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Abstract—We propose a simple scheme to generate high energy 
ultrashort pulses by combination and compression of multiple 
input pulses which share the same chirp profile. First, the multiple 
raised-cosine pulses in the input pulse train are modulated by a 
phase modulator in which each modulation cycle covers two, three, 
four, or five pulses. Then, the modulated pulses are launched into a 
nonlinear fiber with the exponentially decreasing dispersion.  We 
find that these pulses initially coalesce into a single pulse whose 
pulse profile is nearly hyperbolic secant, which then undergoes 
self-similar compression. Thus in the proposed method, first the 
combination of the multiple optical pulses occurs and then 
self-similar compression takes over. Besides, we also report the 
generation of ultrashort pulses by combination and compression of 
multiple hyperbolic secant pulses with the same chirp. The 
numerical results reveal that the resulting ultrashort pulse 
possesses a large portion of the input pulses for both raised-cosine 
and hyperbolic secant pulses. However, the compression factor 
and energy ratio are relatively higher for the hyperbolic secant 
pulses when compared to the raised-cosine pulses.  

Index Terms—Computational modeling, fibers, pulse 
compression, nonlinear optics.  

I. INTRODUCTION 
N recent years, the generation of high energy ultrashort pulses 
(USPs) is of great interest as these USPs find a wide range of 

applications in ophthalmology, nonlinear microscopy, 
micro-machining, and ultrahigh bit rate communication system 
[1-3]. It is already reported that the high energy USPs could be 
generated from the fiber lasers [4] and fiber amplifiers [5, 6]. 
However, these fiber lasers are typically complex and also they 
are not economically viable. The maximum output power from a 
fiber laser is limited by the thermal tolerance and the nonlinear 
effects, namely, stimulated Raman scattering (SRC) and 
stimulated Brillouin scattering (SBS) [7]. Instead of achieving 
USPs from complicated laser systems, pulse compression can 
be an alternative way. Pulse compression techniques including 
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adiabatic pulse compression [8] and higher-order soliton 
compression [9] have been proposed for generating the USPs. 
In the adiabatic pulse compression, it is challenging to satisfy 
the adiabatic condition which typically demands a 
monotonically decreasing dispersion profile along the 
propagation direction for a long fiber length [10]. Further, the 
maximum compression factor is typically limited to ~20 [11]. 
The higher-order soliton compression helps achieve a high 
degree of compression in a short fiber length, but at the cost of 
significant pedestal generation which, in general, leads to 
nonlinear interactions between neighboring solitons. For 
example, compression of a 15-th order soliton can achieve a 
compression factor of 60, but up to 80% of the compressed 
pulse energy appears as pedestal [9]. Further, the compression 
of a higher order soliton has been studied in dispersion 
decreasing fibers with a compression factor of 55 and a pedestal 
energy of 28% [11]. Thus, the conventional pulse compression 
techniques do not provide the expected and desired USPs. Thus 
an effective and compact compressor capable of generating high 
quality pulses with large compression factor is needed.  

Moores pointed out the existence of an exact chirped soliton 
in nonlinear optical fibers with either constant or exponentially 
varying dispersion in 1996 [12]. It has also been suggested that 
these chirped solitary waves could be compressed more 
efficiently if the dispersion decreases approximately 
exponentially [12]. Since then, the self-similar pulse 
compression technique has attracted much attention. One of the 
salient features of self-similar compression is that it facilitates 
the rapid compression without satisfying the adiabatic condition 
[13]. Kruglov et al employed the self-similar analysis to obtain 
the linearly chirped solitary wave pulses and discussed efficient 
pulse compression in an optical fiber where both the dispersion 
and nonlinearity vary exponentially [14, 15]. An efficient and 
compact pulse compressor, capable of producing nearly 
chirp-free and pedestal-free USPs, has been modeled using 
non-uniform fiber Bragg gratings with exponentially decreasing 
dispersion [16, 17]. Further, the generation of self-similar USPs 
at 850 nm has also been investigated in a tapered photonic 
crystal fiber (PCF) [18]. Recently, multiple pulses have been 
used to generate high-repetition-rate pulse train [19-23]. 
Olupitan et al. studied the possibility of generating a train of 
USPs by injecting multiple RC or hyperbolic secant optical 
pulses into a solid core PCF as well as chloroform-filled PCF 
[20]. Besides, Olupitan et al. also studied the robustness of such 
a compression scheme by perturbing the loss coefficient of the 
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solid core PCF as well as the chloroform-filled PCF [21]. The 
presence of amplitude and frequency modulation of the seed 
wave have significant impact on the formation of the pulse train 
[22]. In addition, the generation of a train of USPs with 
high-repetition-rate has been reported based on the beating of a 
dual-frequency optical signal [23]. Contrary to the multiple 
input pulses of separate initial linear chirp across each pulse 
[19-23] in the generation of high-repetition-rate pulse train, in 
this paper, we address the issue of what would happen to the 
pulse train if the multiple input pulses share the same linear 
chirp across the entire pulse train. Our initial results with 
combination and compression of multiple optical pulses have 
been reported in [24,25]. As a first step, input pulse train is 
modulated by a phase modulator in which the modulation cycle 
covers two, three, four or five pulses. In other words, one could 
also assume that a number of low repetitive rate pulses of the 
same wavelength is multiplexed. The multiplexed beam is 
phased modulated by a phase modulator to achieve the same 
chirp profile across the multiple pulses. As a next step, the 
modulated pulses which have the same linear chirp are injected 
into a nonlinear optical fiber with exponentially decreasing 
dispersion. These multiple input pulses first coalesce into a 
single pulse and then the resulting combined single pulse 
undergoes compression continuously. We find that the 
compressed pulse attains a hyperbolic secant profile with a large 
portion of the input pulses’ energy. Thus, the energy of final 
compressed pulse is nearly three times when compared to that of 
the single pulse in the initial RC pulse train. We also study the 
formation of high energy USPs with multiple hyperbolic secant 
input pulses. The proposed pulse compression scheme is simple 
and can provide the high energy USPs within a short fiber 
length. 

