
HAL Id: hal-00556846
https://hal.archives-ouvertes.fr/hal-00556846

Submitted on 18 Jan 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Thermophoretic Hydromagnetic Dissipative Heat and
Mass Transfer with Lateral Mass Flux, Heat Source,
Ohmic Heating and Thermal Conductivity Effects:

Network Simulation Numerical Study
Joaquín Zueco, O. Anwar Bég, H.S. Takhar, V.R. Prasad

To cite this version:
Joaquín Zueco, O. Anwar Bég, H.S. Takhar, V.R. Prasad. Thermophoretic Hydromagnetic Dissi-
pative Heat and Mass Transfer with Lateral Mass Flux, Heat Source, Ohmic Heating and Thermal
Conductivity Effects: Network Simulation Numerical Study. Applied Thermal Engineering, Elsevier,
2009, 29 (14-15), pp.2808. 10.1016/j.applthermaleng.2009.01.015. hal-00556846



Accepted Manuscript

Thermophoretic Hydromagnetic Dissipative Heat and Mass Transfer with Lat‐

eral Mass Flux, Heat Source, Ohmic Heating and Thermal Conductivity Effects:

Network Simulation Numerical Study

Joaquín Zueco, O. Anwar Bég, H.S. Takhar, V.R. Prasad

PII: S1359-4311(09)00041-6

DOI: 10.1016/j.applthermaleng.2009.01.015

Reference: ATE 2730

To appear in: Applied Thermal Engineering

Received Date: 7 September 2007

Accepted Date: 31 January 2009

Please cite this article as: J. Zueco, O. Anwar Bég, H.S. Takhar, V.R. Prasad, Thermophoretic Hydromagnetic

Dissipative Heat and Mass Transfer with Lateral Mass Flux, Heat Source, Ohmic Heating and Thermal Conductivity

Effects: Network Simulation Numerical Study, Applied Thermal Engineering (2009), doi: 10.1016/

j.applthermaleng.2009.01.015

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



 

 

 

ACCEPTED MANUSCRIPT 

  1

 

 
Thermophoretic Hydromagnetic Dissipative Heat and Mass Transfer 
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Abstract 

A two-dimensional mathematical model is presented for the laminar heat and mass 
transfer of an electrically-conducting, heat generating/absorbing fluid  past a perforated 
horizontal surface in the presence viscous and Joule (Ohmic) heating. The Talbot-
Cheng-Scheffer-Willis formulation (1980) is used to introduce a thermophoretic 
coefficient into the concentration boundary layer equation. The governing partial 
differential equations are non-dimensionalized and transformed into a system of 

nonlinear ordinary differential similarity equations, in a single  independent variable, η. 
The resulting coupled, nonlinear equations are solved under appropriate transformed 
boundary conditions using the Network Simulation Method. Computations are performed 
for a wide range of the governing flow parameters, viz Prandtl number, thermophoretic 
coefficient (a function of Knudsen number), Eckert number (viscous heating effect), 
thermal conductivity  parameter, heat absorption/generation parameter, wall 
transpiration parameter, Hartmann number and Schmidt number. The numerical details 
are discussed with relevant applications. Excellent correlation is achieved with earlier 
studies due to White (1974) and Chamkha and Issa (2000). The present problem finds 
applications in optical fiber fabrication, aerosol filter precipitators, particle deposition on 
hydronautical blades, semiconductor wafer design, thermo-electronics and nuclear 
hazards. 
 
Key words: Thermophoresis; magnetohydrodynamics, heat and mass transfer; Prandtl number; Knudsen 
number; Hartmann number; Eckert number; Schmidt number; network simulation model, heat sinks/sources.  
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The authors (all of different institutes) have formed a robust interdisciplinary applied thermal engineering research 
program since early 2007. This has involved the theoretical and numerical simulation of many diverse, advanced 
thermofluid dynamics problems. We have developed numerous novel mathematical models focused on rotating 
hydromagnetic plasma flows, hypersonic stagnation flows, rotating geophysical flows, thermophoretic deposition flows, 
pulsating biofluids, magnetic squeeze film lubrication, porous media geothermics, stratified flows and also thermal 
radiation flows. Many of our collaborations have now been published in leading international mechanical engineering and 
aerospace engineering journals. 
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1. INTRODUCTION 
Thermophoresis is the migration of aerosol and other particles in the direction of a 

decreasing temperature gradient. Such a phenomenon has received considerable 

attention in the engineering analysis community owing to major  applications in optical 

fiber production, heat exchanger fouling, aerosol reactors etc. In optical fiber synthesis, 

thermophoresis has been identified as the principal mechanism of mass transfer as used 

