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a b s t r a c t

A lot of research has been devoted to finding efficient embedding of trees into hypercubes.
On the other hand, in this paper, we consider the problem of embedding hypercubes into
k-rooted complete binary trees, k-rooted sibling trees, binomial trees and certain classes of
caterpillars to minimize the wirelength.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

An important feature of an interconnection network is its ability to efficiently simulate programs written for other
architecture. Such a simulation problem can be mathematically formulated as graph embedding. An embedding of a guest
graph G into a host graph H is defined by an injective mapping f : V (G) → V (H) together with a mapping Pf which assigns
to each edge (u, v) of G a path Pf ((u, v)) between f (u) and f (v) in H [9,29,33]. Some of the parameters used to analyze the
efficiency of an embedding are dilation, expansion, edge congestion and wirelength.

If e = (u, v) ∈ E(G), then the length of Pf (e) in H is called the dilation of the edge e. The maximal dilation over all edges
of G is called the dilation of the embedding f . The expansion of an embedding f is the ratio of the number of vertices of H to
the number of vertices of G. In this paper, we consider embeddings with expansion one.

The edge congestionof an embedding f of G into H is the maximum number of edges of the graph G that are embedded
on any single edge of H . Let ECf (e) denote the number of edges (u, v) of G such that e is in the path Pf ((u, v)) between f (u)
and f (v) in H . In other words,

ECf (e) =




(u, v) ∈ E(G): e ∈ Pf ((u, v))

 .

If we think of G as representing the wiring diagram of an electronic circuit, with the vertices representing components
and the edges representingwires connecting them, then the edge congestion EC(G,H) is theminimum, over all embeddings
f : V (G) → V (H), of the maximum number of wires that cross any edge of H [5].

The wirelength [21,25] of an embedding f of G into H is given by

WLf (G,H) =


(u,v)∈E(G)


Pf ((u, v))


 =



e∈E(H)

ECf (e).
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The wirelength of G into H is defined as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddings f of G into H . The wirelength problem of a graph G into H is to find an
embedding ofG intoH that induces theminimumwirelengthWL(G,H). Since our goal to construct embeddings ofminimum
wirelength, we will take Pf to be a mapping that assigns to each edge (u, v) of G a shortest path between vertices f (u) and
f (v) in H .

The wirelength of a graph embedding arises from VLSI designs, data structures and data representations, networks for
parallel computer systems, biological models that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on [24,33]. Embedding problems have been considered for binary trees into paths [24], binary trees
into hypercubes [3,7,13,14,17,20,22,26], binomial trees into hypercubes [31,32], generalized ladders into hypercubes [10],
binary trees into grids [27], hypercubes into cycles [15,19], generalizedwheels into arbitrary trees [28], and hypercubes into
grids [25].

Even though there are numerous results and discussions on the embedding problem, most of them deal with only
approximate results and the estimation of lower bounds [4,15]. The embeddings discussed in this paper produce exact
wirelength.

2. Isoperimetric problem

The following two versions of the edge isoperimetric problem of a graph G(V , E) have been considered in the
literature [6], which is NP-complete [18].

Version 1. Find a subset of vertices of a given graph, such that the edge cut separating this subset from its complement
has minimal size among all subsets of the same cardinality. Mathematically, for a given m, if θG(m) = minA⊆V ,|A|=m |θG(A)|

where θG(A) = {(u, v) ∈ E: u ∈ A, v ∉ A}, then the problem is to find A ⊆ V such that θG(m) = |θG(A)|.
It is interesting to note that θG (⌊|V | /2⌋) solves bisection width of G [18].

Version 2. Find a subset of vertices of a given graph, such that the number of edges in the subgraph induced by this
subset is maximal among all induced subgraphs with the same number of vertices. Mathematically, for a given m, if
IG(m) = maxA⊆V ,|A|=m |IG(A)| where IG(A) = {(u, v) ∈ E: u, v ∈ A}, then the problem is to find A ⊆ V such that
IG(m) = |IG(A)|.

