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Abstract

We consider an M /M /c queueing system, where the server idles until a fixed number N of customers accumulates in a queue

and following the arrival of the N -th customer, the server serves exhaustively the queue. We obtain the exact transient solution for

the state probabilities of this N -policy queue by a direct approach. Further we obtain the time-dependent mean, variance of this

system and its busy period distribution.

c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the area of optimal design and control of queues, the N -policy has received great attention (e.g. [1,2]). According

to this policy, the server idles until a fixed number N of customers arrives in the queue at the moment the server is

“switched on” and serves exhaustively the queue until it empties. The server is then “switched off” and remains idle

until N customers accumulate again in the queue. Given the costs of turning the server on and having customers

waiting in the queue, an optimal value of N can be determined that minimizes the expected cost of operating the

queue. This model is found to be applicable in analysing numerous real world queueing situations such as flexible

manufacturing systems, service systems, computer and telecommunication systems (e.g. [3,4]). In many production

systems it is assumed that when all the jobs are served, the machine stays idle until the next job arrives. If there is a

cost associated with operating the machine, it is plausible that a rational way to operate the system is to shut down

the machine when the queue length is zero and bring it up again as the queue length grows to a predetermined level

of, say N (≥1), jobs. Such a control mechanism is usually good when the machine start-up and shut-down costs are

high.

This model is an interesting special case of server vacation models and Doshi [5] has given a large number of

examples. Vacation models have received considerable attention for their interesting theoretical properties as well

as for their applicability in polling models. Machines producing certain items may need periodic checking and

maintenance. The periods of random lengths of preventive maintenance may be considered as periods of server
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vacation when the server is unavailable (turned off) [6], and different arrival rates may be considered when the server

is turned off.

Much of the earlier work done in controllable queueing systems has been concerned with the optimality of the

operation policy under certain conditions (see, [7,8]). In this paper, we obtain in closed form the transient probabilities

of the number in a multiserver queue with N -policy, mean, variance and the busy period distribution.

2. Model description

Consider an M /M /c queue with customers arriving according to a Poisson process of intensity λ0 if the server is

turned off and λ if the server is turned on, each server has an independently and identically distributed exponential

service-time distribution with mean 1/µ. We consider the case in which there are c servers in the system and when the

number of waiting customers reaches N , the servers start to serve the customers until the queue becomes empty. The

server is then “switched off” and remains idle until N customers accumulate again in the queue. Let {X (t), t ≥ 0}
denote the number of customers in the system at time t . Let Y (t) be the state of the server at time t . When the the

server is turned on Y (t) takes the value 1 and the server is turned off Y (t) takes the value 0. Then {X (t), Y (t), t ≥ 0}
is a continuous time Markov process on the state space S = {(k, n), k : 0, 1; n : 0, 1, 2, . . .}. (See Fig. 1.)

Let p0n(t) = Probability that there are n customers in the system at time t and the server is turned off,

n = 0, 1, 2, . . . , N − 1, and p1n(t) = Probability is that there are n customers in the system at time t and the

server is turned on, n = 1, 2, 3, . . . ,∞.

The forward Chapman Kolmogorov equations for the system are

p′
00(t) = −λ0 p00(t) + µ1 p11(t), (2.1)

p′
0n(t) = −λ0 p0n(t) + λ0 p0n−1(t), 1 ≤ n ≤ N − 1, (2.2)

p′
11(t) = −(λ + µ1)p11(t) + µ2 p12(t), (2.3)

p′
1n(t) = −(λ + µn)p1n(t) + λp1n−1(t) + µn+1 p1n+1(t), n > 2, n 6= N , (2.4)

p′
1N (t) = −(λ + µN )p1N (t) + [λ0 p0N−1(t) + λp1N−1(t)] + µN+1 p1N+1(t), n = N , (2.5)

where

µn = min(n, c)µ. (2.6)

If N = 1 and λ0 = λ then M /M /c with N -policy queue becomes the classical M /M /c queue [9].

