fractional derivative operator (see, for details, [9,10]).

Making use of the operator H, 4 s(cr1), we say that a function f(z) € A(p, k) is in the class lI/,f’(q, s; A, B, ) if it satisfies
the following condition :

1 H 2)) 1+Az
( p,q,s(al)f( ) ) < + (z € U)

p—A zp-1 1+ Bz

O0<B<1,-B<A<B,0<A<p;p,k,q,s €eN) (1.14)
or, equivalently, if
(Hp,q,s(al)f(z))/ _
zP—1

< 1. (1.15)

B(Hpqs(al)f(z)) [pB+ (A _ B)(p _ )\’)]

zP—1

Furthermore, we say that a function f (z) € llfkp (g, s; A, B, A) is in the subclass @f (q,s; A, B, L) of lI/kp (q,s; A, B, L) if f(2)
is of the following form :

o0
feTp,k) :f(2) =zp—2anz” (ap>0;n=kk+1,k+2,..)¢. (1.16)

n=k

In particular, for ¢ = s + 1and as1 = 1, we write &} (s; A, B, 1) = @F (s + 1,s; A, B, 1).
We note that : ,
(i) The subclass V/'(q, s; A, B, 1) of T(p, k) obtained by replacing (H"*q*szgill)f(z)) with Z(:;’gj((zll));g;) n (1.15) was studied
by Aouf [11];
(i) The subclass V¥ (q, s; A, B) of T(p, k) obtained by replacing (H”‘”(a”f(z))/ by z(g;::((zz));((g) n (1.15) (with 2 = 0) was
studied by Dziok and Srivastava [1].
We note that for k = p 4+ 1, g = 2 and s = 1, we obtain the following interesting relationships with some of the special
classes which were investigated recently :
(i) Taking @y = B1 and o, = 1, we obtain :
p+1(2 1; A, B, \) = P*(p, A, B, A) (Aouf [12]);
(ii) Taking vy = B, 00 = 1,A=—BandB= B (0 < B < 1), we obtain :
@0, (2.1 =B, B. 1) = T (i, ) (Aouf [13]);
(iii) Taking vy = B1, 02 = 1,A = —1and B = 1, we obtain :
q)gH(Z, 1, —1,1,2) = T;(») (Aouf [13] and Lee et al. [14]);

{f(z)eT(p) Re{f()}>k,O§A<p,zeU}; (1.17)

(iv) Takinga; = v +p(v > —p), o = 1,8 =1,A=—1andB =1
@p.4(2,1; =1,1,1) = Qu4p—1( Aouf and Darwish [15])

Dv+p—1 7))
:{f(z)eT(p):Re{(zp_{())}>A,O§A<p,v>—p,zeU}. (1.18)
Also we note that :
Dp(q,5:—p, p, X)) = (G, S; A, p)
(Hp,q,s(al)f(z)), —-p
={feTpk: pr], <p, (zeU;0<A<p;0<p<1peN)y. (1.19)
(Hp,q,s(al)f(z)) + p— 2A

zp—1
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2. Coefficient estimates

Theorem 1. A function f (z) of the form (1.16) belongs to the class q§,’:(q, s; A, B, A) if and only if

00

Y (1 +B)Tha, < B—A)p— 1), 1)

n=k

where I'y, is given by (1.9).

Proof. Let |z| =1 (0 <r < 1).1f(2.1) holds, we find from (1.15) and (1.16) that
|(Hp.q5()f @) — 2" | = [B(Hyq5(@)f @) — [PB+ (A— B)(p — 1)]""|

o0
— E nlyaz" !
n=k

o0 o0
< Z nCpa,r™1 — {(B —A)(p— P — ZBnFnanr”1}

n=k n=k

o0
(B—A@{p—rz" ! — ZBnFnanz"’1

n=k

—_— (Z n(1+ B)Tpanr™™P — (B—A)(p — A))

n=k

o]
<Y n(1+B)lway — (B—A)p—2) 0.
n=k
Hence, by the maximum modulus theorem, f (z) € @,f (q,s; A, B, A).
Conversely, let f(z) € q§,€(q, s; A, B, A) be given by (1.16). Then, from (1.15) and (1.16), we have