We call such a set A optimal. Clearly, if a subset of vertices is optimal with respect to Version 1, then its complement is
also an optimal set. However, it is not true for Version 2 in general, although this is indeed the case if the graph is regular [6].
In the literature, Version 2 is defined as the maximum subgraph problem.

The hypercube is one of the most popular versatile and efficient topological structures of interconnection networks. The
hypercube has many excellent features and thus becomes the first choice of topological structure of parallel processing and
computing systems. The machine based on hypercubes such as the Cosmic Cube from Caltech, the iPSC/2 from Intel and
Connection Machines have been implemented commercially [30].

Definition 1 ([33]). For n ≥ 1, let Qn denote the graph of n-dimensional hypercube. The vertex set of Qn is formed by the
collection of all n-dimensional binary representations. Two vertices x, y ∈ V (Qn) are adjacent if and only if the corresponding
binary representations differ exactly in one bit.

Equivalently if |V (Qn)| = 2n then the vertices of Qn can also be identified with integers 0, 1, . . . , 2n − 1 so that if a pair
of vertices i and j are adjacent then i − j = ±2p for some p ≥ 0.

Definition 2 ([23]). An incomplete hypercube on i vertices of Qn is the subcube induced by {0, 1, . . . , i − 1} and is denoted
by Li, 1 ≤ i ≤ 2n.

Theorem 1 ([8,11,21]). Let Qn be an n-dimensional hypercube. For 1 ≤ i ≤ 2n, Li is an optimal set. �

Lemma 1 ([2,25]). Let Qn be an n-dimensional hypercube. Let m = 2t1 + 2t2 + · · · + 2tl such that n ≥ t1 > t2 > · · · > tl ≥ 0.
Then |E(Qn[Lm])| = [t1 · 2t1−1 + t2 · 2t2−1 + · · · + tl · 2

tl−1] + [2t2 + 2 · 2t3 + · · · + (l − 1)2tl ]. �

In this paper we solve the wirelength problem of hypercubes into k-rooted complete binary trees, k-rooted sibling trees,
binomial trees and certain classes of caterpillars. We begin with the following notation.

Notation. For any set S of edges of H , ECf (S) =


e∈S ECf (e).

Lemma 2 (Congestion Lemma [25]). Let G be an r-regular graph and f be an embedding of G into H. Let S be an edge cut of H

such that the removal of edges of S leaves H into 2 components H1 and H2 and let G1 = f −1(H1) and G2 = f −1(H2). Also S

satisfies the following conditions:
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Fig. 1. Embedding of Q4 with vertices labeled by lexicographic order into T 1
4 with vertices labeled by inorder traversal.

(i) For every edge (a, b) ∈ Gi, i = 1, 2, Pf ((a, b)) has no edges in S.
(ii) For every edge (a, b) in Gwith a ∈ G1 and b ∈ G2, Pf ((a, b)) has exactly one edge in S.
(iii) G1 is a maximum subgraph on k vertices where k = |V (G1)|.

Then ECf (S) is minimum and ECf (S) = r |V (G1)| − 2 |E(G1)|. �

Lemma 3 (Partition Lemma [25]). Let f :G → H be an embedding. Let {S1, S2, . . . , Sp} be a partition of E(H) such that each Si
is an edge cut of H. Then

WLf (G,H) =

p

i=1

ECf (Si). �

Lemma 4 (k-Partition Lemma [1]). Let f :G → H be an embedding. Let Ek(H) denote a collection of edges of H with each edge

in H repeated exactly k times. Let {X1, X2, . . . , Xm} be a partition of Ek(H) such that each Xi is an edge cut of H. Then

WLf (G,H) =
1

k

m

i=1

ECf (Xi). �

3. Wirelength of hypercubes into k-rooted complete binary trees

A tree is a connected graph that contains no cycles. Trees are themost fundamental graph-theoreticmodels used inmany
fields: information theory, automatics classification, data structure and analysis, artificial intelligence, design of algorithms,
operation research, combinatorial optimization, theory of electrical networks, and design of network [33].