The paper is organized as follows. Section II introduces the 
theoretical model for describing the pulse propagation in 
dispersion varying nonlinear optical fibers. Section III discusses 
the formation of high energy USPs, via combination and 
compression, using multiple chirped RC pulses in a nonlinear 
optical fiber with exponentially decreasing dispersion. In 
Section IV, we show the compression of multiple chirped 
hyperbolic secant pulses and different pulse-to-pulse separation. 
Besides, we also study the combination length for both RC and 
hyperbolic secant pulse profiles with different initial pulse 
number and pulse width. In Section V, we address the role of 
initial chirp on the multiple pulse compression and study the 
pulse compression performance if the initial pulse chirp or 
dispersion decay rate varies. In Section VI, we summarize the 
research findings.   

II. THEORETICAL MODEL 
Pulse evolution in a dispersion varying nonlinear optical fiber 

is governed by the generalized nonlinear Schrödinger equation 
(GNLSE) [26]. 
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where the parameters A, z and t represent the amplitude of the 
slowly varying pulse envelope, distance and time, respectively. 

( )zβ2  and γ  are the second-order dispersion and nonlinearity 
coefficient of the fiber, respectively. Here ( )zβ2  is assumed to 
decrease exponentially as ( ) ( )2 20 expz zβ β σ= − , where 20β  
is the initial fiber dispersion and σ  is the decay rate. In this 
study, γ  is assumed to be a constant along the fiber length. 

1 0/γ γ ω≈ , where 0ω  is the center frequency and is chosen to 
be 1550 nm. The nonlinear response function is given by 
( ) ( ) ( ) ( )1 R R RR t f t f h tδ= − + , where  = 0.18Rf , and the 

Raman response function Rh  is determined from the 
experimental fused silica Raman cross-section [27]. 

III. CHIRPED RC PULSES 

A. Input Pulse Shape 
In this section, we consider the compression of multiple 

chirped RC pulses in the form 

( )( )0 2
0 201 cos / exp( / 2)

2
P t T i tπ α+

, 

                                      [ ]0/ ,t T N N∈ −     (N is odd)          (2) 

or 

( ){ }0 2
0 201 cos / 1 exp( / 2)

2
P

t T i tπ α+ +   , 

                                    [ ]0/ ,t T N N∈ −    (N is even)     (3) 

Here N is the number of pulses sharing part of the same chirp 
profile. The parameters 20α , 0P , and 0T  are the initial chirp, 
peak power and pulse width, respectively. The raised cosine 
pulse train may be generated from beating of two frequency 
optical signals, and its pulse-to-pulse separation is fixed and 
equals to twice of initial pulse width 0T . In this investigation, 
the fiber is chosen to have an exponentially decreasing 
second-order dispersion and the nonlinearity remains a constant. 
The decay rate of the second-order dispersion is related to the 
initial chirp and dispersion coefficient as 20 20σ α β= . The fiber 

parameters considered are 2
20 = 200 ps /kmβ − , 53 /kmσ = , 

20 /W/kmγ =  and the fiber length 80 mL = . In what follows, 
we delineate the compression of multiple chirped RC pulses 
with various numbers in the input. 