in the technique of modified chemical vapour deposition (MCVD)  [1] . In this procedure 

a gaseous mixture of reactive precursors is directed over a heated substrate where solid 

film deposits are located.  In particular the mathematical modeling of the deposition of 

silicon thin films using MCVD methods has been accelerated by the quality control  

measures enforced by the micro-electronics industry. Such topics involve a variety of 

complex fluid dynamical processes including thermophoretic transport of particlauet 

deposits, heterogenous/homogenous chemical reactions, homogenous particulate 

nucleation and coupled heat and energy transfer. Boundary layer theory has proven to 

be instrumental in simplifying the flow regimes to facilitate numerical solutions via CFD 

and also user-specified numerical codes. Thermophoresis   is also a key mechanism  of 

study in semi-conductor technology, especially controlled high-quality  wafer production 

as well as in radioactive particle deposition in nuclear reactor safety simulations and 

MHD energy generation system operations. A number of analytical and experimental 

papers in thermophoretic heat and mass transfer have been communicated. Brock [2] 

provided an early analysis of aerosol thermophoretic dynamics. Batchleor and Shen [3] 

later analyzed the thermophoretic migration of particles in a gaseous flow. Goren [4] 

considered the thermophoretic deposition of particles in  flat plate boundary layers. 

Talbot et al [5] presented a seminal study, considering boundary layer flow with 

thermophoretic effects, which  has become a benchmark for subsequent studies (this 

model is extended in the present paper). The thermophoretic flow of larger diameter 

particles  was investigated by Kanki et al [6]. Lin and Ahn [7] studied thermophoretic 

flows in semi-conductor materials. Shen [8] discussed thermophoresis  in two-

dimensional and axisymmetric flow near cooled bodies. Sasse  et al [9]  considered 

laminar thermophoretic flows in various flat surface and concentric geometries. Yalamov 

and D’yakonov [10] presented more recently an analysis of the slow, steady-state 

thermophoresis of aggregates of aerosol particles. In this  study the thermophoretic  

transfer was simulated  via thermal slip of the surrounding gas along the particle 

surfaces. The temperature field near to the aggregate was used to compute, with the 
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method of successive approximations, the velocity of the thermophoretic aggregate 

particle motion. Konstandopoulos [11] discussed an Eulerian transport model for 

thermophoretic aerosol  transport incorporating diffusion and also sub-critical inertial drift 

effects. Later Konstandopulos and Rosner [12] showed numerically, using the FLUENT 

CFD software, that particles in thermophoretic transport  can be simulated  as a “fluid 

phase” governed by an asymptotic  velocity field. Konstandopulos and Rosner [13] also 

performed experiments to verify their numerical studies for thermophoretic  transport to 

curved streamline boundaries. More recently Tsai [14] described the effects of lateral 

mass flux (suction) and thermophoresis in laminar boundary layers. An excellent study of 

free and forced convective  boundary layer heat transfer with thermophoretic effects was  

reported by Chang et al [15]. Ahmadi and He [16] also studied thermophoretic effects but 

in both laminar and turbulent flows. Greenfield and Quarini [17]  investigated 

computationally the thermophoresis effects on turbulent pipe flows. They compared 

numerical solutions with the STORM test data using a particle-tracking methodology to 

simulate the forces experienced by small particles in the opposite direction to the 

temperature gradient. More recently Chamkha and Pop [18] studied numerically the 

thermophoretic effects on double diffusive boundary layers in porous media using a 

Blottner difference technique. These studies were restricted to electrically non-

conducting fluids. However in various industrial heat transfer processes, for example 

MHD energy systems, both thermophoresis and hydromagnetic flows take place 

simultaneously. Many numerical studies investigating magnetohydrodynamic heat (and 

mass) transfer have been reported with buoyancy, heat source/sink and also Joule 

heating effects. Takhar and Beg [19] studied the hydromagnetic free convection 

boundary layers in non-Darcian regimes using the Keller Box method. Other 

hydromagnetic convection flow studies include [20] which studied non-Newtonian wedge 

flow hydromagnetics, [21] which examined dissipative hydromagnetic boundary layers 

with wall suction/injection in porous media and  [22] which studied the two-dimensional 

hydromagnetic flow with dissipation of a ferrofluid in a triangular enclosure. Beg et al [23] 

used a perturbation approach to study the transient oscillatory magnetohydrodynamic 

convection past a flat plate adjacent to a porous medium with heat generation effects.  

