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Abstract

A simple and successful design of algorithms using parametric and non-parametric

techniques for spectral cleaning and estimation of the atmospheric radar signal is presented.

With these algorithms, signal-to-noise ratio (SNR) of the radar returns could be improved

and the Doppler frequency could be predicted even at greater heights and under severe

weather conditions. The predicted results are compared with the conventional techniques

and good improvement is reported. Copyright  2004 Royal Meteorological Society
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1. Introduction

Wind profile detection of a mesophere–stratosphere–
troposphere (MST) radar signal meant the measure-
ment of Dopplers of the signal due to scattering of
the atmospheric elements. Atmospheric radar signal
refers to the signal received by the radar due to
the back-scattering property of the atmospheric lay-
ers — stratified or turbulent. The back-scattered signal
from the atmospheric layers is very small in terms of
power with which it was emitted. The received back-
scattered signals, otherwise called as radar returns,
are associated with Gaussian noise. The noise domi-
nates the signal as the distance between the radar and
the target increases and this leads to a decrease in
signal-to-noise ratio. This makes the detection of the
signal in the prescribed noise difficult. The detection
of the signal Doppler in such dominated noise forms
the primary part of the article. After the detection of
signal, the signal has to be estimated. The estimation
of the signal frequency and the signal power forms the
second part of the article.

The radar returns are first analyzed for its frequency
characteristics. This can be done by the power spectral
estimation of the back-scattered signals. Power spec-
tral estimation (Proakis and Manolakis) of a signal
specifies the spectral characteristics of a signal in fre-
quency domain. Power Spectral Density (PSD) is the
Fourier transform of the autocorrelation function of the
signal. The autocorrelation of the signal specifies the
signal characteristics of the signal in time domain. The
power spectrum estimation (Proakis and Manolakis)
is proportional to the length of the data record. The
longer the data, the better will be the quality of the
power spectrum estimation.

The PSD estimation techniques are broadly clas-
sified into two, namely, (a) non-parametric methods,
and (b) parametric methods.

1.1. Non-parametric methods

These methods make no assumption about how the
data were generated and hence are called non-

parametric. The estimates are entirely based on a finite
record of data, the frequency resolution of these meth-
ods is, at best, equal to spectral width of the rectangu-
lar window of length N , which is approximately equal
to 1/N at the −3 dB points. Here N is equal to the
length of the data record. All these methods decrease
the frequency resolution in order to reduce the vari-
ance in the spectral estimate. Although the spectral
estimates are expressed as a function of the continuous
frequency, in practice the estimates are computed at
discrete frequencies on the basis of fast Fourier trans-
form (FFT) computations.

1.1.1. Limitations of the non-parametric methods

The non-parametric power spectral estimation methods
are relatively simple, well understood and easy to
compute via the FFT algorithm. The following are
some of the limitations of the non-parametric methods.

• These methods require the availability of long
data records in order to yield the necessary fre-
quency resolution.

• These methods suffer from the spectral leakage
effects due to windowing that are inherent in
the finite-length data records. The spectral leakage
masks weak signals that are present in the data.

• The inherent assumption is that the autocorrelation
estimate is zero for large lags that are greater than
the length of the record, which is not realistic. This
assumption severely limits the frequency resolution
and the quality of the power spectrum estimate.
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1.2. Parametric methods

In order to overcome the limitations of the non-
parametric methods, the parametric methods are used.
The parametric methods do not require making any
assumptions as in the case of the non-parametric meth-
ods. These methods use the extrapolation technique for
autocorrelations for lags greater than the length of the
record. The extrapolation is possible if we have some
prior information on how the data were generated. A
model for the signal generation may be constructed
with a number of parameters that can be estimated
from the observed data. From the model and the esti-
mated parameters, the power density spectrum implied
by the model can be computed.

The modeling approach eliminates the need for win-
dow functions and the assumption that the autocorrela-
tion sequence is zero for lags greater than the length of
the record. The parametric methods provide better fre-
quency resolution than the FFT-based, non-parametric
methods. This is especially true in applications where
small data records are available due to time-variant
and transient phenomena.