B. Two Chirped RC Pulses 
First, we consider the compression of two chirped RC pulses 

in a nonlinear fiber with exponentially decreasing dispersion. 
The two chirped RC pulses are defined based on Eq. (3) with 
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2N = . The parameters of the pulses are, 0 1.374 psT =  which 
corresponds to the full width at half-maximum (FWHM) of 1 ps, 

2
20 0.265 THzα = − , and 0 10.6 WP =  ( 2

0 20 02 / /P Tβ γ= ). The 
peak power of initial pulse is optimized for the compression 
factor larger than 10 and energy ratio larger than 50%. The 
corresponding initial dispersion length LD, nonlinear length LN, 
and chirp length LC are 9.4 m, 4.7 m and 18.9 m, respectively. 
Dispersion, nonlinear and chirp lengths with comparable 
lengths are suggested because the interaction between 
dispersion, nonlinearity and chirp can lead to efficient pulse 
compression. Figures 1(a) and 1(b) illustrate the two chirped 
RC input pulses in both (a) linear and (b) logarithmic scales, 
respectively. Figures 1(c) and 1(d) depict the output 
compressed pulse (solid line) and fitted hyperbolic secant pulse 
(dashed line) for a fiber length of 80 m in both (c) linear and (d) 
logarithmic scales, respectively. The fitted hyperbolic secant 
pulse is assumed to have the same FWHM and peak power as 
the compressed pulse. The pulse widths of the input single 
chirped RC pulse and the compressed pulse are 1 and 0.044 ps, 
respectively. This leads to a compression of 22.58. The peak 
power of the compressed pulse is 24.8 times greater than that of 
the initial pulse. It is essential to compute the energy ratio in 
order to understand the energy possessed by the compressed 
pulse. Therefore, it is defined as the ratio of the fitted hyperbolic 
secant pulse energy to the total input pulse energy and the fitted 
hyperbolic secant pulse is of the peak power and pulse width as 
the compressed pulse. The energy ratio of the compressed pulse 
is computed to be 60.5%. From Figs. 1(c) and 1(d), we note that 
the compressed pulse attains nearly hyperbolic secant pulse 
profile. The curves in Figs. 1(e) and 1(f) are the spectra of the 
single chirped RC initial pulse (dashed line) and compressed 
pulse in 0( ) [/ 0.5 . ],  0 5ct t T− ∈ −   (solid line) in (e) linear and (f) 
logarithmic scales, respectively. Here tc is the central position 
of compressed pulse. As shown in Figs. 1(e) and 1(f), obvious 
bandwidth broadening occurs owing to nonlinearity. In this case, 
the bandwidth broadening factor (BBF) is 13.55. Another 
important parameter that quantities the quality of the 
compressed pulses is the time-bandwidth product (TBP). TBP 
of the compressed pulse in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ −  is 0.3149 
which is very close to the value of transform-limited hyperbolic 
secant pulse of 0.315. Figure 1(g) depicts the temporal 
evolution of compressed pulse at various stages of (0 m, 23 m, 
40 m, 60 m, 80 m) the compression process. Here we define the 
combination length as the fiber length when the peak power of 
the pedestal is less than 10% of the peak power of the 
compressed pulse. From Fig. 1(g), it is clear that the two chirped 
RC pulses coalesce into a single pulse at 23 m which is the 
combination length for the two chirped RC pulse compression. 
Then, the resulting combined pulse does undergo the 
self-similar pulse compression for a distance of 57 m till it 
reaches the end of the optical fiber of 80 m. Because of the 
stimulated Raman scattering, there are temporal and spectral 
shifts in the output pulse as illustrated in Figs. 1(c) and 1(e). 
Figure 1(h) represents the compression factor of the two chirped 

RC pulse compression (solid line) for a length of 57 m when the 
combination process is just over and the dashed lines indicate 
the compression factor of the self-similar compression with the 
same fiber parameters exp( ( 23))zσ × − . The FWHM of the 
pulse at the fiber length of 23 m is 0.82 ps, and the FWHM for 
the final 57 m is 0.044 ps corresponding to the compression 
factor of 18.6, which is close to the value 20.5 in the self-similar 
pulse compression. Thus, in the multi-pulse compression 
considered here, multiple input pulses first coalesce into a single 
pulse and then this single pulse undergoes nearly self-similar 
pulse compression. 

 
(a)                                                    (b) 

 
                            (c)                                                    (d)   

    
                                   (e)                                                    (f) 

   
                                    (g)                                                   (h)  

Fig. 1. Two chirped RC input pulses in (a) linear and (b) logarithmic scales. The 
compressed pulse (solid line) at fiber length of 80 m and fitted hyperbolic 
secant pulse (dashed line) in both (c) linear and (d) logarithmic scales. Spectra 
of the single chirped RC initial pulse (dashed line) and compressed pulse at 80 
m in 

0( ) [ / 0.5  ], 0.5ct t T− ∈ −   (solid line) in both (e) linear and (f) logarithmic 

scales. (g) Temporal evolution at 0, 23 m, 40 m, 60 m, 80 m (from top to 
bottom). (h) The compression factor of the two chirped RC compression (solid 
line) and corresponding compression factor (dashed line) of self-similar 
compression.  

We also look into the property of the pulse at the combination 
length. Figures 2(a) and 2(b) show the combined pulse at 23 m 
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in both linear and logarithmic scales, where the solid line and 
dashed line represent the combined pulse and fitted hyperbolic 
secant pulse, respectively. The resulting combined pulse nearly 
maintains the hyperbolic secant pulse shape, and contains 
64.4% of input pulses’ energy. Besides, we find that the FWHM 
of the combined pulse is 0.82 ps and hence it undergoes a slight 
compression when compared to input pulse of width 1 ps. The 
TBF of the combined pulse is 0.599 which is close to that of the 
single pulse in the input pulse train (0.525).  