Let T be a rooted tree. Suppose that vertex u of T adjacent to v, lies in the level below v, we say that u is a child of v and
v is the parent of u. Suppose that there is a path from v to w in T such that w lies below v, we say that w is a descendant of
v and v is an ancestor of w. A vertex with no children is called a leaf. All other vertices are called internal vertices. The most
common type of tree is the binary tree. A binary tree is a rooted tree in which each vertex has at most two children and each
child is designated as its left child or right child. A binary tree is said to be a complete binary tree if each internal vertex
has exactly two children. Binary trees are widely used in data structures because they are easily stored, easily manipulated,
and easily retrieved. Also, many operations such as searching and storing can be easily performed on tree data structures.
Furthermore, binary trees appear in communication pattern of divide-and-conquer type algorithms, functional and logic
programming, and graph algorithms [33].

For any non-negative integer n, the complete binary tree of height n, denoted by Tn, is the binary tree where each internal
vertex has exactly two children and all the leaves are at the same level. Clearly, a complete binary tree Tn has n levels and
level i, 1 ≤ i ≤ n, contains 2i−1 vertices. Thus Tn has exactly 2n − 1 vertices. The 1-rooted complete binary tree T 1

n is

obtained from a complete binary tree Tn by attaching to its root a pendent edge. The new vertex is called the root of T 1
n and

is considered to be at level 0. The k-rooted complete binary tree T k
n is obtained by taking k vertex disjoint 1-rooted complete

binary trees T 1
n on 2n vertices with roots say r1, r2, . . . , rk and adding the edges (ri, ri+1), 1 ≤ i ≤ k − 1. The 2-rooted

complete binary tree has been considered in [12].

Embedding Algorithm A

Input: The n-dimensional hypercube Qn and the 1-rooted complete binary tree T 1
n on 2n vertices.

Algorithm: Label the vertices ofQn and T 1
n by lexicographic order [4] and inorder traversal [16,28] from0 to 2n−1 respectively.

See Fig. 1.
Output: An embedding f of Qn into T 1

n given by f (x) = xwith minimum wirelength.

Lemma 5. For j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, Tcut2
j−1

i = {2j(i−1), 2j(i−1)+1, 2j(i−1)+2, . . . , 2j(i−1)+(2j−2)}
is an optimal set in Qn.
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Fig. 2. Cut edges of 1-rooted binary tree.

Proof. Define ϕ: Tcut2
j−1

i → L2j−1 by ϕ(2j(i − 1) + k) = k. If the binary representation of 2j(i − 1) + k is α1α2 · · · αn

then the binary representation of k is 00 · · · 00
  

n−j times

αn−j+1αn−j+2 · · · αn. Thus the binary representation of two numbers x and y

differ in exactly one bit ⇔ the binary representation of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in

Tcut2
j−1

i ⇔ (ϕ(x), ϕ(y)) is an edge in L2j−1. Hence Tcut2
j−1

i and L2j−1 are isomorphic. By Theorem 1, Tcut2
j−1

i is an optimal
set in Qn. �

Remark. By Lemma 1, we have for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j,



E(Qn[Tcut

2j−1
i ])



 = j(2j−1 − 1).

Lemma 6. The Embedding Algorithm A of hypercube Qn into 1-rooted complete binary tree T 1
n induces a minimum wirelength

WL(Qn, T
1
n ).

Proof. For j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, let S2
j−1

i be the cut edge of the 1-rooted complete binary tree T 1
n , which has

one vertex in level n− j and the other vertex in level n− j+1, such that S2
j−1

i disconnects T 1
n into two components X2j−1

i and

X
2j−1

i where V (X2j−1
i ) is Tcut2

j−1
i . See Fig. 2. Let G2j−1

i and G
2j−1

i be the inverse images of X2j−1
i and X

2j−1

i under f respectively.

By Lemma 5, G2j−1
i is an optimal set in Qn. Thus the cut edge S2

j−1
i satisfies conditions (i)–(iii) of the Congestion Lemma.

Therefore ECf (S
2j−1
i ) is minimum for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j. The Partition Lemma implies thatWLf (Qn, T

1
n ) is

minimum. �

Theorem 2. The exact wirelength of Qn into T 1
n is given by

WL(Qn, T
1
n ) = 2n−1(n2 − 3n + 8) − n − 4.