2. Wind profile detection using
non-parametric methods

2.1. Fast Fourier transform

Wind profile detection based on fast Fourier transforms
relies on computing the FFT (Proakis and Manolakis)
of the autocorrelation function of the data using the

general purpose FFT algorithm. The FFT of the auto-
correlation function specifies the spectral character-
istics of the signal in frequency domain. Presently,
in many of the MST radars around the world, the
wind information is obtained from the power spec-
trum obtained using FFT. An example of the power
spectrum obtained using the FFT is shown in Figure 1.

The following are some of the observations that can
be inferred from the figure. The Dopplers can be easily
detected at lower range bins or lower altitudes as the
signal dominates the noise at these altitudes. This is
due to the nearness of the target from the radar. As the
radar returns come from farther atmospheric layers,
due to the amount of distance they traveled back to
the radar, the intervening atmospheric disturbance and
very less back-scattered signal power, the SNR tends
to decrease gradually to a very low value. The effect
can be seen in the power spectrum at higher altitudes.
This is where the detection of signal in the dominated
noise becomes difficult.

2.1.1. Limitations of FFT algorithm

The following are some of the limitations of the FFT-
based wind profile detection.

• Radio Interference cannot be removed.
• SNR is very low at higher altitudes causing prob-

lems in detecting the profile of the wind.
• The information contained in the wind profile is lost

due to the low SNR at higher altitudes of the radar
data. This information is essential as it is useful
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Figure 1. (a) Power spectrum plot taken on 20 July 2004 using east beam (b) Doppler profile extracted without denoising
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in measuring the Doppler frequency, wind speed,
radial velocities etc.

The FFT is limited in its application because of
the non-usage of any spectral cleaning other than
incoherent averaging at the point of reception. This
averaging is not able to remove sufficient amount of
noise. So a spectral cleaning technique is needed to
increase the probability of detection of signal in the
low SNR regions.

2.2. Wavelet denoising

From the above section, it is clear that a better
spectral cleaning technique is required for improving
the probability of detection of Doppler in the low
SNR regions. Denoising using wavelets is one such
strategy, which can be used to improve the SNR
of the noise-dominated regions of the radar returns.
Wavelets around the world have taken center stage
in a number of applications like data compression,
image processing etc., The wavelets are due for its
application for denoising in atmospheric radar signal
processing. An algorithm based on the wavelets for
denoising the noise-dominated radar returns has been
designed. The algorithm is designed to individually
decide for each and every bin of the radar returns
whether denoising is required by first computing the
SNR of the bin. A threshold is set for the SNR below
which only the denoising is performed.

Firstly, the algorithm is trained with a simulated
signal (sine, cosine etc.) corrupted with different
noises (Gaussian noise, random noise etc.) of different
SNRs. The reason why the sine and cosine has been
selected is that they are the eternal signals. A system,
which works for these signals, will achieve the same
for any other signal. The algorithm comes up with an
optimum combination of wavelet, threshold function
and level of wavelet in each of these cases. For
finding the optimum combination, mean square error
is calculated with the original simulated signal.

After training the algorithm in the above manner, the
algorithm, with its library of optimum combination for
different types of noises and different SNRs, becomes
adaptive in the following sense: as the most of the
noise in the radar returns is Gaussian since the signal
arises mainly from the turbulent scatter, the SNR
for each bin is calculated and the combination for
Gaussian noise and for respective SNR is returned
from the library.

Wavelets perform denoising by effectively thresh-
olding the unwanted frequency components from the
original radar returns. The thresholding of the wavelet
coefficient has near-optimal noise reduction for many
classes of signals. Wavelets use two different types
of thresholding for denoising — soft thresholding and
hard thresholding. Hard thresholding is the usual pro-
cess of setting to zero the elements whose absolute
values are less than the threshold. Soft thresholding is
an extension of hard thresholding, where the elements

whose absolute values are lower than threshold are set
to zero and then the values of the remaining elements
are shrunk towards zero. According to Donoho and
Johnstone, soft thresholding can be used effectively in
denoising schemes, provided the noise distribution is
Gaussian. A common approach for threshold selec-
tion is to compute the sample variance σ 2 of the
coefficients in a band and set the threshold to some
multiple of the standard deviation σ . The threshold in
our algorithm is set by some predefined rules, which
are given later in the paper. These predefined rules use
soft thresholding.