2.1. Steady-state probabilities

Let p0n, n = 0, 1, 2, . . . , N − 1 and p1n, n = 1, 2, 3, . . . , be the steady-state probabilities.

It is well known that for steady state

ρ = λ

cµ
< 1,

and

lim
t→∞

pkn(t) = pkn, if k = 0, n = 0, 1, . . . , N − 1; k = 1, n = 1, 2, . . . .

The steady-state probabilities can be obtained by replacing zero to the left-hand side of the system of equations

(2.1)–(2.5).

From these equations, we observe that,

p00 = p01 = p02 = · · · = p0N−1, p11 = λ0

µ
p00,

and
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2.2. Transient probabilities

For the sake of simplicity, we first assume that the server is turned on initially.

It is natural to assume that N ≥ c and initially there are i customers in the system. Therefore,

p1n(0) = δin, n ≥ 1.

Define

Q(z, t) = q(t) +
∞
∑

n=1

p1N+n(t)zn, Q(z, 0) = zτ(i)

with

q(t) =
N−1
∑

n=0

p0n(t) +
N
∑

n=1

p1n(t), τ (i) = (i − N )

[

1 −
N
∑

n=1

δin

]

.

The system of equations (2.1)–(2.5) gives

∂ Q

∂t
=
[

−(λ + cµ) + λz + cµ

z

]

[Q(z, t) − q(t)] + λ(z − 1)p1N (t).

Integrating,

Q(z, t) =
[

λ + cµ − λz − cµ

z

] ∫ t

0

e−(λ+cµ)(t−y)e(λz+ cµ
z

)(t−y)q(y)dy

+ λ(z − 1)

∫ t

0

e−(λ+cµ)(t−y)e(λz+ cµ
z

)(t−y) p1N (y)dy + zτ(i)e−(λ+cµ)t e(λz+ cµ
z

)t . (2.7)

It is well known that if α = 2
√

cλµ and β =
√

λ
cµ

then

e(λz+ cµ
z

)(t−y) =
∞
∑

n=−∞
(βz)n In[α(t − y)], (2.8)

where In(.) is the modified Bessel function of first kind.

2.3. Evaluation of p1N+n(t), n ≥ 1

Comparing the coefficients of zn on both sides of (2.7), for n = 1, 2, 3, . . . ,



P.R. Parthasarathy, R. Sudhesh / Computers and Mathematics with Applications 55 (2008) 550–562 553

β−n p1N+n(t) =
∫ t

0

e−(λ+cµ)(t−y)[(λ + cµ)In(.) − λβ−1 In−1(.) − cµβ In+1(.)]q(y)dy

+ λ

∫ t

0

e−(λ+cµ)(t−y){β−1 In−1(.) − In(.)}p1N (y)dy + e−(λ+cµ)tβ−τ(i) In−τ(i)(αt). (2.9)

The above holds for n = −1, −2, −3, . . . , with the left-hand side replaced by zero. Using I−n(.) = In(.), for

n = 1, 2, 3, . . . ,

0 =
∫ t

0

e−(λ+cµ)(t−y)[(λ + cµ)In(.) − λβ−1 In+1(.) − cµβ In−1(.)]q(y)dy

+ λ

∫ t

0

e−(λ+cµ)(t−y)[β−1 In+1(.) − In(.)]p1N (y)dy + e−(λ+cµ)tβ−τ(i) In+τ(i)(αt). (2.10)

Subtracting (2.10) from (2.9), for n = 1, 2, 3, . . . ,

p1N+n(t) = λβn−1

∫ t

0

e−(λ+cµ)(t−y)[In−1(.) − In+1(.)]p1N (y)dy

+ βn−τ(i)e−(λ+cµ)t [In−τ(i)(αt) − In+τ(i)(αt)], (2.11)

where In(.) = In[α(t − y)]. In (2.7), for n = 0,

q(t) =
∫ t

0

e−(λ+cµ)(t−y) [(λ + cµ)I0(.) − α I1(.)] q(y)dy

+ λ

∫ t

0

e−(λ+cµ)(t−y)(β−1 I1(.) − I0(.))p1N dy + e−(λ+cµ)tβ−τ(i) Iτ(i)(αt). (2.12)

Thus we have expressed p1N+n(t) in terms of p1N (t) and p1N (t) can be evaluated using the expression (2.23).