Proof. By Congestion Lemma, for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, ECf (S
2j−1
i ) = n(2j − 1) − 2j(2j−1 − 1). Therefore

WL(Qn, T
1
n ) =

n

j=1

2n−j

i=1 ECf (S
2j−1
i ) =

n

j=1 2
n−j[n(2j − 1) − 2j(2j−1 − 1)] = 2n−1(n2 − 3n + 8) − n − 4. �

Embedding Algorithm B

Input: The n-dimensional hypercube Qn and the k-rooted complete binary tree T k
n1
, k = 2n−n1 .

Algorithm: Label the vertices of Qn by lexicographic order [4] from 0 to 2n −1. Label the vertices of T k
n1
, k = 2n−n1 , as follows:

Let T 1,1
n1

, T 1,2
n1

, . . . , T 1,k
n1

be the k vertex disjoint 1-rooted complete binary trees of T k
n . Label the vertices of T 1,i

n1
, 1 ≤ i ≤ k, by

inorder traversal [16,28] from (i − 1)2n1 to i2n1 − 1. See Fig. 3.
Output: An embedding f of Qn into T k

n1
given by f (x) = x with minimum wirelength.

Lemma 7. For i = 1, 2, . . . , 2n−n1 , Tcut2
n1

i = {2n1(i − 1), 2n1(i − 1) + 1, 2n1(i − 1) + 2, . . . , 2n1(i − 1) + (2n1 − 1)} is an
optimal set in Qn.

Proof. Define ϕ: Tcut2
n1

i → L2n1 by ϕ(2n1(i − 1) + k) = k. If the binary representation of 2n1(i − 1) + k is α1α2 · · · αn then
the binary representation of k is 00 · · · 00

  

n−n1 times

αn−n1+1αn−n1+2 · · · αn. Thus the binary representation of two numbers x and y
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Fig. 3. Embedding of hypercube Q5 into a 4-rooted complete binary tree T 4
3 .

differ in exactly one bit ⇔ the binary representation of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in

Tcut2
n1

i ⇔ (ϕ(x), ϕ(y)) is an edge in L2n1 . Hence Tcut2
n1

i and L2n1 are isomorphic. By Theorem 1, Tcut2
n1

i is an optimal set
in Qn. �

Lemma 8. The Embedding Algorithm B of hypercube Qn into k-rooted complete binary tree T k
n1
, k = 2n−n1 induces a minimum

wirelength WL(Qn, T
k
n1

).

Proof. By Lemmas 6 and7, it is enough to prove that the cut edge (ri, ri+1), 1 ≤ i ≤ k−1,where ri is the root of T
1,i
n1

, 1 ≤ i ≤ k,

has minimum edge congestion. The cut edge (ri, ri+1), 1 ≤ i ≤ k − 1 of T k
n1
, disconnects T k

n1
into two components Xi and

X i where V (Xi) = {0, 1, . . . , i2n1 − 1}. Let Gi and Gi be the inverse images of Xi and X i under f respectively. By Theorem 1,
Gi is an optimal set in Qn. Thus the cut edge (ri, ri+1), 1 ≤ i ≤ k − 1 satisfies conditions (i)–(iii) of the Congestion Lemma.
Therefore ECf ((ri, ri+1)) is minimum for i = 1, 2, . . . , k−1. The Partition Lemma implies thatWLf (Qn, T

k
n1

) is minimum. �

Theorem 3. The exact wirelength of Qn into T k
n1
, k = 2n−n1 is given by

WL(Qn, T
k
n1

) = 2n−1[2nn1 − 3n − n1(n1 + 1) + 8] + 2n−n1 [n(2n−1 + 1) − 2n1 − 4] − 2

k−1

i=1

|E(Qn[Li2n1 ])| .