The main reason for the combination of the multiple pulses 
into a single pulse is owing to the common chirp profile shared 
by all the input multiple pulses. That is, the different spectral 
components in the multiple pulses do undergo almost the same 
phase shift at a particular distance. Consequently, the spectral 
components, which acquire like phase shift, are coalesced into a 
single pulse. The distance at which this process takes place is 
referred to as combination length. Then, the resulting combined 
pulse does undergo compression under the influence of 
nonlinear effects. Finally, it evolved into a hyperbolic secant 
pulse shape from the initial RC pulse shape.  

 
                            (a)                                                     (b) 

Fig. 2. The combined pulse (solid line) and fitted hyperbolic secant pulse 
(dashed line) at 23 m in (a) linear and (b) logarithmic scales. 

C. Three, Four and Five Chirped RC Pulses 
Here we consider the compression of three, four and five 

chirped RC input pulses. The three and five pulses are chosen 
based on Eq. (2) and four pulses are according to Eq. (3). The 
three, four and five chirped RC input pulses are chosen to have 
the same 0T   and 20α  as the two chirped RC pulses in Sec. III.A. 
However, the initial peak power P0 is different for different 
pulses of different numbers, that is, P0 = 5.3 W, 2.91 W, and 
1.85 W (which corresponds to 1, 0.55, and 0.35, respectively, 
according to the relation, ( )2

0 20 0| |/ / /P Tβ γ  for N = 3, 4 and 5, 

respectively. Similarly, the peak power of initial pulse is 
optimized for the compression factor larger than 10 and energy 
ratio larger than 50%. Figure 3(a) shows the input of three, four 
and five (top to bottom) chirped RC pulses. Figure 3(b) gives 
the compression factor for three (dots), four (circles) and five 
(crosses) chirped RC pulses along the fiber propagation 
direction. For a given fiber length of 80 m, we observe that the 
fiber length required to combine multiple pulses, i.e., the 
combination length gets increased as the number of pulses 
increases. Consequently, the compression factor becomes 
smaller for higher pulse numbers. Figures 3(c) and 3(d) 
represent the compressed self-similar USPs at 80 m for three 
(dotted-dashed line), four (dashed line) and five (solid line) 

chirped RC pulses in (c) linear and (d) logarithmic scales, 
respectively. Figures 3(e) and 3(f) portray the spectra of the 
compressed pulse in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ −  for three 
(dotted-dashed line), four (dashed line) and five (solid line) 
chirped RC pulses in (e) linear and (f) logarithmic scales. From 
Figs. 3(e) and 3(f), it is obvious that the bandwidth broadening 
is relatively less for the USPs that are resulted from the higher 
numbers of input pulses since they undergo less compression. 
Distinct temporal and spectral shifts occur for the input pulses 
with lower numbers due to the stimulated Raman scattering. To 
gain the much insight in these compression processes, in Table I, 
we compare all the important out characteristics, namely, 
compression factor, BBF, TBP, peak power, energy ratio, and 
combination length of the compressed self-similar USPs that are 
resulted from different numbers of chirped RC pulses (N = 2, 3, 
4, and 5).  According to Table I, we find that both the 
compression factor and bandwidth broadening factor (BBF) 
decrease with the pulse number. This is because the 
combination length increases with the pulse number. Therefore, 
the combined pulses do undergo compression only for a short 
length of a fiber. In addition to this, we compute the TBP of the 
compressed USPs and it is close to transform-limited value of 
0.315. Undoubtedly, these two output characteristics imply that 
the generated high energy self-similar USPs are almost free 
from chirp. These are desirable characteristics of any USPs 
which are generated from pulse compression technique. Further, 
bandwidth broadening does occur which signify the nonlinear 
compression process. Finally, we calculate the energy ratio that 
stays around 60% for different input pulse numbers. This 
indirectly implies that the generated USPs possess high energy.  

      

                                  (a)                                                      (b)  

     
                                    (c)                                                     (d)   
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   (e)                                                        (f) 

Fig. 3. (a) Input three, four, and five chirped RC pulses (from top to bottom). (b) 
The compression factor of three (dots), four (circles) and five (crosses) chirped 
RC pulses along the fiber propagation direction. Output pulses at fiber length of 
80 m for three (dot dashed line), four (dashed line) and five (solid line) chirped 
RC pulses in (c) linear and (d) logarithmic scales. Spectra of the output pulses 
at 80 m in 

0( ) [ / 0.5  ], 0.5ct t T− ∈ −  for three (dot dashed line), four (dashed 

line), five (solid line) pulses in both (e) linear and (f) logarithmic scales.  