Another method of denoising is damping of unwant-
ed frequency components. This can be done by first
decomposing the noisy signal using wavelets, and
damping the coefficients of the lower-level high-pass
filters to zero (Cohen and Daubechies, 1990). The
decomposed signal is then reconstructed with the
changed coefficients. Proper care should be taken not
to damp out the signal by using very high levels of
decomposition. The optimum level of decomposition
is obtained after experimenting several times.

The two methods mainly differ in the ways in
which the noise causing high-frequency components
is removed. In the first method of thresholding, the
wavelet transform is calculated for the signal and the
threshold is applied where the coefficients whose value
falls below the threshold are made zero and the resul-
tant signal is inverse wavelet transformed to obtain
the denoised signal. The same denoising can also be
done in a different way whereby the signal is decom-
posed using the wavelet function to different levels
and damping the coefficients of the lower-level high-
pass filter outputs to zero and reconstructing the signal
using the changed coefficients. The reconstructed sig-
nal contains mainly the lower-frequency components,
which correspond to the signal frequency.

Denoising differs from filtering schemes in the
following aspects.

• Denoising does non-linear filtering i.e., filtering is
made a function of some threshold function.

• Denoising tends to optimize the mean square
error i.e.,

1

N

∑

E [f (xn) − f (. . .)]2

Wavelets provide a whole lot of advantages over
FFT. Fourier analysis has a serious drawback. In trans-
forming to the frequency domain, time information is
lost. When looking at a Fourier transform of a sig-
nal, it is impossible to tell when a particular event
took place. Wavelet analysis is capable of revealing
aspects of data that other signal analysis techniques
miss, aspects like trends, breakdown points, disconti-
nuities in higher derivatives and self-similarity. Fur-
thermore, because it affords a different view of data
than those presented by traditional techniques, wavelet
analysis can often compress or denoise a signal with-
out appreciable degradation.
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2.2.1. Denoising structure in wavelets

The wavelet transform provides the time-frequency
representation of the signal. (There are other trans-
forms, which give this information too, such as
short time Fourier transform (STFT), Wigner distri-
bution (Donoho, 1994) etc.). This property is used for
denoising (Donoho, 1995), which can be achieved in
four steps:

Step 1: Selection of wavelet combination
The SNR of the radar return is first computed and
the optimum combination containing the wavelet name,

level M. Thresholding rule is feedback from the library,
which was created using the procedure discussed in the
previous section.

Step 2: Obtaining wavelet transform coefficient
Compute the wavelet decomposition of the signal using
the combination feedback from the library.

Step 3: Thresholding
The decomposed coefficients are then set to threshold
using the threshold rule given by the combination. The
different threshold selection rules and their specifica-
tions are given below. Each of these techniques has

a unique behavior suitable for denoising a particular
type or class of signals.

2.2.2. Threshold selection rules

According to the basic noise model, four threshold
selection rules (Donoho, 1994) can be implemented
with the following threshold return values:

Option Threshold selection rule

Threshold

return

rigrsure Selection using principle of Stein’s

Unbiased Risk Estimate (SURE)

2.0735

sqtwolog Fixed form threshold equal to sqrt

(2∗ log (length(s)))

3.7169

heursure Selection using a mixture of first two

options

3.7169

minimaxi Selection using minimaxi principle 2.2163

Step 4: Reconstruction:
Reconstruct the signal using the approximation coef-
ficients of level M and the modified detail coefficients
of levels from 1 to M. Reconstruction is nothing but
the up-sampling of the approximation and the modified
detailed coefficients to M levels and adding them.

3. Atmospheric wavelets

After applying the above algorithm for a number of
data, it was found that a set of wavelets is used more
frequently. These wavelets were then analyzed and
some of their properties were changed, and a new set
of wavelets was designed for their better performance

with radar returns. The new set of wavelets was called
Atmoslets named after the field of signal processing
they are used.

The frequently used wavelets are Sym3, Sym8,
Coif3, Coif1, Db1 and Db4. The wavelet functions
of these wavelets can be obtained by up-sampling the
high-pass filter coefficients of the respective Wavelet
and convolving it with the low-pass filter coefficients.
By performing a number of such iterations, the wavelet
function of the respective wavelet can be modified to
the near perfect form. As the noise is high-frequency
signal, the wavelet function must be as nearest to
the high-frequency shape as possible. Because of its
nearest shape, the value of correlation is high and noise
can be removed using thresholding.