2.4. Evaluation of p1n(t), 1 ≤ n ≤ N − 1

We will now evaluate the probabilities p1n(t), n = 1, 2, 3, . . . , N − 1, and p0n(t), n = 0, 1, 2, . . . , N − 1.

From (2.3) and first N − 2 equations in (2.4),

d

dt
R(t) = BR(t) + cµp1N (t)eN−1, (2.13)

where

R(t) = (p11(t), p12(t), p13(t), . . . , p1N−1(t))
T,

and eN−1 is a column vector of order N − 1 with 1 in the last place and zero in the remaining places, B =
(cmj )(N−1)×(N−1) with

cmj =







λ, j = m − 1, m = 2, 3, 4, . . . , N − 1

−(λ + µm), j = m, m = 1, 2, 3, . . . , N − 1

µm+1, j = m + 1, m = 1, 2, 3, . . . , N − 2,

and cmj = 0 if |m − j | > 1.

In the sequel, f̂ (s) denotes the Laplace transform of f (t). Now, by taking Laplace transform on (2.13), we get

R̂(s) = (s I − B)−1R(0) + cµp1N (s)(s I − B)−1eN−1 (2.14)

with R(0) = (δi1, δi2, δi3, . . . , δi N−1) and s I − B = (cmj (s))(N−1)×(N−1), a tridiagonal matrix.
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Let (s I − B)−1 = (b̂mj (s))(N−1)×(N−1). There are several methods to find b̂mj (s). For example, from Usmani [10],

for m, j = 1, 2, 3, . . . , N − 1,

b̂mj (s) =







(−1)m+ j cm,m+1(s)cm+1,m+2(s) · · · c j−1, j (s)θm−1(s)φ j+1(s)/θN−1(s), m < j

θm−1(s)φm+1(s)/θN−1(s), m = j

(−1)m+ j c j+1, j (s)c j+2, j+1(s) · · · cm,m−1(s)θ j−1(s)φm+1(s)/θN−1(s), m > j

(2.15)

with

θm(s) = cm,m(s)θm−1(s) − cm,m−1(s)cm−1,m(s)θm−2(s), θ0(s) = 1, θ−1(s) = 0,

m = 1, 2, 3, . . . , N − 1,

φm(s) = cm,m(s)φm+1(s) − cm,m+1(s)cm+1,m(s)φm+2(s), φN (s) = 1, φN+1(s) = 0,

m = N − 1, N − 2, N − 3 . . . , 2, 1,

and |s I − B| = θN−1(s).

We observe that b̂mj (s) are rational algebraic functions in s. The cofactor of the (m, j)th element of (s I − B) is

a polynomial of degree N − 2 − |m − j |. In particular, the cofactor of the diagonal elements are polynomials in s of

degree N − 2 with leading coefficient equal to 1.

It is also known that the characteristic roots of B are all distinct and negative [11]. Hence the inverse transform

bm, j (t) of b̂m, j (s) can be obtained by partial fractions decomposition.

From (2.14), for n = 1, 2, 3, . . . , N − 1,

p̂1n(s) =
N−1
∑

j=1

δi j b̂nj (s) + cµb̂n,N−1(s) p̂1N (s). (2.16)

2.5. Evaluation of p0n(t), 0 ≤ n ≤ N − 1

Also from the system of equations (2.1) and (2.2), we obtain for n = 0, 1, 2, . . . , N − 1,

p̂0n(s) = µân(s) p̂11(s), (2.17)

where ân(s) = λn
0

(s+λ0)
n+1 , the Laplace transform of an(t) = (λ0t)n

n! e−λ0t .