 
TABLE I 

COMPARISON OF VARIOUS OUTPUT CHARACTERISTICS, NAMELY, 
COMPRESSION FACTOR, BBF, TBP, PEAK POWER, ENERGY RATIO AND 

COMBINATION LENGTH FOR N CHIRPED RC PULSES  

 N = 2 N = 3 N = 4 N = 5 
Comp. factor 22.58 18.22 13.82 10.97 

BBF 13.55 10.50 8.24 6.64 
TBP 0.315 0.303 0.313 0.318 

Peak Power 
(W) 

262.74 156.75 86.33 53.98 

Energy Ratio 60.5 % 59.6% 59.1% 58.6% 
Combination 

length (m) 
23 33 44 52 

IV. CHIRPED HYPERBOLIC SECANT PULSES  

A. Input Pulse Shape 
Having discussed the generation of high energy USPs from 

RC pulses, in this section, we intend to investigate the 
generation of similar USPs by injecting the chirped hyperbolic 
secant pulse profiles. Here, the chirped hyperbolic secant pulses 
are described by the following form of:  

( ) ( )2
0 0 20sech / exp / 2N

m N P t T m i tξ α=−∑ + ,   

 (odd pulse number, pulse number: 2N+1)       (4) 

( ) ( )1 2
0 0 20sech / / 2 exp / 2N

m N P t T m i tξ ξ α−
=−∑ + + ,      

(even pulse number, pulse number: 2N)             (5) 

where 20α , 0P , and 0T  are the initial chirp, initial peak power 
and initial pulse width parameters, respectively. Here, ξ  is the 
separation between two neighboring hyperbolic secant pulses. 
In this case, the fiber parameters are assumed to be the same as 
in Sec. III. 

B. Two Chirped Hyperbolic Secant Pulses 
Now, we discuss the compression of chirped multiple 

hyperbolic secant pulses. To start with, we consider the two 
chirped hyperbolic secant pulses according to Eq. (5). The 
pulses parameters are 1N = , 0   5 psTξ = , 0 0.908 psT =  which 

corresponds to FWHM of 1.6 ps, 2
20 0.265 THzα = − , and 

0  3.0 WP =  ( 2
0 20 00.25 / /P Tβ γ= ).  Similarly, the peak 

power of initial pulse is optimized for the compression factor 
larger than 10 and energy ratio larger than 50%. Using these 
pulse parameters as well as fiber parameters, the length scales, 
namely, LD, LN, LC are 4.1 m, 16.7 m and 18.9 m, respectively. 

Figures 4 (a) and 4(b) portray two chirped hyperbolic secant 
input pulses in (a) linear and (b) logarithmic scales, respectively. 
Figures 4(c) and 4(d) depict the compressed high energy USP at 
the fiber length of 80 m (solid line) and the fitted hyperbolic 
secant pulse (dashed line) in both (c) linear and (d) logarithmic 
scales, respectively. Two chirped hyperbolic secant pulse can 
temporally compressed down to a single pulse with FWHM of 
58 fs, resulting in a compression factor of 27.78. Hence, the 
peak power of the compressed pulse gets increased and is 
greater 47 times than the initial pulses. As we deal with the high 
energy USPs, we also calculate the energy ratio of the 
compressed pulse and is found to be 79.6%. From Figs. 4(c) and 
4(d), we note that the compressed pulse is nearly hyperbolic 
secant pulse shape. Figures 4(e) and 4(f) show the spectra of the 
single chirped hyperbolic secant initial pulse (dashed line) and 
compressed pulse in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ −  (solid line) in (e) 
linear and (f) logarithmic scales, respectively. As depicted in 
Figs. 4(e) and 4(f), the bandwidth broadening occurs owing to 
the nonlinear effect and the BBF is 22.68. The TBP of the 
compressed pulse is 0.320 in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ − . Figure 
4(g) represents the dynamics of the compressed pulse at various 
stages of the fiber during the compression process. The well 
separated initial pulses are combined at a fiber length of 21 m. 
The FWHM of the pulse at the combination length is 1.00 ps. 
This combined pulse does undergo self-similar pulse 
compression for the remaining length of 59 m. Figure 4(h) 
depicts the compression factor of the two chirped hyperbolic 
secant pulses after combination process (solid line) and the 
corresponding compression factor of the self-similar 
compression (dashed line). As shown in Fig. 4(h), the 
compression factor after the combination process (for 59 m) is 
17.52 and the compression factor in the self-similar 
approximation is exp( ( 21))=22.81Lσ × − . We note that the 
compression factor due to the former one is close to the direct 
self-similar pulse compression.   

   
                                 (a)                                                         (b) 

     
                                 (c)                                                        (d) 
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                                  (e)                                             (f)       

    
                                   (g)                                                       (h)  

Fig. 4.  Two chirped hyperbolic secant input pulses in (a) linear and (b) 
logarithmic scales. The compressed pulse (solid line) at fiber length of 80 m 
and fitted hyperbolic secant pulse (dashed line) in both (c) linear and (d) 
logarithmic scales, respectively. Spectra of the single chirped hyperbolic secant 
initial pulse (dashed line) and compressed pulse at 80 m in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ −  (solid line) in both (e) linear and (f) logarithmic 

scales. The (g) temporal evolution and (h) compression factor of the two 
chirped hyperbolic secant pulses compression (solid line) and the 
corresponding compression factor of the self-similar compression (dashed line) 
after the combination process. 