Zueco [24] studied computationally the transient natural convection hydromagnetics with 

viscous heating. Bég et al [25] studied numerically the magnetohydrodynamic flow of a 

gas from a spinning sphere with strong buoyancy using a finite difference method. Bég 

et al [26] have more recently used a finite element method to study the pulsating 



 

 

 

ACCEPTED MANUSCRIPT 

  4

 

dynamics of a hydromagnetic flow through a two-dimensional channel with mass 

transfer. Very recently Naroua et al [27] have also employed the finite element method to 

study the influence of electrodynamic Hall current and ionslip effects in strong magnetic 

cross fields on unsteady magneto-gas dynamic heat transfer from a spinning plate. 

These hydromagnetic studies have ignored thermophoretic effects. However Chamkha 

and Issa [28] presented a computational analysis of heat generation/absorption and 

thermophoresis on hydromagnetic flow with heat and mass transfer over a flat surface. 

In the present study we shall investigate numerically the steady two-dimensional heat 

and mass transfer in thermophoretic hydromagnetic flow over a flat plate with viscous 

heating, Joule heating, wall transpiration i.e. suction/injection, and heat source/sink 

effects. A network numerical simulation tool is employed which is described in detail 

later. Such a study has thusfar not appeared in the computational thermofluid dynamics 

literature, despite important applications in MHD energy systems, naval propulsion, 

magnetic materials processing etc. 

 

 

2. MATHEMATICAL MODEL 

Consider the steady, dissipative laminar two-dimensional Newtonian heat and mass 

transfer over a flat surface with surface temperature Tw, surface concentration Cw, both 

constant and thermal conducitivity, kf, which obeys a linear temperature law according to 

kf = ko [1+α(T-T∞)] = ko(1+βθ) where ko denotes thermal conductivity in the free stream of 

the flow, α is a thermophysical constant dependent on the fluid (α < 0 for lubrication oils, 

hydromagnetic working fluids and  α > 0 for air or water) and β= α(Tw-T∞) is the thermal 

conductivity variation parameter. A transverse magnetic field, B acts perpendicular to the 

plate. Thermophoresis is present and the physical regime to be studied is illustrated 

below in figure 1. Magnetic Reynolds is assumed to be small enough to ignore induced 

magnetic field effects. The x direction is parallel to the plate  and the y direction normal 

to this. Under the boundary-layer assumptions, the conservation equations for the flow 

regime can be shown to take the following form: 

 

Conservation of Mass: 
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Conservation of Momentum : 
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Figure 1: Physical Model and Coordinate System  

 

Conservation of  Energy (Heat):  
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Conservation of Species (Concentration): 

 

)(
2

2

CV
yy

C
D

y

C
v

x

C
u T∂

∂
−

∂
∂

=
∂
∂

+
∂
∂

        (4) 

 

where u and v denote x and y-direction velocities, ν is the kinematic fluid viscosity, σ is 

electrical conductivity, T is fluid temperature, C is species concentration (of particles), u∞ 

and T∞ are the free stream velocity and temperature, ρ is density, cp is specific heat 

capacity of the fluid at constant pressure, D is the Fickian mass diffusion coefficient, VT 
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denotes thermophoretic velocity, B is the magnetic field strength, Qo is heat source/sink 

parameter, µ is dynamic viscosity of the fluid, kf is the thermal conductivity of the fluid. 

The corresponding boundary conditions at the surface and far from the plate are: 

 

WWo CxCTxTxVxvxu ==−== )0,(;)0,();()0,(;0)0,(   (5) 

.),(;),(;),( ∞→=∞=∞=∞ ∞∞∞ yasCxCTxTuxu    (6) 

 

where Vo is the transpiration velocity at the wall. For mass injection into the boundary 

layer (blowing), Vo < 0; for mass removal from the boundary layer (suction) Vo>0. Tw is 

the wall temperature, Cw is the wall species concentration  and C∞ denotes particle 

concentration in the free stream i.e. outside the boundary layer.  Following Talbot et al 

[5]  we define the thermophoretic velocity as follows: 
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where k v denotes the thermophoretic diffusivity and k is the thermophoretic coefficient 

defined, empirically, by Talbot et al [5] as: 
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where  kf is the thermal conductivity of the fluid, λp is the thermal conductivity of the 

diffused particles, Kn is the Knudsen number and Cs, Ct and Cm are empirical constants. 

