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Abstract

A joint time–frequency localized three-band biorthogonal wavelet filter bank to compress Electrocardiogram signals is pro-

posed in this work. Further, the use of adaptive thresholding and modified run-length encoding resulted in maximum data 

volume reduction while guaranteeing reconstructing quality. Using signal-to-noise ratio, compression ratio  (CR), maximum 

absolute error  (EMA), quality score  (Qs), root mean square error, compression time  (CT) and percentage root mean square 

difference the validity of the proposed approach is studied. The experimental results deduced that the performance of the 

proposed approach is better when compared to the two-band wavelet filter bank. The proposed compression method enables 

loss-less data transmission of medical signals to remote locations for therapeutic usage.
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1 Introduction

Clinical procedures have a prominent and important space 

for transmission techniques of biomedical signals. To make 

a remote clinical assessment using biomedical signals, sig-

nal transmission techniques have paramount importance. 

Healthcare processes generate heavy data thus demand a 

huge data transmission. Using data compression techniques 

in bio-signal transmission can make the remote clinical 

assessment cost-effective. For example, while monitoring 

cardiac activity using an ECG, data is recorded using mul-

tiple channels for several hours thus making it imperative 

for a system to be equipped with sufficient storage capacity 

clubbed with channel bandwidth. As real-time monitoring 

requires a huge memory and large bandwidth to transfer 

raw data, a proper compression technique should enable the 

data storage and transmission with minimal requirements. 

Further, to enable secure off-line data storage through ECG 

archives, the ECG data needs to be compressed for a cost-

effective solution. Thus, there is an obvious requirement for 

data compression in biomedical signals.

Literature has supported several compression ratios rang-

ing from 2:1 to 50:1 [1]. The literature differentiates the 

compression techniques into two categories namely, direct 

time-domain (the turning point, cycle-to-cycle, scan along 

polygonal approximation to name a few) and transformed 

frequency-domain techniques (Discrete cosine transform, 

wavelet transform to name a few). Considering the trade-

off between simplicity, compression ratio, preserve clini-

cal information and insensitive to noise, wavelet transform 

based compression methods have provided a significant 

advancement in the last few years [2].

2  Selection of wavelet transform and filter 
bank architecture

The main limitation of Fourier transform lies in dealing 

with the non-stationary type of signals. The wavelet trans-

form enables both time and frequency domain analysis thus 

allowing the analysis of non-stationary signals. The wave-

let transform is the mathematical tool that deals with joint 

time–frequency analysis to reveal the features hidden within 

the signal. With the help of variable window size, wavelet 

transform enables analyzing different frequency components 
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within a signal. Oscillating wave-like characteristics of a 

wavelet transform resembling band like spectrum makes it 

a better choice in removing noises from signals. Wavelet 

transform can decompose a signal into two separate series, 

namely, scaling function and wavelet function. Out of the 

existing thirteen different wavelet families, only few can be 

applied to compress an ECG signal.

Properties of a wavelet transform play a significant role 

in the selection of a wavelet transform for ECG compres-

sion. Different properties of wavelet transform are listed in 

Table 1. Based on orthogonality; wavelet transforms are cat-

egorized into orthogonal, semi-orthogonal, biorthogonal and 

shift orthogonal wavelet transforms. Biorthogonal wavelet 

transform satisfies all the following essential properties of 

ECG compression: (i) allows transmission between spline 

of zero order and spline of infinite order; (ii) provides an 

optimal natural signal interpolant that has least oscillating 

energy; (iii) has minimum MSE (mean square error) at every 

decomposition level; (iv) highest degree of shift variance; 

(v) generates possibilities to construct symmetrical wave-

let functions. In this work, the biorthogonal wavelet trans-

form is applied to compress the ECG signal. In the analysis 

of non-stationary signals, the wavelet filters and bases for 

attaining optimal joint time–frequency localized wavelet 

filter banks (WFBs) are designed [3].