Proof. By Theorem 2 and Congestion Lemma, WL(Qn, T
k
n1

) = k
n1

j=1

2n1−j

i=1 ECf (S
2j−1
i ) +

k−1
i=1 ECf ((ri, ri+1)) = k

n1
j=1

2n1−j[n(2j − 1) − 2j(2j−1 − 1)] +
k−1

i=1 [ni2n1 − 2 |E(Qn[Li2n1 ])|] = k{2n1−1[2nn1 − 2n− n1(n1 + 1) + 8] + n− 2n1 − 4} +

n2n−n12n−1 − n2n−1 − 2
k−1

i=1 |E(Qn[Li2n1 ])|. �

4. Wirelength of hypercubes into k-rooted sibling trees

The 1-rooted sibling tree ST 1
n is obtained from the 1-rooted complete binary tree T 1

n by adding edges (sibling edges)

between left and right children of the same parent node. See Fig. 4(a). The k-rooted sibling tree ST k
n is obtained by taking

k vertex disjoint 1-rooted sibling tree ST 1
n on 2n vertices with roots say r1, r2, . . . , rk and adding the edges (ri, ri+1),

1 ≤ i ≤ k − 1.

Since V (ST 1
n ) = V (T 1

n ), we show that the Embedding Algorithm A of hypercube Qn into 1-rooted sibling tree ST 1
n induces

a minimum wirelength.

Lemma 9. For j = 1, 2, . . . , n − 1 and i = 1, 2, . . . , 2n−j−1,

STcut
2(2j−1)
i = {2j(2i − 2), 2j(2i − 2) + 1, 2j(2i − 2) + 2, . . . 2j(2i − 2) + 2j − 2,

2j(2i − 1), 2j(2i − 1) + 1, 2j(2i − 1) + 2, . . . 2j(2i − 1) + 2j − 2}

is an optimal set in Qn.

Proof. By Lemma 5, the sets {2j(2i− 2), 2j(2i− 2)+ 1, 2j(2i− 2)+ 2, . . . , 2j(2i− 2)+ 2j − 2} and {2j(2i− 1), 2j(2i− 1)+
1, 2j(2i− 1)+ 2, . . . , 2j(2i− 1)+ 2j − 2} are isomorphic to L2j−1. Also the binary representation of 2j(2i− 2) and 2j(2i− 1)
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Fig. 4. (a) The 1-rooted sibling tree ST 1
4 (b) edge cut of ST 1

4 .

differ exactly in one bit. Therefore



E(Qn[STcut

2(2j−1)
i ])



 = 2


E(Qn[L2j−1])


+2j−1 = 2j(2j−1−1)+2j−1 = (j+1)2j−2j−1.

But by Lemma 1,

E(Qn[L2(2j−1)])


 = (j + 1)2j − 2j − 1 and hence by Theorem 1, STcut

2(2j−1)
i is an optimal set in Qn. �

Lemma 10. The Embedding Algorithm A of hypercube Qn into 1-rooted sibling tree ST 1
n induces a minimum wirelength

WL(Qn, ST
1
n ).

Proof. For j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, let S2
j−1

i be an edge cut of the 1-rooted sibling tree ST 1
n consisting of edges

induced by the ⌈i/2⌉th parent vertex from left to right in level n− jwith its left child if i is odd and its right child if i is even

together with the corresponding sibling edge which is the same edge in either case, such that S2
j−1

i disconnects ST 1
n into two

components X2j−1
i and X

2j−1

i where V (X2j−1
i ) is Tcut2

j−1
i . See Fig. 4(b). Let G2j−1

i and G
2j−1

i be the inverse images of X2j−1
i and

X
2j−1

i under f respectively. By Lemma 5, G2j−1
i is an optimal set in Qn. Thus the edge cut S2

j−1
i satisfies conditions (i)–(iii) of

the Congestion Lemma. Therefore ECf (S
2j−1
i ) is minimum for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j.

For j = 1, 2, . . . , n − 1 and i = 1, 2, . . . , 2n−j−1, let SS
2(2j−1)
i be an edge cut of the 1-rooted sibling tree ST 1

n consisting

of the edges induced by the ith parent vertex from left to right in level n − j and its two children, such that SS
2(2j−1)
i

disconnects ST 1
n into two components X

2(2j−1)
i and X

2(2j−1)

i where V (X
2(2j−1)
i ) is STcut

2(2j−1)
i . See Fig. 4(b). Let G

2(2j−1)
i and

G
2(2j−1)

i be the inverse images of X
2(2j−1)
i and X

2(2j−1)

i under f respectively. By Lemma 9, G
2(2j−1)
i is an optimal set in Qn.