Kn is a parameter  generally used in rarefied aerodynamics and is defined by: 

 

   Kn =  cLi        (9) 

 

where  i  is the mean free path of the particles and Lc denotes the characteristic  length 

of the flow field. Following Shen [8], values of k are based on experimental values of Cs, 

Ct and Cm and also Kn can be specified in thermophoretic simulations. For particle sizes 

less than 1 micron in diameter, it can be assumed to within a reasonable degree of 
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accuracy that k has values between 0.2 and 1.2. We shall adopt a value of 0.5 in our 

study. The equations (1) to (4) are strongly coupled, parabolic and nonlinear partial 

differential equations. An analytical solution cannot be obtained and therefore we seek 

numerical solutions. Numerical computations are greatly facilitated by non-

dimensionalization of the equations. Proceeding  with the analysis, we introduce the 

following similarity transformations and dimensionless variables which will convert the 

partial differential  equations from two independent variables (x,y) to a system of 

coupled, non-linear ordinary differential equations in a single variable (η) i.e. coordinate 

normal to the plate. Following Chamkha and Issa [28] we define : 
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D
Sc
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=       (21) 
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where ψ is the stream function, θ is non-dimensional temperature function, Φ is non-

dimensional concentration, Pr is Prandtl number, Sc is Schmidt number, β is non-

dimensional thermal conductivity parameter, f0 is the dimensionless wall transpiration 

velocity (wall mass transfer coefficient), Ec is Eckert number, Ha is Hartmann number, ∆ 

is non-dimensional heat source/sink coefficient and τ is dimensionless thermophoretic 

parameter. The mass conservation equation (1) is satisfied by the Cauchy-Riemann 

equations (14) and (15). A such "local similarity" is therefore employed. The equations of 

motion are thereby reduced from (2), (3) and (4) to the following  dimensionless similarity 

form:  
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Energy (Heat):  
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Concentration: 
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The boundary conditions are also transformed to:  
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At η=0: 0)0(;1)0(;)0(;0
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0 =Φ=== θ
η

ff
d

df
      (26) 

 

As η→ ∞: 1)(;0)(;1
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The model has been approximated for x=1, and as such this eliminates the need to 

solve for x. This makes the suction a constant and also eliminates the need to include x 

in equation (23). The system to be solved therefore is seventh order with seven 

corresponding boundary conditions. In (26) f0 may be positive for suction and negative 

for blowing. In (25) the thermophoretic parameter τ assumes values of 0.01, 0.05 and 

0.1 corresponding to the respective cases where  -k (Tw-T∞) has values of 3, 15 and 30 

Kelvins for a reference  temperature of T = 293 Kelvins (20 Celsius). We seek a full 

numerical solution to the transformed equations rather than analytical solutions. We shall 

herein dwell more on the physics of the flow regime. The general model defined  by (23) 

to (25) with conditions (26) and (27) reduces to electrically non-conducting flow for Ha = 

0, non-dissipative flow for Ec = 0 and boundary layer flow past a solid wall for fo = 0.   

 

3. NUMERICAL SOLUTION BY NETWORK SIMULATION METHOD 

To solve the set of non-linear differential equation (23-25) subject to boundary condition 

(26, 27) the Network Simulation Method (NSM) has been applied.  This method has 

been used successfully in a diverse variety of thermofluid problems. For example, Zueco 

et al [29] studied the unsteady thermal radiation in an enclosure using NSM. Other 

studies include [30], [31], [32]. The starting point is the set of ordinary differential 

equations, one for each control volume, obtained either by spatial discretization of the 

equations. Time remains as a continuous variable in the discretized equations so that no 

time interval needs to be formed for the numerical solution by the programmer. Based on 

these equations, a network circuit is designed, whose equations are formally equivalent 

to the discretized ones. The variables, f, θ and Φ are equivalent to the variable voltage, 

and the derivates of them are equivalent to the electric current. A sufficient number of 

networks are connected in series to form the whole medium and boundary conditions 

are added by means of special electrical devices. The whole network must be converted 

into an adequate program that can be solved by a computer code. Generally, few 

programming rules are necessary since the number of the electrical devices that make 
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up the network is very small. The cases studied here were solved by the software code 

Pspice [33] using a PC. To solve the set of non-linear differential equation (23-25) 

subject to boundary condition (26-27) the NSM has been applied. The equations (23-25) 

may be further written as, 

 

h
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The following currents are defined: 
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dh
jh ≡        (32) 
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With these definitions of the currents, the dimensionless equations of momentum, 

energy and concentration are re-written. 
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These are partial differential equations with two variables in each equation, With a 

spatial discretization of the dimensionless equations in N cells of length ∆η=ηmax/N, with 

N=200, ηmax=10 (obtained after of to do probes numerical). These partial differential 

equation can be transformed into a system of connected differential equations by means 

of a second-order central difference scheme. It is considered a thickness of the 

elemental cell of ∆η (not 2∆η), and calling “i-∆η” and “i+∆η” the extremes of the cell and 

“i” the centre of the cell.  