Current literature uses two-band WFBs to analyze ECG 

signals [4–10]. Poor resolution (∆ω = π/2) of low and high-

frequency bands during signal decomposition is the major 

drawback of two-band WFBs. In two-band WFBs, cascading 

and wavelet packet decomposition is required to improve 

the resolution of lower and higher frequency bands, respec-

tively. Cascading increases the computation complexity of 

the design. To reduce the computation complexity, Three-

band WFBs with linear phase, lesser computational com-

plexity, higher energy in high -frequency bands and better 

frequency resolution of (∆ω = π/3) in lower and higher fre-

quency bands are preferred over two-band WFBs [3]. Litera-

ture has supported the involvement of three-band time–fre-

quency localized WFBs in numerous applications, namely, 

classification of EEG signals [11], digital watermarking 

[12], and image denoising [13]. The advantages of joint 

time–frequency localized three-band biorthogonal WFB 

motivates us to compress the ECG signal using three-band 

WFBs. The objective of the present scheme is to evaluate the 

performance of joint time–frequency localized three-band 

biorthogonal WFBs on different performance evaluation 

indexes, namely,  CR,  QS,  CT, RMSE, SNR,  EMA, and PRD 

and to develop a computer-aided ECG compression scheme 

which can be used in the real systems.

3  Proposed method

The signal processing flow of the proposed ECG compression 

scheme, the corresponding three-tap wavelet filter bank, and 

decomposition of ECG signal up to the fourth level, respec-

tively are shown in Figs. 1, 2 and 3. Initially, ECG data is 

recorded using  iworx® IX-TA (a portable 3-channel device) 

at a frequency of 360 Hz. The recorded analog ECG signal 

is digitized using an analog-to-digital converter (ADC). The 

process used to compress the ECG signal is same as used in 

[14] except some modifications done in the proposed work 

which are as follows: a novel joint time–frequency localized 

three-band biorthogonal WFB is utilized to decompose the 

Table 1  Comparison of different wavelet families

*Nr reconstruction order, Nd decomposition order

Wavelet family Support width Filter length Number of 

vanishing 

moments

Haar 1 2 1

Coiflets 6 N − 1 6 N 2 N − 1

Daubechies 2 N − 1 2 N N

Biorthogo-

nal/reverse 

biorthogonal

2 Nr + 1, 

2 Nd + 1

Max (2Nr, 

2Nd) + 2

Nr

Symlets 2N − 1 2N N

Fig. 1  Proposed three-tap biorthogonal wavelet filter bank-based 

ECG compression scheme

Fig. 2  Proposed three-tap biorthogonal wavelet filter bank
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digitized ECG signal into four sub-bands. The transfer function 

of different filters namely, lowpass, bandpass and highpass, 

respectively, are obtained as shown in Eqs. (1)–(3).

The decomposed ECG signal is adaptively thresholded, and 

the absolute values greater than the threshold are considered 

as digital high (logic high and represented as “1”) and all the 

other remaining values are considered as digital low (logic low 

and represented as “0”). The digitized data is then compressed 

using run-length encoding scheme.

4  Experimental results

CR,  EMA,  QS, RMSE,  CT and PRD are the parameters used to 

demonstrate the validity of the proposed approach. Parameters 

listed above are mathematically expressed using Eqs. (4)–(8).

(1)

H
0
(z) = − 0.0074 + 0.4559z

−1 + 0.7292z
−2 + 0.4559z

−3 − 0.0074z
−4

(2)

H
1
(z) = − 0.0178 − 0.3588z

−1 + 0 − 0.3558z
−3 − 0.0178z

−4

(3)

H
2
(z) = 0.0098 − 0.4125z

−1 + 0.1179z
−2 − 0.4125z

−3 + 0.0098z
−4

(4)Compression Ratio (CR) =
NBo

NBc

(5)PRD = 100

�������
⎧
⎪⎨⎪⎩

∑N

n=1

�
h(n) − ĥ(n)

�2

∑N

n=1
[h(n)]