By performing such iterations, the wavelet functions
obtained are used in the above algorithm and found
improvement in SNR when compared to the normal
wavelets. So, a set of six such wavelets are obtained
from the respective wavelets with notation ‘atm 1
to atm 6’. In general, these wavelets are called
Atmospheric Wavelets. The wavelet functions of the
atmoslets are shown in the Figure 2.

The following are filter coefficients of the atmo-
spheric wavelets, which satisfy the criteria for wavelet
filter coefficients

Atm1: [0.0013 −0.0002 −0.0106 0.0027 0.0347
−0.0192 −0.036 0.2577 0.5496 0.3404 −0.0433
−0.1013 0.0054 0.0224 −0.00047 −0.0024]

Atm2: [0.2352 0.5706 0.3252 −0.0955 −0.0604
0.0024]

Atm3: [0.0013 −0.0002 −0.0106 0.0027 0.0347
−0.0192 −0.0367 0.2577 0.5496 0.3404 −0.0433
−0.1013 0.0054 0.0224 −0.0004 −0.0024]

Atm4: [−0.0514 0.2389 0.6029 0.2721 −0.0514

−0.0111]
Atm5: [−0.0027 0.0055 0.0166 −0.0465 −0.0432

0.2865 0.5613 0.3030 0.0508 −0.0582 0.0244 0.0112
−0.0064 −0.0018 0.0008 0.0003 −0.0001 0.0000]

Atm6: [0.0006 −0.0012 −0.0052 0.0114 0.0189
−0.0575 −0.0397 0.2937 0.5531 0.3072 −0.0471
−0.0680 0.0278 0.0177 −0.0108 −0.0040 0.0027
0.0009 −0.0004 −0.0002 0.0000 0.0000 −0.0000
−0.0000]

The following are some of the observations made
after the denoising has been performed using atmo-
spheric wavelets. Figure 1(a) is power spectrum of
radar returns without denoising; Figure 1(b) depicts
the Doppler height profile obtained without denois-
ing. Figure 3(a) is the power spectrum of radar returns
after denoising; Figure 3(b) depicts the Doppler height
profile obtained after denoising.

• Figure 3(a) clearly shows the removal of high-
frequency noise components from the power spec-
trum shown in Figure 1(a), and increases SNR.
Increase in SNR helps in the detection of Doppler
height profile even at greater heights in the midst of
noise as it is demonstrated in Figure 3(b).
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Figure 2. Wavelet functions of the atmoslets

• It is observed that as level of the decomposi-
tion increases, the probability of filtering out of
the genuine peak also increases; hence, lower-
level wavelets should be used for denoising atmo-
spheric signals.

• Another point that is noteworthy is that orthogonal
wavelets provide better denoising when compared
to other wavelets especially for signals predominant
with Gaussian noise.

The improvement in SNR achieved by denoising
using the atmospheric wavelets is demonstrated in
Figure 4. The plot shows the SNRs obtained at differ-
ent heights with and without denoising for the noisy
data. The plot clearly shows the descent in the SNR
plot without denoising at higher altitudes. The follow-
ing are some of the observations that can be made on
the plot.

• Owing to denoising, there is an improvement of
SNR by 10 to 15 dB.

• Because of improved SNR, it is possible to detect
the echoes and thus predict and detect the wind
profile more accurately even under noisy conditions,
because detection is directly related to SNR of
the signal.

The power spectrum obtained in the presence of
strong interference is shown in Figure 5(a). It can be
seen that the interference dominated the signal from
the height of 12 km to the end of the frame. Hence, the
Doppler height profile could be detected up to 15 km
as shown in Figure 5(b). The same data is denoised
using the atmospheric wavelet and the resultant power
spectrum is shown in Figure 6(a), which shows clearly
the removal of the interference. Figure 6(b) shows the
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Figure 3. (a) Doppler power spectrum after denoising with atmospheric wavelet (b) Doppler height profile extracted from the
spectrum after denoising

increase in the Doppler height profile obtained because
of denoising.

4. Wind profile detection using parametric
method (harmonic decomposition)

Wind profile detection based on harmonic decompo-
sition (Parametric Method) (Proakis and Manolakis)
relies on the eigen analysis of the autocorrelation func-
tion of the signal. The autocorrelation is the spectral
characteristic of the signal in time domain. The auto-
correlation of the time domain data is obtained for
different lags. The eigenvalues of the matrix formed
by the autocorrelation coefficients are computed. The
corresponding Eigenvectors are also found out. The
minimum of the eigenvalues, which corresponds to
the signal, is found and the corresponding eigenvec-
tor is solved for the roots. The roots correspond to
the frequency of the signal data. The algorithm using
parametric method based on harmonic decomposition
can be stated as follows.