C. Three, Four and Five Chirped Hyperbolic Secant Pulses 
In this sub-section, we extend the above analysis for three, 

four and five chirped hyperbolic secant pulses. The pulse 
parameters are same as the two chirped hyperbolic secant pulses 
in Sec. IVA except the peak power. The peak power of initial 
pulse is optimized for the compression factor larger than 10 and 
energy ratio larger than 50%. As a result, different initial peak 
power P0 are selected for different pulses of different numbers, 
i.e., P0 = 1.214, 0.728, and 0.486 W for the pulses of 3, 4, and 5, 
respectively. The input pulses of three and five pulses are based 
on Eq. (4) with N = 1 and 2, respectively. The four pulses are in 
the form of Eq. (5) with  2N = . Figure 5(a) illustrates the input 
of three, four and five chirped hyperbolic secant pulses. The 
evolution of compression factor of the three (dots), four (circles) 
and five (crosses) chirped hyperbolic secant pulses compression 
at various stages of the propagation in the exponentially 
decreasing fiber is depicted in Fig. 5(b). As in the previous case, 
here also we find that the compression factor decreases with the 
pulse number. Figures 5(c) and 5(d) represent the intensity of 
the generated USPs that are resulted from three (dot-dashed 
line), four (dashed line) and five (solid line) chirped hyperbolic 
secant pulses in (c) linear and (d) logarithmic scales, 
respectively. Further, we also provide the spectra of the 
compressed pulses in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ −  for three 
(dot-dashed line), four (dashed line) and five (solid line) chirped 
hyperbolic secant pulses in terms of linear scale in Fig. 5(e) 
linear and logarithmic scales in Fig. 5(f). From Figs. 5(c) to 5(f), 
we observe the temporal and spectral shifts in the output pulse 
owing to the stimulated Raman scattering. Table II gives the 

comparison of the compression factor, BBF, TBP, peak power, 
energy ratio and combination length for N = 2, 3, 4, and 5 
chirped hyperbolic secant pulses with the separation parameter 
of 5T0. As in Sec. III, the compression factor and BBF decrease 
with input pulse number, while the combination length increases 
with input pulse number. For different input pulse numbers, the 
energy ratios stay around 78% and hence the generated USPs 
possesses high energy. 

  
                                         (a)                                                                      (b) 

       
         (c)                                                                      (d) 

   
(e)                                                                        (f) 

Fig. 5. (a) Input of three, four and five (from top to bottom) chirped hyperbolic 
secant pulses. (b) The compression factor of three (dots), four (circles) and five 
(crosses) chirped hyperbolic secant pulses compression along the fiber 
propagation direction. Output pulses at fiber length of 80 m for three 
(dot-dashed line), four (dashed line) and five (solid line) hyperbolic secant 
pulses in (c) linear and (d) logarithmic scales. Spectra of output pulses at 80 m 
in 

0( ) [/ 0.5 . ],  0 5ct t T− ∈ −  for three (dot-dashed line), four (dashed line), 

five (solid line) pulses in both (e) linear and (f) logarithmic scales.  

TABLE II 
 COMPRESSION FACTOR, BBF, TBP, PEAK POWER, ENERGY RATIO AND 
COMBINATION LENGTH FOR N CHIRPED HYPERBOLIC SECANT PULSES 

COMPRESSION WITH SEPARATION OF 5 

 N = 2 N = 3 N = 4 N = 5 
Comp. factor 27.78 17.87 14.46 11.68 

BBF 22.68 14.74 12.69 9.21 
TBP 0.320 0.324 0.344 0.309 

Peak Power (W) 141.57 55.73 36.05 24.03 
Energy Ratio 79.6% 78.5% 77.7% 76.3% 
Combination 

length (m) 
21 31 39 47 

 
Figure 6 depicts the variation of (a) compression factor, (b) 

energy ratio and (c) combination length against the 
pulse-to-pulse separation ξ  for three input pulses. Here, the 
fiber and pulse parameters are the same in Fig. 5. We find that 
both the compression factor and energy ratio decrease with the 
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pulse-to-pulse separation. However, the combination length 
increases. Thus, the numerical results in Fig. 6 support that the 
proposed compression scheme works well even if the 
pulse-to-pulse separation of the input pulses is varied. 

   
                                    (a)                                                     (b)  

  
      (c) 

Fig. 6. The (a) compression factor, (b) energy ratio and (c) combination length 
versus different pulse-to-pulse separation. 