2.6. Evaluation of p1N (t)

Now, only p1N (t) remains to be found. We observe that if e = (1, 1, 1, . . . , 1)1×N−1 then

q̂(s) =
N−1
∑

n=0

p̂0n(s) + eR̂(s) + p̂1N (s). (2.18)

Using (2.14) and (2.17) in the above equation, we obtain

sq̂(s) =
N−1
∑

n=0

sµân(s) p̂11(s) + se(s I − B)−1R(0) + cµs p̂1N (s)e(s I − B)−1eN−1 + s p̂1N (s). (2.19)

From (2.16) and (2.19),

sq̂(s) =
N−1
∑

j=1

δi j

[

1 + c−1β̂ j (s) + µγ̂ (s)b̂1, j (s)
]

+ [s + cµ + cµ2γ̂ (s)b̂1N−1(s) + µβ̂N−1(s)] p̂1N (s) (2.20)

with

γ̂ (s) =
N−1
∑

n=0

sân(s) = 1 −
(

λ0

s + λ0

)N

,



P.R. Parthasarathy, R. Sudhesh / Computers and Mathematics with Applications 55 (2008) 550–562 555

c + β̂ j (s) =
N−1
∑

n=1

cs b̂n, j (s), j = 1, 2, 3, . . . , N − 1.

Further,

γ (t) = δ(t) − λ0(λ0t)N−1e−λ0t

(N − 1)! .

Also, the Laplace transform of (2.12) is

sq̂(s) =
(

p −
√

p2 − α2 − 2λ

2

)

p̂1N (s) +
(

p −
√

p2 − α2

αβ

)τ(i)

, (2.21)

where p = s + λ + µ.

From (2.20) and (2.21),
[

s + cµ + cµ2γ̂ (s)b̂1N−1(s) + µβ̂N−1(s) − p −
√

p2 − α2 − 2λ

2

]

p̂1N (s)

=
(

p −
√

p2 − α2

αβ

)τ(i)

−
N−1
∑

j=1

δi j

[

1 + c−1β̂ j (s) + µγ̂ (s)b̂1 j (s)
]

.

Simplifying this equation,
[

p +
√

p2 − α2

2
+ µ f̂N (s)

]

p1N (s) = Ĝ(s),

where

f̂N (s) = β̂N−1(s) + cµγ̂ (s)b̂1N−1(s),

Ĝ(s) =
(

p −
√

p2 − α2

αβ

)τ(i)

−
N−1
∑

j=1

δi j

[

1 + c−1β̂ j (s) + µγ̂ (s)b̂1 j (s)
]

.

Thus,

p̂1N (s) = Ĝ(s)

p+
√

p2−α2

2 + µ f̂N (s)

= 2

α
Ĝ(s)

∞
∑

r=0

(−1)r
( µ

cλ

)r/2
(

p −
√

p2 − α2

α

)r+1

[ f̂N (s)]r . (2.22)

Inverting (2.22),

p1N (t) = G(t) ∗
∞
∑

r=0

(−1)r
( µ

cλ

)r/2
e−(λ+cµ)t [Ir (αt) − Ir+2(αt)] ∗ [ fN (t)]∗r , (2.23)

where

fN (t) = βN−1(t) + cµ γ (t) ∗ b1,N−1(t),

G(t) = α

2βτ(i)
e−(λ+cµ)t [Iτ(i)−1(αt) − Iτ(i)+1(αt)] −

N−1
∑

j=1

δi j

[

δ(t) + c−1β j (t) + µγ (t) ∗ b1, j (t)
]

,

and [ fN (t)]∗r is the r -fold convolution of fN (t) with itself. We note that [ fN (t)]∗0 = δ(t).
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Also, for n = 0, 1, 2, . . . , N − 1,

p0n(t) = µ

∫ t

0

an(y)p11(t − y)dy, (2.24)

and for n = 1, 2, 3, . . . , N − 1,

p1n(t) =
N−1
∑

j=1

δi j bn, j (t) + cµ

∫ t

0

bn,N−1(y)p1N (t − y)dy. (2.25)

Thus (2.11) and (2.23)–(2.25) completely determine all the state probabilities.