 

(∂f/∂η)i ≈ (fi+∆η - fi-∆η)/∆η       (38) 

 

(∂2h/∂η2)i ≈ [(hi-∆η - hi)/(∆η2/2) - (hi- hi+∆η)/(∆η2/2)] = (jhi-∆ - jhi+∆)/∆η   (39) 

 

(∂2θ/∂η2)i ≈ [(θi-∆η - θi)/(∆η2/2) - (θi- θi+∆η)/(∆η2/2)] = (jθi-∆ - jθi+∆)/∆η   (40) 

 

(∂2Φ/∂η2)i ≈ [(Φi-∆η - Φi)/(∆η2/2) - (Φi- Φi+∆η)/(∆η2/2)] = (jΦi-∆ - jΦi+∆)/∆η  (41) 

 

Therefore, the finite-difference differential equations are, 
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where the term )(
∆+∆−

−
ii

jj θθ of the Eq. 45 is obtained of the Eq. 44. 

 

Eqs. (43-45) can be taken as fulfilling Kirchhoff’s current law (where all the terms can be 

treated as currents), while the variables f, h, θ and Φ satisfy Kirchhoff’s voltage law since 

they are continuous and single-valued. Consequently, it is possible to analyse the 

thermophoretic hydromagnetic problem by an electrical network. Hence, Eqs. (38-40) 

define two resistors of a same value ∆η/2 by each elemental network model (there is 

three, one for each equation). A resistor is connecting between the left extreme (i-∆η) 

and the centre of the cell (i), and the other resistor is connecting between the centre and 

the right extreme (i+∆η) of the elemental cell. The others terms of the equations are 

implemented by means of current sources controlled by voltage connecting to the centre 

of the cell (i). Connecting N basic circuits in series gives the network representing the 

one-dimensional medium in which the velocity, temperature and concentration are 

coupled. The next step is to include the initial and boundary conditions in the network 

model. Eqs. (26, 27) at the limits η = 0 and η = ∞, which is reflected in the network model 

by connecting a voltage source of value the unity for the temperature and of cero value 

for the velocity and concentration between the free end of the first cell and ground, while 

the opposite is considered between the free end of the last cell and ground.  

 

There are eight governing parameters, Ha, Ec, ∆, Pr, Sc , β , f0 and τ. We have obtained 

comprehensive solutions for the influence of these parameters on dimensionless velocity 

(df/dη), dimensionless temperature (θ) and dimensionless concentration of particles (Φ). 

Comparison has been made (no pltted) with the studies of White [34] and Chamkha and 

Issa [28] which did not consider thermal conductivity variation, ignored viscous and Joule 

heating and considered a solid wall.  
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Figure 2: Dimensionless velocity (df/dη) versus η for Ha = 0, 1, 2, 5, 10 with Ec = 

0.1, ∆ = 0.1, Pr =0.7 ,  Sc = 0.6,  β = 0.5,  f0 =0.1, τ = 0.5.  

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6

 

 θ 

η 

Ha=0, 1, 2, 5, 10

 

Figure 3: Dimensionless temperature (θ) versus η for Ha = 0, 1, 2, 5, 10 with Ec = 

0.1, ∆ = 0.1, Pr =0.7 ,  Sc = 0.6,  β = 0.5,  f0 =0.1, τ = 0.5.  
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Figure 4: Dimensionless concentration (Φ) versus η for Ha = 0, 1, 2, 5, 10 with Ec = 

0.1, ∆ = 0.1, Pr =0.7 ,  Sc = 0.6,  β = 0.5,  f0 =0.1, τ = 0.5.  
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Figure 5: Dimensionless temperature (θ) versus  η for Ec = 0, 0.1, 0.2, 0.3, with Ha = 

1, ∆ = 0.1, Pr =0.7 ,  Sc = 0.6,  β = 0.5,  f0 =0.1, τ = 0.5. 
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Figure 6: Dimensionless temperature (θ) versus  η for ∆ = -0.7, -0.2, 0, 0.2, 0.7 with 

Ha = 1, Ec = 0.1, Pr =0.7 ,  Sc = 0.6,  β = 0.5,  f0 =0.1, τ = 0.5.  
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Figure 7: Dimensionless concentration (Φ) versus  η for ∆ = -0.7, -0.2, 0., 0.2, 0.7 

with Ha = 1, Ec = 0.1, Pr =0.7 ,  Sc = 0.6,  β = 0.5,  f0 =0.1, τ = 0.5. 