Pisarenko harmonic decomposition:
Pisarenko harmonic decomposition method is an

Eigen analysis algorithm, which is used in power
spectrum estimation of randomly phased sinusoids
corrupted with white Gaussian noise. The algorithm

is based on an Eigen decomposition of the correlation
matrix of the noise-corrupted signal.

This Pisarenko method is based on the use of a noise
subspace eigenvector to estimate the frequencies of
the sinusoids.

For p randomly phased sinusoids in additive white
noise, the autocorrelation values are

γyy(0) = σw
2 + �Pi ;

γyy(k) = �Pi cos 2πfik k ! = 0 (1)

where Pi = Ai
2/2 is the average power in the i th

sinusoid and Ai is the corresponding amplitude. In
matrix form, it can be written as:











cos 2π f1 cos 2π f2 . . . . . . . . . cos 2π fp
cos 4π f1 cos 4π f2 . . . . . . . . . cos 4π fp

· · · ·

· · · ·

cos 2πpf1 cos 2πpf2 . . . . . . . . . cos 2πpfp











×











P1

P2

·

·

Pp











=

(

γyy (1)

γyy (2)

γyy (p)

)

(2)

If the frequencies fi , 1 < I < p are known, this
equation may be used to determine the powers of the
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Figure 4. (a) Height profiles of signal-to-noise ratio (SNR) estimated before and after denoising (b) Scatter plot between SNR’s
before and after denoising

sinusoids. The estimates rxx (m) are used in place of
γxx (m). By using the powers, the noise variance can
be obtained from Equation (1) as

σw
2 = ryy(0) − �Pi

The problem that remains is to determine the p fre-
quencies fi , 1 < I < p, which, in turn, require knowl-
edge of the eigenvector a corresponding to the eigen-
value σw

2. Pisarenko observed that for an auto regres-
sive moving average (ARMA) process consisting of
p sinusoids in additive white noise, the variance σw

2

corresponds to the eigenvalue of Ŵyy , when the dimen-
sion of the autocorrelation matrix equals or exceeds
(2p + 1) × (2p + 1). The desired ARMA coefficient
vector corresponds to the eigenvector associated with
the minimum eigenvalue. Therefore, the frequencies
fi , 1 < I < p are obtained from the roots of the poly-
nomial in (2), where the coefficients are the elements
of the eigenvector a corresponding to the minimum
eigenvalue σw

2.
The Pisarenko harmonic decomposition method can

be put in a nutshell as follows. First, the autocorre-
lation matrix Ryy is estimated from the data. Then,
the minimum eigenvalue and the corresponding eigen-
vector are found out for the autocorrelation matrix.
The minimum eigenvector yields the parameters of
the ARMA (2p, 2p) model. By using the Equa-
tion (1), the roots corresponding to the frequencies

{fi } are computed. By using these frequencies, the
Equation (1) is solved for the signal powers {Pi } by
substituting the estimates ryy (m) for γyy (m).

The algorithm can be explained in the follow-
ing steps.

• The autocorrelation function of the time domain
data is computed and the correlation matrix is
formed using the correlation coefficients. The matrix
must be square and the lower triangular matrix must
be conjugate of the upper triangular matrix.

• The eigenvalues and the eigenvectors of the corre-
lation matrix are computed.

• The minimum eigenvalue and the minimum eigen-
vector are found out from the Plot. This mini-
mum eigenvector corresponds to the signal and the
remaining corresponds to the noise.

• The eigenvectors are solved for the roots. The
roots correspond to the normalized frequency of
the signal.

Figure 7 shows the profile drawn using the harmonic
decomposition algorithm for the data whose power
spectrum is shown in Figure 1. The following are
some of the observations made on profile drawn using
the harmonic decomposition algorithm.