(o]
— > nlpapz"?
n=k

= = <1 (zel), (2.2)
(B—A)(p —A) — Y Bnlhapz"P

n=k

‘ (Hp,q,s(al)f(z)), - pzp—l
B(Hp,q.s(@1)f (2))' — [pB + (A — B)(p — 1)]zP~!

where I'y, is defined by (1.9). Puttingz = r (0 < r < 1), we obtain

o0 o0
Z npa,r"™? < (B—A)(p—A) — ZBnFnanr"_",
n=k n=k

which, upon letting r — 17, readily yields the assertion (2.1). This completes the proof of Theorem 1. O

Since nI",, where T', is defined by (1.9) is a decreasing function with respect to 8; j = 1, ..., s) and an increasing function
with respecttoa, (¢ = 1, ..., q), from Theorem 1, we obtain :

Corollary 1. If ¢ € {1,...,q},j € {1,...,s},0 < o) < a¢gand B/ > B;, B; > O, then the class @r(q,s; A, B, A) (for the
parameters a1, . .., aq and By, ..., Bs)is included in the class @,f (q, s; A, B, L) for the parameters

! !
01, ooy 01, Oy, g1, .-, 0 and B, ..., Bi1, B, Bit1s - - Bs.
From Theorem 1, we also have the following corollary:

Corollary 2. If a function f (z) of the form (1.16) belongs to the class <D,f(q, s; A, B, L), then

B-AP-21)
<— =k k+1,k+2,...), 2.3
" S AT B, (n +1,k+ ) (2.3)
where Ty, is defined by (1.9). The result is sharp, the functions f,(z) of the form :
(B—A)p—2)
A A LU > I 24
@) =z n(1+ BT, zZn (nz=k (2.4)

being the extremal function.
Let f (z) be defined by (1.16) withk = p + 1, p € N and for A= —1 and B = 1, the condition (1.16) is equivalent to :

Hy(a)f (2) € Ty (1) (0 <A <p). (2.5)
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Thus we have the following lemma:

Lemmal Ifoj=p8(G=1.2,...,5), then

dp(s:—1,1,4) CTy(M) (0<x<p).

By the definition of the class q),f (q, s; A, B, 1), we have the following lemma.

Lemma 2. IfA] <A;,B1 > B, and 0 < M<A< D, then
®{(q. 5 A1, Bi, A2) C Pp(q, 5 Az, Bz, 1) C #((q. 53 —1,1,0).

3. Distortion theorem and extreme points

Theorem 2. Let a function f(z) of the form (1.16) belong to the class <D,’<’(q, s; A, B, A). If the sequence {nI",,} is nondecreasing,
then
B—A —A B—A —A
p_ BmAO=N o BN,

k(1 +B)Ty k(1+ B)T'k (2l =r <. 3.1

If the sequence {I",;} is nondecreasing, then

1 B-AP-» k1 B-AP-» 1

<If'(2)| <prP~! + zZl=r<1), 3.2
A+ BT <If@l<p 1+ BT (] ) (3.2)
where I'j, is defined by (1.9). The result is sharp, with the extremal function f (z) given by
B-ApP-2) ,
=z - 2 Mok (kpeN). 3.3
fe)=z k(1T BT z° (k,p€eN) (3.3)

Proof. Let a function f(z) of the form (1.16) belongs to the class q§,f(q, s; A, B, A). If the sequence {nI',} is nondecreasing
and positive, by Theorem 1, we have

ian < B—-AP - k), (3.4)
L k(1+ B)I';

and if the sequence {I",,} is nondecreasing and positive, by Theorem 1, we have

Zna” < w O (3.5)
s (1+B)T'y

Making use of the conditions (3.4) and (3.5), in conjunction with the definition (1.16), we readily obtain the assertions
(3.1)and (3.2) of Theorem 2.