Thus the edge cut SS
2(2j−1)
i satisfies conditions (i)–(iii) of the Congestion Lemma. Therefore ECf (SS

2(2j−1)
i ) is minimum for

j = 1, 2, . . . , n − 1 and i = 1, 2, . . . , 2n−j−1. Let SS2
n−1

1 = S2
n−1

1 and it is easy to see that the conditions of the Congestion

Lemma are satisfied. We note that the set {S2
j−1

i : 1 ≤ j ≤ n, 1 ≤ i ≤ 2n−j} ∪ {SS
2(2j−1)
i : 1 ≤ j ≤ n − 1, 1 ≤ i ≤

2n−j−1} ∪ {SS2
n−1

1 } forms a partition of E2(ST 1
n ). The 2-Partition Lemma implies thatWLf (Qn, ST

1
n ) is minimum. �

Theorem 4. The exact wirelength of Qn into ST 1
n is given by

WL(Qn, ST
1
n ) = 2n−1(n2 − 4n + 10) − n − 5.

Proof. By Lemma 2, for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j,
n

j=1

2n−j

i=1 ECf (S
2j−1
i ) = 2n−1(n2 − 3n + 8) − n − 4.

Again for j = 1, 2, . . . , n − 1 and i = 1, 2, . . . , 2n−j−1,
n−1

j=1

2n−j−1

i=1 ECf (SS
2(2j−1)
i ) =

n−1
j=1 2n−j−1[2n(2j − 1) − 2(j +

1)2j + 4j + 2] = 2n−1(n2 − 5n + 12) − 2n − 6. Also ECf (SS
2n−1
1 ) = n. Hence WL(Qn, ST

1
n ) = 1

2
{
n

j=1

2n−j

i=1 ECf (S
2j−1
i ) +

n−1
j=1

2n−j−1

i=1 ECf (SS
2(2j−1)
i ) + ECf (SS

2n−1
1 )} = 1

2
{2n−1(n2 − 3n + 8) − n − 4 + 2n−1(n2 − 5n + 12) − 2n − 6 + n} =

2n−1(n2 − 4n + 10) − n − 5. �

As V (ST k
n1

) = V (T k
n1

), k = 2n−n1 , using the proof techniques of Lemmas 8 and 10, we have the following result.

Theorem 5. The Embedding Algorithm B of hypercube Qn into k-rooted sibling tree ST k
n1
, k = 2n−n1 , induces a minimum

wirelength WL(Qn, ST
k
n1

). �
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Fig. 6. Cut edges of binomial tree.

5. Wirelength of hypercubes into binomial trees

A binomial tree B0 of height 0 is a single vertex. For all n > 0, a binomial tree Bn of height n is a tree formed by joining
the roots of two binomial trees of height n− 1 with a new edge and designating one of these roots to be the root of the new
tree. A binomial tree of height n has 2n vertices [30,32].

Binary Labeling of Bn: Define B0 = K1 and B1 = Q1. For n ≥ 2, Bn is obtained recursively by taking two copies of the
binomial tree Bn−1 with V (Bn−1) = {α2α3 · · · αn:αi ∈ {0, 1}, 2 ≤ i ≤ n}, denoted by B0

n−1, B
1
n−1 and adding an edge

between these copies as follows: Let V (B0
n−1) = {0α2α3 · · · αn:αi ∈ {0, 1}, 2 ≤ i ≤ n} and V (B1

n−1) = {1α2α3 · · · αn:αi ∈

{0, 1}, 2 ≤ i ≤ n}. A vertex 0α2α3 · · · αn ∈ V (B0
n−1) is adjacent to 1α2α3 · · · αn ∈ V (B1

n−1) if αi = 0, 2 ≤ i ≤ n. See Fig. 5.