 



 

 

 

ACCEPTED MANUSCRIPT 

  16

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4

 

 f  ́

η 

fo = -0.5, -0.3, -0.1, 0, 0.1, 0.3, 0.5

 

Figure 8: Dimensionless velocity (df/dη) versus  η for f0 = -0.5, -0.3, -0.1 (injection), 0 

(solid wall), 0.1, 0.3, 0.5  (wall suction)  with Ha = 1, Ec = 0.1, ∆ = 0.1, Pr =0.7 ,  Sc = 

0.6,  β = 0.5, τ = 0.5. 
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Figure 9: Dimensionless temperature (θ) versus  η for f0 = -0.5, -0.3, -0.1 (injection), 

0 (solid wall), 0.1, 0.3, 0.5  (wall suction)  with Ha = 1, Ec = 0.1, ∆ = 0.1, Pr =0.7 ,  Sc = 

0.6,  β = 0.5, τ = 0.5. 



 

 

 

ACCEPTED MANUSCRIPT 

  17

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 

 Φ 

η 

fo =-0.5, -0.3, -0.1, 0, 0.1, 0.3, 0.5

 

Figure 10: Dimensionless concentration (Φ) versus η for f0 = -0.5, -0.3, -0.1 

(injection), 0 (solid wall), 0.1, 0.3, 0.5  (wall suction)  with Ha = 1, Ec = 0.1, ∆ = 0.1, Pr 

=0.7 ,  Sc = 0.6,  β = 0.5, τ = 0.5.  

 

4. RESULTS AND DISCUSSION 

In the present computations we have set the following default values for the governing 

thermophysical parameters: Ha = 1, Ec = 0.1, ∆ = 0.1, Pr =0.7,  Sc = 0.6,  β = 0.5,  f0 

=0.1 and τ = 0.5. As such the flow is weakly hydromagnetic, buoyancy-driven double-

diffusive thermal convection of gas diffusing in air, with wall suction. In the momentum 

equation, 0]1[
2

2

2

3

3

=−−+
ηηη d

df
Ha

d

fd
f

d

fd
, the hydromagnetic drag is found to aid 

velocity development, rather than incur it. This deviates from classical Hartmann channel 

flow owing to the presence of a negative unity term in the magnetic term. This result has 

also been identified by Chamkha and Issa [34]. Since Ha2 is always positive, and df/dη ≤ 

1 (due to boundary conditions), effectively  the ]1[
2 −−

ηd

df
Ha  term in the momentum 

equation, will assume a positive value for df/dη < 1  (it will vanish when df/dη = 1). As a 

result Hartmann  number will have a positive effect on the fluid development i.e. 

generate acceleration. This effect is further demonstrated in figure 2 where we observe 

a strong increase in dimensionless velocity, in particular near the wall as Ha is increased 
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from 0 (electrically non-conducting case) through 1, 2, 5 and 10. Maximum velocity 

therefore accompanies maximum Hartmann number. High Ha profiles are seen to 

ascend more rapidly over the near-wall regime, 0 < η < 0.5; all profiles however 

converge to a value of unity at η ~ 3.5. The reason magnetic parameter (Ha) increases 

velocity (f') is because the magnetic field is moving with the free stream due to the term 

Ha2 (f'-1) in equation (23) and this will increase velocities, not retard them (as in classical 

MHD boundary layer flow or Hartmann channel flow). The variation of dimensionless 

temperature, θ, with η for various Hartmann numbers is shown in figure 3. Ha effects 

are experienced in the energy conservation equation (24) via the Joule heating (i.e. 

Ohmic) term, 
22

]1Pr[ −
ηd

df
EcHa . Clearly temperatures are seen to  be reduced 

considerably with  an increase in Ha from 0 through 1, 5 to 10. All profiles decay from a 

maximum temperature at the wall, to zero in the free stream. Joule heating is generated 

due to resistance of the fluid to the flow of current. Magnetic field does not alter the total 

energy in the boundary layer regime. The kinetic energy lost from the fluid flow due to 

magnetic field effects is manifested as Joule (Ohmic) heating. We therefore expect in 

classical magnetofluid boundary layer flow an increase in temperatures with an increase 

in magnetic field effect i.e. Hartmann number. However the augmentation of the 

standard velocity df/dη, to [df/dη -1] in the Joule heating term, 
22

]1Pr[ −
ηd

df
EcHa , 

serves to reverse this trend. Since magnetic field effectively accelerates the flow [i.e. in 

this flow scenario velocity is boosted by a rise in Ha, as depicted in figure 2], thermal 

energy will be replaced by kinetic energy and this will lower the fluid temperature away 

from the plate surface i.e. through the boundary layer, as Ha is increased. The trend of 

the results is therefore consistent with Chamkha and Issa [28]. Figure 4 shows the 

distribution of  dimensionless concentration through the boundary layer with increasing 

Hartmann number, Ha. In this figure we observe that concentration value, Φ, is converse 

to velocity or temperature, minimized for the non-conducting case (Ha = 0). Φ values are 

increased with a rise in Ha i.e.  mass diffusion is boosted with increasing magnetic field. 