If c = 1, then the characteristic roots of (s I − B) can be obtained explicitly. After considerable simplification, for

any value of N > 1 and for n = 1, 2, 3, . . . ,

p1n(t) = λ0β
n−N

∫ t

0

e−(λ+µ)(t−y)[In−N (α(t − y)) − In+N (α(t − y))] p0N−1(y)dy

+ βn−τ(i)e−(λ+µ)t [In−τ(i)(αt) − In+τ(i)(αt)], (2.26)

and

p0,N−1(t) =
[

µ

βτ(i)−1

e−λ0t (λ0t)N−1

(N − 1)! ∗
(

Iτ(i)−1(αt) − Iτ(i)+1(αt)
)

e−(λ+µ)t

]

∗
∞
∑

r=0

(

1

βN

)r [
α

2

λ0e−λ0t (λ0t)N−1

(N − 1)! ∗ (IN−1(αt) − IN+1(αt)) e−(λ+µ)t

]∗r

. (2.27)

Hence (2.24), (2.26) and (2.27) completely determine all the state probabilities.

Remark. We have obtained the transient solution for the system size probabilities with the assumption that the server

is turned on initially and i customers in the system. If there are i customers in the system at t = 0 and the server is

turned off, we obtain the system size probabilities, as follows:

p1N (t) = G1(t) ∗
∞
∑

r=0

(−1)r
( µ

cλ

)r/2
e−(λ+cµ)t [Ir (αt) − Ir+2(αt)] ∗ [ fN (t)]∗r , (2.28)

where

G1(t) = δ(t) −
N−1
∑

j=0

δi jα j (t),

fN (t) = βN−1(t) + cµ α0(t) ∗ b1,N−1(t),

and

an, j (t) = (λ0t)n− j e−λ0t

(n − j)! , α j (t) = δ(t) − λ0(λ0t)N−1− j e−λ0t

(N − 1 − j)! , j = 0, 1, 2, . . . , N − 1.

Also, for n = 0, 1, 2, . . . , N − 1,

p0n(t) =
n
∑

j=0

δi j an, j (t) + µ

∫ t

0

an,0(y)p11(t − y)dy, (2.29)

and for n = 1, 2, 3, . . . , N − 1,

p1n(t) = cµ

∫ t

0

bn,N−1(y)p1N (t − y)dy, (2.30)

and p1N+n(t) is given by (2.11).
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2.7. Mean

We know that

m(t) = E(X (t)) =
N−1
∑

n=1

n[p0n(t) + p1n(t)] +
∞
∑

n=N

np1n(t)

m′(t) =
N−1
∑

n=1

n[p′
0n(t) + p′

1n(t)] +
∞
∑

n=N

np′
1n(t).

From Eqs. (2.1)–(2.5),

m′(t) = λ −
∞
∑

n=1

µn p1n(t) + (λ0 − λ)

N−1
∑

n=0

p0n(t).

Using (2.6),

m′(t) = (λ − cµ) + µ

c−1
∑

n=1

(c − n)p1n(t) + (cµ + λ0 − λ)

N−1
∑

n=0

p0n(t).

Therefore,

m(t) = (λ − cµ)t + µ

c−1
∑

n=1

(c − n)

∫ t

0

p1n(y)dy + (cµ + λ0 − λ)

N−1
∑

n=0

∫ t

0

p0n(y)dy + i, (2.31)

where p0n(t) and p1n(t) are given in (2.24) and (2.25).

For N = c = 1 and λ0 = λ, the mean m(t) of M /M /1 queue is given by,

m(t) = (λ − µ)t + µ

∫ t

0

p00(y)dy + i. This agrees with Cohen [12, p. 178].

2.8. Variance

Var(X (t)) = E(X2(t)) − [E(X (t))]2

=
N−1
∑

n=1

n2[ p0n(t) + p1n(t)] +
∞
∑

n=N

n2 p1n(t) − [m(t)]2,

[Var(X (t))]′ =
N−1
∑

n=1

n2[p′
0n(t) + p′

1n(t) ] +
∞
∑

n=N

n2 p′
1n(t) − 2m(t)m′(t).