Embedding Algorithm C

Input: The n-dimensional hypercube Qn and the binomial tree Bn.
Algorithm: Label the vertices of Qn by lexicographic order [4] from 0 to 2n − 1. Label the vertices of Bn by binary labeling
identified with integers 0, 1, . . . , 2n − 1.
Output: An embedding f of Qn into Bn given by f (x) = xwith minimum wirelength.

Lemma 11. For j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, Bcut2
j−1

i = {2j−1(2i − 1), 2j−1(2i − 1) + 1, 2j−1(2i − 1) +

2, . . . , 2j−1(2i − 1) + (2j−1 − 1)} is an optimal set in Qn.

Proof. Define ϕ: Bcut2
j−1

i → L2j−1 by ϕ(2j−1(2i− 1) + k) = k. If the binary representation of 2j−1(2i− 1) + k is α1α2 · · · αn

then the binary representation of k is 00 · · · 00
  

n−j+1 times

αn−j+2αn−j+3 · · · αn. Thus the binary representation of two numbers x and y

differ in exactly one bit ⇔ the binary representation of ϕ(x) and ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in

Bcut2
j−1

i ⇔ (ϕ(x), ϕ(y)) is an edge in L2j−1 . Hence Bcut2
j−1

i and L2j−1 are isomorphic. By Theorem 1, Bcut2
j−1

i is an optimal
set in Qn. �

Lemma 12. The Embedding Algorithm C of hypercube Qn into binomial tree Bn induces a minimum wirelength WL(Qn, Bn).

Proof. For j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, let S2
j−1

i = {(2j−1(2i−1), 2j−1(2i−2))} be a cut edge of Bn such that S2
j−1

i

disconnects Bn into two components X2j−1

i and X
2j−1

i where V (X2j−1

i ) is Bcut2
j−1

i . See Fig. 6. Let G2j−1

i and G
2j−1

i be the inverse

images of X2j−1

i and X
2j−1

i under f respectively. By Lemma 11, G2j−1
i is an optimal set in Qn. Thus the cut edge S2

j−1

i satisfies

conditions (i)–(iii) of the Congestion Lemma. Therefore ECf (S
2j−1

i ) is minimum for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j.
The Partition Lemma implies thatWLf (Qn, Bn) is minimum. �

Theorem 6. The exact wirelength of Qn into Bn is given by

WL(Qn, Bn) = n(n + 1)2n−2.

Proof. By Congestion Lemma, for j = 1, 2, . . . , n and i = 1, 2, . . . , 2n−j, ECf (S
2j−1

i ) = n2j−1 − 2(j − 1)2j−2. Therefore

WL(Qn, Bn) =
n

j=1

2n−j

i=1 ECf (S
2j−1
i ) =

n

j=1 2
n−j[n2j−1 − 2(j − 1)2j−2] = n(n + 1)2n−2. �



I. Rajasingh et al. / Discrete Applied Mathematics 160 (2012) 2778–2786 2785

0

1

3

2

4

5

7

6

8

12
9

13

11

15

10

14

0

1

3

2

4

5

7

6

8

9

11

10

12

13

15

14

16

17

19

18

20

21

23

22

24

25

27

26

28

29

31

30

a b

Fig. 7. (a) The caterpillar C with each leg on 4 vertices (b) CAT (3, 2, 1, 2; 4).

6. Wirelength of hypercubes into caterpillars

A caterpillar C is a tree of maximal degree 4 where there exists a path B (called the backbone of C) so that, after deleting
all edges of B, C consists of a set of paths. These paths are called the legs of C . Bezrukov et al. [9] considered caterpillar of
maximal degree 3.

Embedding Algorithm D

Input: The n-dimensional hypercube Qn and a caterpillar C , each leg of which has 2n1 vertices and the backbone has 2n2

vertices such that n1 + n2 = n.
Algorithm: Label the vertices of Qn by lexicographic order [4] from 0 to 2n − 1. Label the vertices of C as follows: Let
v1, v2, . . . , v2n2 be the vertices in the backbone path of C . Label the vertices of each leg contains the vertex vi, 1 ≤ i ≤ 2n2 ,
as 2n1(i − 1), 2n1(i − 1) + 1, 2n1(i − 1) + 2, . . . , i2n1 − 1. See Fig. 7(a).
Output: An embedding f of Qn into C given by f (x) = xwith minimum wirelength.