Corollary 3. Let a function f (z) of the form (1.16) belong to the class @,’:(s; AB,AM).Ifar > Bi+1andoy > Bi(=2,...,5),
then the assertion (3.1) holds true. Moreover, if oy > B4, then the assertion (3.2) holds true.
Proof. If g = 5,01 > B1+ 1,and o > B; (j = 2, ..., s), then the sequence {nI',} is nondecreasing. Moreover, if ¢; > B,

then the sequence {I',} is nondecreasing. Thus, by Theorem 2, we have Corollary 3. O

Theorem 3. Let T, be defined by (1.9) and let us put

fici@ =2° (3.6)
and

_B-AG-N,

fald) =2° n(+ BT,

n=kk+1,k+2,...). (3.7)



M.K. Aouf, H.E. Darwish / Computers and Mathematics with Applications 57 (2009) 356-366 361

A function f (z) belongs to the class q§ . (q,s; A, B, 1) if and only if it is of the form :

f@ =) mh@ @eU), (38)
n=k—1
where
D =1 (un=0n=k—1kk+1,...). (3.9)

n=k—1
Proof. Let a function f(z) of the form (1.16) belong to the class d>,f (q, s; A, B, A). Setting
n(1+B)I', >
Up=-—"—"—a, (n=kk+1,k+2,...) and pu_1=1-— Uns
"TB-A— N ‘ 2

weseethat u, >0(n =k, k+ 1,k+2,...).Since ur_; > 0, by (2.1), we thus have

> (,_ . n(1+B)r, ) B-A@P-1 ,\ n(1+BT,
n;““f”(z)‘<l 2 mp-n" ) +Z< n(1+ BT, Z)(B—Amo—x)“”

n=k
nA+B0, n(1+4B)r, o
+ - n
2(3 Ap-—n" ;w Ap—n" ;“

P " =f(2),

n=k

and the condition holds true.
Next, let a function f (z) satisfy the condition (3.8). Then we have

f@ = )" wfa@ = i@ + ) tafa()
n=k—1 n=k
B B-AP-H_,
_< ;””)ZHZ““(F 1+ BT, Z)

& B—A)(p—X
—-y B=AP—H ,
~ n(1+B)I,
Thus the function f (z) is of the form (1.16), where

(B=A) (P —Mtn

a, = W m=kk+1,k+2,...).
It is sufficient to prove that the assertion (2.1) holds true. Since
o0 0]
Y n(+ BTty =Y (B—A) (P — i = B—A)(P— 21— 1) < B—A(P— 1),
n=k n=k

the required condition is indeed true. 0O

From Theorem 3, we obtain the following corollary.

Corollary 4. The class @,f (q, s; A, B, L) is convex. The extremal points are the functions f,_1(z) and f,(z) (n > k) given by (3.6)
and (3.7), respectively.

4. The radii of close-to-convexity and convexity

Theorem 4. The radius of p-valently close-to-convex for the class <:l>,’<7 (q, s; A, B, L) is given by

R* (®}(q.5:A, B, }) = (4.1)

[p(l—l—B)F ](‘m
B-AP-21) ’

where Iy, is defined by (1.9). The result is sharp.
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Proof. It is sufficient to show that

f@ _
pr —pl<p (ZeU@);0<r=<1. (4.2)
Since
f'(@) O np
= —-p|l= —Xlgna,,z ,
n=

putting |z| = r, the condition (4.2) is true if

<n
Z —a,r"P < 1. (4.3)
n=k p

By Theorem 1, we have

0 n(1+ B)I'y,
2 G—Ap-n" S

n=k
where I';, is defined by (1.9). Thus the condition (4.3) is true if
1+B)Tr
Moy o MAFBL ikt )
p B-A{p-21)
that is, if
<[pa+mm
TLB-AP-1)

It follows that any function f(z) € ®;(q,s; A, B, 1) is p-valently close-to-convex in the disc U (R*(®}(q, s; A, B, 1))),
where R* (®;(q, s; A, B, 1)) is defined by (4.1).