All profiles increase monotonically from 0 at the wall to unity in the free stream, with 

profiles converging further from the wall, around  η ~ 5.  
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The influence of Eckert number on dimensionless temperature and concentration 

functions is shown in figure 5. Eckert number, symbolized by  
][ ∞

∞

−
=

TTc

u
Ec

wp

, and 

appearing firstly in (24) in the term, 
2

2

2

]Pr[
ηd

fd
Ec+ , designates the ratio of the kinetic 

energy of the flow to the boundary layer enthalpy difference. Although Ec is used in high 

altitude rocket aero-thermodynamics (where the prescribed temperature difference is of 

the same order of magnitude as the absolute temperature in the free stream), in the 

context of low speed incompressible flows, as described in the present paper, it signifies 

the difference between the total mechanical power input and the smaller amount of total 

power input which produces thermodynamically reversible effects i.e. elevations in 

kinetic and potential energy. This difference constitutes the energy dissipated as thermal 

energy by viscous effects i.e. work done by the viscous fluid in overcoming internal 

friction, hence the term viscous heating. Positive values of Ec correspond to plate 

cooling i.e. loss of heat from the plate to the fluid; negative values imply the reverse i.e. 

plate heating wherein heat is received by the plate from the fluid. In this article we 

concentrate on the former case. Ec also appears in the Joule (Ohmic) heating 

hydromagnetic term in equation (24), viz 
22

]1Pr[ −+
ηd

df
EcHa . As such for non-zero 

magnetic field, considered in figure 5 (Ha = 1), Joule heating will also be present. We 

observe that a rise in Ec from 0 (no dissipation) through 0.1, 0.2 to 0.3 causes a 

noticeable increase in temperature, θ, in particular in the near-wall region. All profiles 

decay asymptotically from a maximum wall temperature (unity) to zero in the free 

stream.  Maximum  fluid temperature in the boundary layer therefore is associated with 

the maximum Ec value, which is physically  valid since greater thermal energy is 

generated in the fluid for larger Ec values. The influence of Ec on dimensionless 

concentration function (no plotted), Φ as expected is negligible.  

Figures 6 and 7 to illustrate the influence of  heat generation/absorption parameter, ∆, 

on the dimensionless temperature and concentration fields through the boundary-layer. 

As expected a rise in positive value of ∆ from 0 to 0.1, 0.2 and 0.3 induces a clear 

increase in temperature function, θ, throughout the flow domain normal to the plate. 

Physically heat generation in the fluid will add thermal energy to the flow and therefore 

for positive ∆ temperatures will rise. Such a heat source phenomenon is possible in 
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energy system devices or hot spots in industrial treatment systems. Conversely an 

increase in negative value of ∆ from -0.1 to -0.2 and -0.3 will remove thermal energy 

from the flow i.e. act as a heat sink causing temperatures to drop. This indeed is shown 

in figure 6. The case of no heat source/sink logically lies at the interface between the 

minimal values of positive and negative ∆. The trend for all temperature plots, in 

consistency with the wall and free stream boundary conditions is a gradual decay from 

the plate (wall) to the edge of the boundary layer, where we observe all profiles 

converging to zero at approximately η = 4. These effects are very similar to non-

magnetic studies, indicating that heat source/sink effects are not influenced by the 

presence of a transverse magnetic field. A similar but less dramatic trend is observed for 

the distribution of concentration, Φ in the domain (figure 7). Again Φ is increased with a 

positive rise in ∆ i.e. increasing heat generation, but lowered with an increase in negative 

∆ from -0.2 to -0.7.  

The effects of lateral wall mass flux (suction/injection) on dimensionless velocity, 

temperature and concentration are illustrated in figures 8 to 10.  Velocity is seen to be 

increased with a rise in suction parameter (fo > 0) but decreased with a rise in injection 

(blowing) at the wall (fo <0). Material removal from the boundary layer i.e. suction causes 

the fluid to accelerate normal to the wall resulting in a rise in values of f/ i.e. df/dη as fo 

rises from 0 (solid wall) to 0.1, 0.3 and 0.5. These results are very similar to the non-

magnetic study by Tsai [37]. Conversely blowing i.e. negative wall mass flux induces a 

deceleration in the flow in the boundary layer causing a decrease in velocity. The lowest 

velocity computed thereby correspond to the maximum value of wall injection i.e. fo = -

0.5, with the maximum velocity corresponding to the maximum value of wall suction i.e. 