Lemma 13. For j = 1, 2, . . . , 2n1 and i = 1, 2, . . . , 2n2 ,

(i) Ccut
j

i = {2n1(i − 1), 2n1(i − 1) + 1, 2n1(i − 1) + 2, . . . , 2n1(i − 1) + (j − 1)},

(ii) Ccut
j

i = {i2n1 − 1, i2n1 − 2, i2n1 − 3, . . . , i2n1 − j}

are optimal sets in Qn, n1 + n2 = n.

Proof. (i) Define ϕ: Ccut
j

i → Lj by ϕ(2n1(i − 1) + k) = k. If the binary representation of 2n1(i − 1) + k is α1α2 · · · αn then
the binary representation of k is 00 · · · 00

  

n−n1 times

αn−n1+1αn−n1+2 · · · αn.

(ii) Define ϕ: Ccut
j

i → Lj by ϕ(i2n1 − k) = k − 1. If the binary representation of i2n1 − j is α1α2 · · · αn then the binary
representation of k − 1 is 00 · · · 00

  

n−n1 times

αn−n1+1αn−n1+2 · · · αn.

Thus the binary representation of two numbers x and y differ in exactly one bit ⇔ the binary representation of ϕ(x) and

ϕ(y) differ in exactly one bit. Therefore (x, y) is an edge in Ccut
j

i (resp. Ccut
j

i) ⇔ (ϕ(x), ϕ(y)) is an edge in Lj. Hence Ccut
j

i

(resp. Ccut
j

i) and Lj are isomorphic. By Theorem 1, Ccut
j

i (resp. Ccut
j

i) is an optimal set in Qn. �

Lemma 14. The Embedding Algorithm D of hypercube Qn into caterpillar C induces a minimum wirelength WL(Qn, C).

Proof. Using the proof techniques employed in Lemma 8 and by Lemma 13, the result follows. �

Now, we consider another class of caterpillars. A caterpillar CAT (k1, k2, . . . , km; 2n1), ki ≥ 1, i = 1, 2, . . . ,m, on
2n1(k1 + k2 + · · · + km) = 2n vertices is obtained from a path v1, v2, . . . , vm (called the backbone) by joining ki number of
vertex disjoint paths to vertex vi, 1 ≤ i ≤ m such that it has exactly one path of length 2n1 − 1 and the remaining paths are
of length 2n1 (counted together with the vertex in the backbone).

Embedding Algorithm E

Input: The n-dimensional hypercube Qn and a caterpillar CAT (k1, k2, . . . , km; 2n1), ki ≥ 1, i = 1, 2, . . . ,m, 2n1(k1 + k2 +
· · · + km) = 2n.
Algorithm: Label the vertices of Qn by lexicographic order [4] from 0 to 2n − 1. Label the vertices of CAT (k1, k2, . . . , km; 2n1)
as follows: Deletion of backbone edges of caterpillar leaves m vertex disjoint subtrees. Label the vertices of subtree which
contains the backbone vertex vi, 1 ≤ i ≤ m, treating it as the root of the tree by inorder traversal [16,28] from
(k1 + k2 + · · · + ki−1)2

n1 to (k1 + k2 + · · · + ki)2
n1 − 1, where k0 = 0. See Fig. 7(b).

Output: An embedding f of Qn into CAT (k1, k2, . . . , km; 2n1) given by f (x) = xwith minimum wirelength.
As a consequence of Lemma 14, we have the following result.

Theorem 7. The Embedding Algorithm E of hypercube Qn into caterpillar CAT (k1, . . . , km; 2n1), induces a minimum wirelength

WL(Qn, CAT (k1, . . . , km; 2n1)), ki ≥ 1, i = 1, 2, . . . ,m, 2n1(k1 + · · · + km) = 2n. �
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7. Conclusion

In this paper we have solved the wirelength problem of hypercubes into k-rooted complete binary trees, k-rooted sibling
trees, binomial trees and certain classes of caterpillars. It would be interesting to identify various classes of trees such that
exact wirelength of hypercubes into such host trees can be found.
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