From the Eqs. (2.1)–(2.5), we obtain

[Var(X (t))]′ = 2(λ0 − λ)

N−1
∑

n=1

np0n(t) + (λ0 − λ)

N−1
∑

n=0

p0n(t) + λ + 2λm(t) +
∞
∑

n=1

n2µn+1 p1n+1(t)

−
∞
∑

n=1

n2µn p1n(t) − 2m(t)m′(t).

Using (2.6),

[Var(X (t))]′ = 2(λ0 − λ)

N−1
∑

n=1

np0n(t) + (λ0 − λ)

N−1
∑

n=0

p0n(t) + (λ + cµ) + 2(λ − cµ)m(t)

+ µ

c−1
∑

n=1

(2n − 1)(c − n)p1n(t) + cµ

N−1
∑

n=0

(2n − 1)p0n(t) − 2m(t)m′(t).
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Therefore,

Var(X (t)) = 2(λ0 − λ)

N−1
∑

n=1

n

∫ t

0

p0n(y)dy + (λ0 − λ)

N−1
∑

n=0

∫ t

0

p0n(y)dy + (λ + cµ)t

+ 2(λ − cµ)

∫ t

0

m(y)dy + µ

c−1
∑

n=1

(2n − 1)(c − n)

∫ t

0

p1n(y)dy

+ cµ

N−1
∑

n=0

(2n − 1)

∫ t

0

p0n(y)dy − m2(t) + i2.

For N = c = 1 and λ0 = λ, the variance of the M/M/1 queue is given by

Var(X (t)) = (λ + µ)t + 2(λ − µ)

∫ t

0

m(y)dy − µ

∫ t

0

p00(y)dy − m2(t) + i2.

3. Busy period

Busy period analysis plays a vital role in understanding various operations taking place in any queueing system.

This analysis helps to improve the management of these systems to a great extent. In N -policy queueing system,

the busy period corresponds to the usual queueing terminology. The busy period starts with the arrival of the N -th

customer in the system; however, the idle period includes the additional time when customers are present and the

server is dormant (time intervals when the server is turned off). A busy cycle is a consecutive busy and idle period. In

the busy period the state c − 1 is an absorbing state and therefore p′
1c−1(t) is the busy period density function.

The forward equations for the system are

p′
1c−1(t) = cµp1c(t),

p′
1c(t) = −(λ + cµ)p1c(t) + cµp1c+1(t),

p′
1n(t) = λp1n−1(t) − (λ + cµ)p1n(t) + cµp1n+1(t), n ≥ c,

(3.32)

with p1N (0) = 1.

Define P(z, t) =
∑∞

n=c zn−c p1n(t) and P(z, 0) = zN−c.

The system of equations (3.32) gives,

∂ P(z, t)

∂t
=
[

λz + cµ

z
− (λ + cµ)

]

P(z, t) − cµ

z
p1c(t).

The solution of this differential equation is

P(z, t) = −cµ

z

∫ t

0

e−(λ+cµ)(t−y)e(λz+ cµ
z

)(t−y) p1c(y) dy + zN−ce−(λ+cµ)t e(λz+ cµ
z

)t .

Using (2.8) in the above equation and comparing the coefficients of zn−c on either side, for n = c, c + 1, c + 2, . . . ,

p1n(t) = −cµ

∫ t

0

e−(λ+cµ)(t−y)βn−c+1 In−c+1(α(t − y))p1c(y)dy + βn−N e−(λ+cµ)t In−N (αt).

Replace n by c and c − 2, we get

p1c(t) = −cµ

∫ t

0

e−(λ+cµ)(t−y)β I1(α(t − y))p1c(y)dy + βc−N e−(λ+cµ)t IN−c(αt), (3.33)

and

0 = −cµ

∫ t

0

e−(λ+cµ)(t−y)β−1 I1(α(t − y))p1c(y)dy + βc−2−N e−(λ+cµ)t IN−c+2(αt). (3.34)
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Table 1

Probability values, mean and variance at different time points

t p00(t) p04(t) p1,4(t) p1,7(t) p1,18(t) Mean Variance

0 0.00000 0.00000 1.00000 0.00000 0.00000 4.0000 7.00(−14)