2

⎫
⎪⎬⎪⎭

(6)QS =

CR

PRD

where NB0 is the total bits in the input ECG, NBc is the 

total bits in the compressed signal, h(n) is the ECG sig-

nal, g(n) is the reconstructed output, ĥ(n) is the denoised 

output.  CR is the ratio of size of the raw signal to the size 

of the compressed signal. PRD estimates the quality of the 

reconstructed signal by measuring the inaccuracy between 

original signal and reconstructed signal.  QS is the  CR divided 

by the PRD which estimates the behavior of the  CR. Perfor-

mance results of the proposed ECG compression approach 

is summarized in Table 2, where the proposed approach 

achieve a better result compared to the latest literature 

[15–19]. Proposed design achieves a highest average CR, 

average QS, respectively, of 22.61 and 20.81. Further, the 

proposed design has a minimum average CT, average  EMA, 

average RMSE and PRD, respectively of, 327.29 ms, 0.013, 

0.0016 and 1.60.

Error between the original ECG signal and the recon-

structed ECG signal is determined with the help of PRD. 

Lowest the value of PRD signifies the better performance. 

Figure 4 compare the PRD values obtained by the proposed 

method with the existing literature [15–19]. The proposed 

method obtains the lowest average PRD value of 1.28 

amongst all of the existing methods.

A comparison of  CR and PRD between the proposed 

scheme and the existing Refs. [15–19] is presented in Fig. 5. 

From Fig. 5, a highest  CR and lowest PRD of the proposed 

scheme has been observed and compared with [15–19].

Signal-to-noise ratio (SNR) is an objective measure to 

evaluate the performance of the system which undergoes the 

noise. Higher SNR value leads to better quality of the signal 

(7)EMA = max

[

h(n) − g(n)
]

(8)RMSE =

√

√

√

√

N
∑

n=1

[

ĥ(n) − h(n)
]2

N

Fig. 3  Decomposition of ECG 

signal up to the fourth level
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and hence, it is easy to decode the signal without errors. A 

comparison of output SNR between the proposed scheme 

and the existing schemes has been represented in Fig. 6 and 

a highest SNR of the proposed scheme compared to the Refs. 

[15–19] has been observed.

The output of the proposed joint time–frequency local-

ized three-band biorthogonal WFBs based ECG compres-

sion approach is shown in Fig. 7. Figure 7(a) is an input 

ECG signal having a sampling frequency of 360 Hz. Fig-

ure 7(b) represents the reconstructed ECG signal.

5  Conclusion

A novel joint time–frequency localized three-tap biorthogo-

nal wavelet filter bank for ECG compression is proposed in 

this article. The proposed time–frequency localized three-tap 

biorthogonal WFB for biosignals achives a losless compres-

sion ratio of 22.6. Simulations results demonstrate that the 

proposed three-tap biorthogonal WFB results in a higher 

compression ratio of the biosignals when compared to 

Table 2  Performance evaluation 

of the proposed approach

For the fair comparison, 9th level of wavelet decomposition is utilized

*Performance of the given references is calculated by generating the similar environment as described in 

the original paper

Performance parameters Proposed method [15] (*) [16] (*) [17] (*) [18] (*) [19] (*)

Average  CR 22.61 18.89 11.52 13.19 18.76 21.19

Average  QS 27.81 20.47 7.83 11.81 20.76 26.76

Average  CT (ms) 327.29 494.22 491.27 421.08 459.87 398.24

Average  EMA 0.0013 0.0002 0.016 0.032 0.100 0.006

Average RMSE 0.0016 0.029 0.021 0.020 0.020 0.032

Fig. 4  Comparison of PRD with existing schemes for different ECG 

records (indicted as R100 and others) taken from MIT-BIH database

Fig. 5  Comparison of the  CR and PRD between the proposed scheme 

and the existing schemes

Fig. 6  SNR comparison of the proposed method with the existing 

methods
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two-tap biorthogonal WFB. The better frequency resolution 

at both lower and higher frequency of three-tap biorthogo-

nal WFB leads to a better compression of the signal. Thus 

time–frequency localized three-tap biorthogonal WFB can 

enable loss-less compress with a high compression ratio to 

transmit biosignals for therapeutic use to assist in remote 

clinical assessment.
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