1
(n—p)
] n=kk+1,k+2,...). O

Corollary 5.
1, (= B,j=1,...,5),

R* (@F(s;A, B, 1)) = (4.4)

) p(1+B)I'y
nzk | (B—A)(p— 1)
where 'y, is defined by (1.9). The result is sharp.

=) .
s (< Bj=1,...,5),

Proof. By Corollary 1 and Lemmas 1 and 2, we have
DU ABA) CT, () (0= Bj=1,...,9).

By Theorem 4, any function f (z) € q),f (s; A, B, A) is p-valently close-to-convex in the disc U(r), where

1 1+ B)TI’
r — inf (dn)(nlp) d, = M )
nzk B-A@—-21)
Since, fora; < B (j =1, ...,5s), we have

1

limd,=d<1, lim (d,)»™ =1 and d, >0 (n=k,k+1,k+2,...),
n—oo

n—oo

the infimum of the set { (dy)@P :n > k] is realized for an element of this set for some n = ny. Moreover, the function

B-AP-1) ,

— P __
I @ =2 = BT,

’

1
belongs to the class @ (s; A, B, 1), and for z = (d,,) ™7, we have

!’
(z
g
m{ﬂ1}=o

Thus the result is sharp. O
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From Theorem 4 we can obtain direct estimation of the radius of p-valently close-to-convex for the class @,f (s;A, B, A)
witheo; < Bi(j=1,...,5).

Corollary 6. If a function f (z) belongs to the class <D,‘:(s; A, B, M) withaj < B; (j = 1,...,5), then f(z) is p-valently close-to-
convex in the disc U(r*), where

o o...... as. (4.5)
Biee... Bs
Proof. Since
1+B
M>1 (0<B<1,-B<A<B;0<A<p;peN) (4.6)
B-AD@—2)

and, foro; < Bi(j=1,...,9),

(@1)n—pe-e(Us)n—p . (@) P....(a)"P

Iy = =
(Bn—p-er-(BsIn—p — (B"Poo(Bs)"P

we obtain

1

1+ BT’ (n—p)

R*(@i’(s;A,B,x)):m’f[ P+ B, ] ’
n>k

B-AP-1)
- [0 2 TR TTN O
= Brois’

which completes the proof of Corollary 6. O

Theorem 5. The radius of p-valently convex for the class cD,f (q,s; A, B, 1) is given by

R (®](q,5; A, B, ) = inf
n

>k

2 =)
[M]( " (47)

nB—-A@-—21)
where I'y, is defined by (1.9). The result is sharp.

Proof. It is sufficient to show that ’1 + 4@ —p‘ <p(iz e U0 <r

o < 1). Using similar arguments as given by

Theorem 4, we can get the result. O

From Theorem 5 we can obtain direct estimation of the radius of p-valently convex for the class qﬁ,f (s; A, B, A).
Corollary 7. If a function f (z) belongs to the class qﬁ,’:(s; AB V@ =Bi+1);a1 <p+ Lo <Bi(=2,...,9),thenf(z)
is p-valently convex in the disc U(r), where

= (o1 — D(2).... () ' (4.8)

T BB . (8s)

Proof. For @1 < p + 1, we have

B a1+n—p—1 -
n a;— 1

Since
BFH _p <(a1)n,p ..... (as)n,p>
n n\ (Ba—p----(BsIn—p
p (051 +n—p-— 1) (a1 = Dpp(a2)n—p...(s)n—p

n (0% Wi 1 (51)71,13 ...................... (,35),171]
b (a +n—p—1Y\ (a1 — 1)"—Pa§*"...a§*"
~n o] — 1 ?—p ...................... Sn—p