10 1.96543(−1) 3.20665(−2) 3.45660(−2) 3.91055(−3) 5.421(−9) 1.72175 1.89800

20 7.53193(−2) 1.34080(−1) 1.05341 (−2) 2.12276(−3) 2.81(−8) 3.39933 4.93120

50 8.14158(−2) 4.53385(−2) 4.27867(−2) 2.19605(−2) 1.36612(−6) 4.30291 9.15213

100 7.27222(−2) 6.50333(−2) 3.40096 (−2) 1.74416(−2) 1.03194(−6) 4.34504 8.45406

150 7.04266(−2) 6.88449(−2) 3.22764 (−2) 1.66314(−2) 9.68808(−7) 4.37086 8.32489

200 6.98738(−2) 6.95556(−2) 3.19387 (−2) 1.64892(−2) 9.57004(−7) 4.37937 8.30178

500 6.97101(−2) 6.97102(−2) 3.18597(−2) 1.64608(−2) 9.54401(−7) 4.38244 8.29719

1400 6.97078 (−2) 6.97078(−2) 3.18586(−2) 1.64603(−2) 9.54370(−7) 4.38228 8.29760

1450 6.97078(−2) 6.97078(−2) 3.18586(−2) 1.64603(−2) 9.54370(−7) 4.38228 8.29760

Where (k) denotes 10(k).

Fig. 1. Transition diagram.

From (3.33) and (3.34),

p1c(t) = e−(λ+cµ)t

βN−c
[IN−c(αt) − IN−c+2(αt)].

Therefore, the busy period density function

b(t) = p′
1c−1(t)

b(t) = cµ
e−(λ+cµ)t

βN−c
[IN−c(αt) − IN−c+2(αt)].

For N = c = 1 then

b(t) = µe−(λ+µ)t [I0(αt) − I2(αt)].

This agrees with the busy period distribution of M/M/1 queue.

4. Numerical illustration

In Table 1, some of the system size probabilities are presented when λ = 0.6, µ = 0.4, λ0 = 0.3, c = 5, N =
10, n = 20 and initially the server is turned on with four customers in the system. We note from the last two

columns that the steady-state is reached around 1450 time units. Also we observe that, the probabilities oscillate

in the beginning because of N -policy. Obviously, the steady-state probabilities are same when the server is idle.

In Fig. 2, the system size probabilities p0n(t), n = 0, 1, . . . , 9 and p1n(t), n = 1, 2, . . . , 7 are drawn for the

parameters λ = 0.6, µ = 0.4, λ0 = 0.3, c = 5, N = 10, n = 20. Note that, initially the server is turned on with

four customers in the system. We observe that except for the probability curve corresponding to state four, all curves

increase initially and decrease gradually up to some time interval. Also, these curves oscillate until they reach the

stable value.
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Fig. 2. The probability values for different time points.

Fig. 3. The expected system size for different values of N = 7, 8, 9, 10.

In Fig. 3, the time-dependent expected system size for different values of N are plotted with the assumption

p04(0) = 1, λ0 = 0.3, λ = 0.6, µ = 0.4, c = 5 and n = 20. For different values of N , the means oscillate before they

reach the stable value due to the N -policy of the system.

Fig. 4 is also a plot for expected system size with the same set of parameters as in Fig. 3 and the assumption that

initially the server is on with four customers in the system.

Figs. 5 and 6 represent the time-dependent variances for different values of N with the assumption that λ0 =
0.3, λ = 0.6, µ = 0.4, c = 5, when the server is idle with four customers and the server is on with four customers in

the system initially.

In Fig. 7, the density function of the busy period with parameter values λ = 0.6, µ = 0.4, N = 10 is represented

for different choices of the number of servers in the system.
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Fig. 4. The expected system size for different values of N = 7, 8, 9, 10.

Fig. 5. The variance of the system size for different values of N = 7, 8, 9, 10.

Fig. 6. The variance of the system size for different values of N = 7, 8, 9, 10.
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Fig. 7. The Busy period density function for different number of servers.
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