fo = +0.5. The strong influence of wall flux on flow acceleration/deceleration indicates 

that even with thermophoresis present (τ >0) a porous wall can be a powerful 

mechanism for controlling momentum of the boundary layer regime flow in actual 

applications e.g. optical fiber manufacture, particle deposition on turbine blades in naval 

propulsion etc. The profiles computed all ascend in figure 8 from zero at the wall (no-

slip) to a maximum of unity in the free stream. The effects of wall mass flux are of course 

maximized in the near-wall regime in particular in the vicinity of η =1. Figure 9 shows 

that wall suction causes a strong decrease in temperature function (θ) throughout the 

boundary-layer regime, while wall injection (blowing) induces an increase in 

temperatures. Effects of wall mass flux parameter, fo, are maximized close to the wall, as 
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expected, around η =2. Figure 10 illustrates that  as with the velocity field, wall suction 

induces a  positive effect i.e. increase in dimensionless concentration function, Φ, 

whereas wall injection decreases Φ. As such then the presence of wall suction increases 

velocity and concentration boundary layer thicknesses but decreases the thermal 

boundary layer thickness. i.e. thins out the thermal boundary layer.  

These results are of significance in actual operations in for example the magnetic field 

control of particle deposition in chemical vapour processing. Hsu and Grief [38] have 

identified that the attainment of high particle deposition efficiency and the accurate 

regulation of the deposition to minimize operational costs and maximize the quality of the 

final product requires theoretical analysis of thermophoretic boundary layer flows. High 

efficiency and control of deposition, the latter achievable via magnetic field application, 

directly influence the success of the chemical vapor deposition in working systems in 

industry. Understanding boundary layer thermophoretic deposition flows and also 

stagnation deposition flows is significant since these arise in various heat exchanger 

systems where flows are  present on solid or porous walls [38]. Blums and Odenbach 

[39] have further highlighted the very important need to model accurately the boundary 

layer flows with thermophoresis and magnetic fields.  The high thermophoretic mobility 

of  nano-meter-scaled magnetite particles in magnetic fluids necessitates the correct 

modeling of such flows using thermal boundary layer magnetohydrodynamics with 

thermophoresis present. The results of such investigations can aid in identifying the best  

range of operations of deposition processes and can confirm the practical efficiency of 

using a magnetic field. This has been employed in for example in Blums et al [40] which 

discusses particle separation in  ferrocolloids, a new group of fluids being employed in 

state-of-the-art deposition processes in heat exchanger and other applied thermal 

engineering operations. Zahmatkesh [41] has further emphasized the need for analyzing 

boundary layer phenomena with thermophoresis (and also Brownian diffusion) indicating 

that  fundamental fluid dynamics models must be employed to simulate flows involving 

thermophoresis to provide a guide to industrial designers of deposition processes. 

Thermophoresis is important since designers of applied thermal systems must achieve  

a migration of particles away from hot surfaces where boundary layers arise. The net 

force acting in the opposite direction to the temperature gradient, i.e. towards the low 

temperature region is a direct consequence of the differential bombardment of gas 

molecules which originate from the relatively hot and cold regions in the vicinity of 

particles. The present numerical study has investigated this successfully and has 
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provided important benchmark data for more advanced numerical simulations of interest 

to thermal designers. Furthermore the present study provides a solid platform on which 

to elucidate the complex phenomena encountered in for example directional flows in tin-

bismuth alloy deposition processes [42] in which better control of thermophoresis is 

attained with magnetic field imposition, as discussed at length by Bacri et al [42].  

   

 

5. CONCLUSIONS 

In this article a mathematical model has been presented for the hydromagnetic boundary 

layer flow past a porous flat surface with thermophoresis present and also heat 

source/sink effects and viscous and Joule heating. Using transformations a set of 

ordinary differential equations has been derived for the conservation of mass, 

momentum and species diffusion in the boundary layer regime. These nonlinear, 

coupled differential equations have been solved under physically valid boundary 

conditions using a robust numerical method known as Network Simulation. Our 

computations have confirmed the earlier solutions reported by Chamkha and Issa [28] 

and also the non-magnetic analysis reported in White [34]. Suction has been shown to 

increase fluid velocity and concentration but to lower temperatures. Magnetic field (i.e. 

Hartmann number) has been shown in the present flow scenario to infact induce 

acceleration of the flow, rather than deceleration, but to reduce temperatures and 

increase concentration of particles in the boundary layer.  A positive increase in Eckert 

number is shown to reduce temperatures in the flow, as experienced via both viscous 

dissipation and Joule (Ohmic) heating. Themophoresis for the case of a cold wall 

(positive τ) is shown to initially increase concentration of particles in the boundary layer, 

but a short distance from the wall this trend is reversed. The computations have 

important implications in aerosol deposition dynamics, hydronautics of blades, and also 

optical fiber manufacture under magnetic field control.  
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