 
Figure 7 provides a detailed study about the combination 

length and compression factor, considering different input pulse 
shape, number of input pulses, input pulse width. The peak 
power is the optimized peak power for input RC and hyperbolic 
secant pulses. Figures 7(a) and 7(b) show the combination 
length and corresponding compression factor for input RC 
pulses, and Figs. 7(c) and 7(d) are the results for input 
hyperbolic secant pulses. The cross, circle, dot, diamond and 
plus symbols in Figs. 7(a) and 7(b) represent initial FWHM of 
0.8 ps, 0.9 ps, 1.0 ps, 1.1 ps, 1.2 ps for combining 2, 3, 4, 5 
chirped RC pulses. Similarly, the cross, circle, dot, diamond, 
plus and square symbols in Figs. 7(c) and 7(d) indicate initial 
FWHM of 1.0 ps, 1.2 ps, 1.4 ps, 1.6 ps, 1.8 ps, 2.0 ps for 
combining 2, 3, 4, 5 chirped hyperbolic secant pulses. For both 
input RC and hyperbolic secant pulses, the combination length 
increases with input pulse width for given pulse shape and 
number of pulses as shown in Figs. 7(a) and 7(c). Similarly, for 
given pulse width, the combination length increases but the 
compression factor decreases with the input number of pulses as 
shown in Figs. 7(a-d). 
 

        
(a)                                                                           (b) 

     
(c)                                                                    (d) 

Fig. 7. (a) The combination length and (b) compression factor for the initial FWHM of 
0.8 (crosses), 0.9 (circles), 1.0 (dots), 1.1 (diamonds), 1.2 (pluses) with 2, 3, 4, 5 chirped 
RC pulses; (c) The combination length and (d) compression factor for the initial FWHM 
of 1.0 (crosses), 1.2 (circles), 1.4 (dots), 1.6 (diamonds), 1.8 (pluses), 2.0 (squares) with 2, 
3, 4, 5 chirped hyperbolic secant pulses. 

V. DISCUSSIONS 

A. Significance of the initial pulse chirp 
The self-similar compression in [13-16] is based on the chirped 

soliton solution to the NLS equation with exponentially decreasing 
dispersion. In self-similar compression, the evolution of self-similar 
soliton is mainly governed by the interplay of the pulse chirp with the 
fiber dispersion and nonlinearity all along the propagation [16]. The 
initial chirp plays a critical role in the self-similar compression. In this 
Section, we study the significance of the initial chirp in the multi-pulse 
compression. We consider the compression of three chirp-free RC 
and hyperbolic secant pulses and compare the results with that of the 
chirped pulses. The chirp-free RC pulses are in the form of 

( )( ) [ ]0 0 0/ 2 1 cos / / ,P t T t T N Nπ+ ∈ −，  where N, T0, P0 are 
the same as three chirped RC pulses in Sec. III B. The chirp-free 
hyperbolic secant pulses are in the form of 

( )0 0sech /N
m N P t T mξ=−∑ +  where ξ  is  5 and N, T0, P0 are the 

same as three chirped hyperbolic secant pulses in Sec. IV B. Figures 
8(a) and 8(b) depict the compressed pulse of three chirp-free RC 
pulses (solid line) and three chirped RC pulses (dashed line) for a 
fiber length of 80 m in (a) linear and (b) logarithmic scales, 
respectively. Figures 8(a) and 8(b) show the significant role played by 
the initial pulse chirp for better compression as the chirped RC pulses 
(dashed line) go through more compression than the chirp-free RC 
pulses (solid line). Figures 8(c) and 8(d) are the intensity contour plots 
of the evolution of three chirp-free RC and chirped RC input pulses 
along the fiber.  For the chirped input RC pulses, the energy ratio is 
59.6%, and the compression factor is 18.22. For the chirp-free RC 
input pulses, the energy ratio is only 30.1%, and the compression 
factor is 9.47. The compressed pulses of the three chirp-free 
hyperbolic secant pulses (solid line) and three chirped hyperbolic 
secant pulses (dashed line) are given in linear (Fig. 8(e)) and 
logarithmic (Fig. 8(f)) scales, respectively. Figures 8(g) and 8(h) are 
the intensity contour plots of the evolution of three chirp-free 
hyperbolic secant and three chirped hyperbolic secant input pulses 
along the fiber. As shown in Fig. 8(g), three chirp-free hyperbolic 
secant pulses could not combine into one single pulse. Thus, it is clear 
that the initial pulse chirp plays an important role in the pulse 
compression scheme proposed here. 
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                                           (a)                                                                     (b)  

       
       (c)                                                                     (d) 

     
                                (e)                                                                      (f) 

        
       (g)                                                                        (h) 

Fig. 8. The compressed pulse of three chirp-free RC pulses (solid line) and three 
chirped RC pulses (dashed line) at the fiber length of 80 m is depicted in (a) 
linear and (b) logarithmic scales, respectively. (c) and (d) are the corresponding 
evolution of the three (c) chirp-free and (d) chirped RC input pulses along the 
fiber. The compressed pulse of three chirp-free hyperbolic secant pulses (solid 
line) and three chirped hyperbolic secant pulses (dashed line) at the fiber length 
of 80 m is depicted in (e) linear and (f) logarithmic scales. (g) and (h) are the 
corresponding evolution of the three (g) chirp-free and (h) chirped hyperbolic 
secant input pulses along the fiber. 