> (wl—mzof)"
T\ Bl Bs
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by (4.6), we have

p?’(1+ BT, ]@w
nB—A)p—21)
. [ p(1+B) pFn]ml—w
=inf| ——— -
nzk| B—A)(p—A) n
(o1 — 1)(02)... (%)
T (BB e (Bs)’
which completes the proof of Corollary 7. O

R(®}(s; A, B, 1)) = inf [
n>k

5. Modified Hadamard product

For the functions
o0
@ =2 = ayjz" (a,;>0:j=1,2:k.peN), (5.1)

we denote by (f; ® f>)(z) the modified Hadamard product (or convolution) of the functions f;(z) and f,(z), that is,

(i®H@) =2 = an1an22". (5.2)

n=k

Theorem 6. Let the functions f;(z) (j = 1,2) defined by (5.1) be in the class <D,f(q, s; A, B, A). If the sequence {nl',} is
nondecreasing, then (f; ® f,)(z) € q§ . (a4, 53 A, B, §), where

BN

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [16], we need to find the largest § such that

. n(1+B)Iy,
apy < 1. (5.4)

H;(B Mp—s) "

Since
Z n(1+B)T, 4B 55
L (B—A)(p— 1)

and
Z n(1+B)T, . 56
L B-Ap—n"

by the Cauchy-Schwarz inequality, we have

< n(1+Br,
Vi <1. 57
nX: (B A)(p )\) an.]an,Z = ( )
Thus it is sufficient to show that
1+B)Iy, 1+B)I,
ni+b < MEDN aas iz b (58)

A+, < B
B-—AP—-28 """ B-AP-1)
that is, that

«/anlanz = (p_(S)

-2

(n > k). (5.9)
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Note that
B—-AP—2)
S 10 < ———— (n>k).
n,14%4n2 = n(1+B)Fn ( jl )

Consequently, we need only to prove that
B-—ApP—-» _ (-9
n(1+Bry =~ (p—»)
or, equivalently, that
(B—A)(p— 1)

I<p— —M >
<p n(1+ BT, (n>

(n > k),

k).

Since

CB-Ap -1

em) = n(1+ BT,

is an increasing function of n (n > k), letting n = k in (5.13), we obtain

B—A)(p — A)?
s<dky=p_ B-AP-H"
k(1+ B)I'k
which proves the main assertion of Theorem 6.
Finally, by taking the functions fj(z) (j = 1, 2) given by
B-A)P— )»)Zk
k(14 B)I'y

we can see that the result is sharp. O

fiz)=2" — G=1,2;k,peN)

365

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

Theorem 7. Let the functions f;(z) = 1,2) defined by (5.1) be in the class (D,’Z(q,s;A, B, ). If the sequence {nI'} is

nondecreasing. Then the function
oo
h(z) = 2P — X:(aﬁ,1 +a},)z"
n=k
belongs to the class CD,’: (q,s; A, B, ), where

_2B-=Ap-»?
k(1+B)T,

The result is sharp for the functions fj(z) (j = 1, 2) defined by (5.15).

Proof. By virtue of Theorem 1, we obtain

IA

i n(l1+ BT, , i n(1+ BT,
ZNB=ap-n] ™1 E-Ap-n"

and

n(1+ B)T,

M2

i n(1+B)T, 2, <
— | B—-A){p@—A) '

Il
=~

n

It follows from (5.18) and (5.19) that

1 n(1+B >,
i lampy) =

Therefore, we need to find the largest t such that

n=k

nA+BC  _1[ n(d+B)T, 2 ,
w—mw—w—z{w—mm—n} (=1,

o o n2
B—=A)p—2)

IA

IA

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)
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that is,
2(B — A)(p — 1)?
Since
_ _ 2

n(l + B)rn

is an increasing function of n (n > k), we readily have

_2w—m@—m2

T <D(k) = 5.24
=P =r- G B, (5.24)

and Theorem 8 follows at once. O
Remark 1. TakingA = —p and B = p (0 < p < 1) in the above results, we obtain the corresponding results for the class

D, (q. 5 &, ).
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