• The harmonic decomposition algorithm uses the
quadrature and in-phase components of the radar
returns when compared to other algorithms, which
use power spectrum data.
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Figure 5. (a) Doppler power spectrum corrupted with interference (b) Doppler height profile obtained in the presence of
interference
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Figure 6. (a) Doppler power spectrum after denoising with atmospheric wavelet (b) Doppler height profile obtained after removal
of interference
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• The algorithm estimates Doppler frequencies con-
sistently up to a height of 20 km even under very
low SNRS.

• The algorithm produces slight errors in Doppler
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frequencies at the altitudes of about 20 to 22 km
where the signal has very low SNRs.

In order to overcome the limitations of the har-
monic decomposition algorithm in processing the
atmospheric radar returns, both the above algorithms
are combined into one hybrid algorithm. The hybrid
algorithm has been discussed in the following section.

5. Wind profile algorithm using both
parametric and non-parametric methods
(hybrid algorithm)

An algorithm, which is a hybrid of the non-parametric
method and the parametric method, has been devel-
oped. The algorithm uses the non-parametric method
for spectrum cleaning and parametric method for
estimating the power spectrum. In spectral cleaning,
wavelet decomposition is used. In power spectrum
estimation, harmonic decomposition is used. In spec-
trum cleaning, the algorithm discussed in the denoising
section is used.

The cleaned data is then sent to the harmonic
decomposition block where the Doppler frequencies
are estimated using the algorithm presented in the
previous section.

The hybrid algorithm is divided into three parts as
given below.

• Spectrum cleaning
• Harmonic decomposition or eigen analysis
• Profile plotting algorithm.

5.1. Validation of the algorithm

The algorithm has been tested on the simulated signals
for different SNRs and frequencies, and the following
are some of the observations that are worthwhile.

• Consistently estimating the frequencies.
• For very low SNRs, Harmonic decomposition after

denoising has improved the efficiency of spec-
tral estimation.
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Figure 10. Profile plot drawn using the Dopplers provided by
hybrid algorithm, which uses wavelets for spectral cleaning and
harmonic decomposition for Doppler estimation
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Figure 11. Comparison of profiles drawn using the hybrid
algorithm and harmonic decomposition algorithm individually
on the power spectrum plot of the WEST beam blue profile
→ hybrid algorithm red profile → harmonic decomposition
algorithm

Figure 8 shows the plot drawn between the eigen
frequencies and real frequencies for different SNRs
(−10 dB and −5 dB). The solid line corresponds to
the pure frequencies, dash line corresponds to the noisy
data and the dash-dot line corresponds to the denoised
frequencies.

Figure 9 shows the plot drawn between SNR and
eigen frequencies for different frequencies. The solid
line corresponds to the pure frequencies, dash line cor-
responds to the noisy frequencies and dash-dot line
corresponds to the denoised frequencies. After obtain-
ing encouraging results for the simulated signals, the
proposed hybrid algorithm is tested for the atmo-
spheric data and the following are some of the results
obtained using our algorithm.

Figure 10 shows the profile drawn using the pro-
posed hybrid algorithm that uses non-parametric
wavelet denoising for spectral cleaning and paramet-
ric harmonic decomposition for Doppler estimation.
Figure 11 gives a comparison between hybrid algo-
rithm and harmonic decomposition. The blue profile
corresponds to hybrid algorithm and the red one cor-
responds to the harmonic decomposition.

6. Conclusions

From the results shown above, the following conclu-
sions can be made.

• The blue profile corresponding to hybrid algorithm
is smoother than the one corresponding to the
harmonic decomposition. Hence, the blend of non-
parametric and parametric methods yields better
results compared to either harmonic decomposition
or wavelets.

• The hybrid algorithm also computes accurate fre-
quencies for high noisy data. The combination
makes the algorithm more efficient in very low
SNR regions.

Data observation table:

Period of observation 2001–2003

Pulse width 16 µs

Range resolution 150 m

Inter pulse period 1000 µs

No of beams 6 (E10y, W10y, Zy, Zx, N10x, S10x)

No of FFT points 512

No of incoherent integrations 1

Maximum Doppler frequency 3.9 Hz

Maximum Doppler velocity 10.94 m/s

Frequency resolution 0.061 Hz

Velocity resolution 0.176 m/s

• E10y = east–west polarization with offzenith angle
of 10◦

• W 10y = east–west polarization with offzenith angle
of 10◦

• N 10x = north–south polarization with off zenith
angle of 10◦

• S10x = north–south polarization with off zenith
angle of 10◦
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