B. Variation of the initial pulse chirp or dispersion decay rate 

    According to the self-similar analysis, decay rate of the 
dispersion is given by 20 20σ α β= . Here, 20α , 20β  and σ  are 
the initial pulse chirp, initial fiber dispersion and dispersion 
decay rate, respectively. In this sub-section, we will study the 
performance of the proposed pulse compression scheme by 
varying the initial pulse chirp or dispersion decay rate. 
   The initial pulse chirp is calculated by the relation 

20 20σ α β=  based on a condition in the self-similar pulse 
compression. Here, the initial pulse chirp is varied by ±20% and 
other pulse and fiber parameters remain the same as in Fig. 1. 
When the initial pulse chirp is carefully chosen as 

20 20/α σ β= , the corresponding pulse compression factor is 
22.58. However, if the initial chirp is less 20% 
( 20 200.8 /α σ β= ) or greater than 20% ( 20 201.2 /α σ β= ) of the 
original value, then the resulting compression factor turns out to 
be 22.01 or 22.34, which is quite close to that of the ideal 
condition 20 20/α σ β= . The energy ratio also maintains around 
60% when the initial pulse chirp is varied. The final compressed 
pulse (solid line) and fitted hyperbolic secant pulse (dashed line) 
for two chirped RC input pulses are shown in Fig. 9 when 

20 200.8 /α σ β=  in Figs. 9(a, c) and when 20 201.2 /α σ β=  in 
Figs. 9(b, d). Here, the compressed pulse maintains the 
hyperbolic secant pulse shape when the initial pulse chirp is 
varied. By carrying out extensive simulations, we have found 
that the change of compression factor is generally less than 5% 
when the initial pulse chirp is varied by ±20%. 

 
(a)                                                   (b) 

 
(c)                                                    (d) 

Fig. 9. The compressed pulse (solid line) at fiber length of 80 m and fitted 
hyperbolic secant pulse (dashed line) for two chirped RC input pulses in linear 
(a, b) and logarithmic scales (c, d) with 20α equals to (a, c) 200.8 /σ β  and (b, d) 

201.2 /σ β . 
Secondly, the dispersion decay rate is varied by ±20% and the 

other pulse and fiber parameters remain the same as in Fig. 1. 
When the dispersion decay rate is carefully chosen as 

20 20σ α β= , the corresponding pulse compression factor is 
22.58. When 20 200.8σ α β= , the resulting compression factor is 
11.75 and the energy ratio is 64%.  When 20 201.2σ α β= , the 
resulting compression factor is 42.91 and the energy ratio is 
only 44%. The final compressed pulse (solid line) and fitted 
hyperbolic secant pulse (dashed line) for two chirped RC input 
pulses are shown in Fig. 10 when 20 200.8σ α β=  in Figs. 10(a, c) 
and when 20 201.2σ α β=  in Figs. 10(b, d). If the dispersion 
decay rate is reduced, the compressed pulse nearly maintains the 
hyperbolic secant pulse, but the compression factor is much less. 
If the dispersion decay rate is increased, the compression factor 
becomes much higher, but the compressed pulse deviates from 
the hyperbolic secant pulse shape. Thus, based on these results, 
the proposed scheme is less sensitive to the variation of initial 
pulse chirp. 
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(a)                                                   (b) 

  
(c)                                                    (d) 

Fig. 10. The compressed pulse (solid line) at fiber length of 80 m and fitted 
hyperbolic secant pulse (dashed line) for two chirped RC input pulses in linear 
(a, b) and logarithmic scales (c, d) with σ equals to (a, c) 20 200.8α β and (b, d) 

20 201.2α β . 

VI. CONCLUSION 
In conclusion, we have studied the multi-pulse combination 

into a single pulse and then compression using two different 
pulse profiles, namely, RC and hyperbolic secant pulses in 
nonlinear optical fibers with the exponentially decreasing 
dispersion. The input pulse train is firstly modulated using a 
phase modulator in which each modulation cycle could cover 
two, three, four, or five pulses. The resulting pulses possess the 
same linear chirp, could combine into a single pulse, which, in 
turn, did experience effective pulse compression in the 
nonlinear fiber with the exponentially decreasing dispersion. It 
turns out the final compressed pulse contains majority of the 
input pulses energy to become an ultrashort high-energy single 
pulse. In the case of initial hyperbolic secant shaped pulses 
combination and compression, the final high-energy pulse is 
almost chirp free. We have also studied the compression of 2, 3, 
4, and 5 pulses with both the pulse profiles. The energy ratio of 
the compressed pulses for both RC and hyperbolic secant stays 
almost the same and the compression factor decreases with the 
increase of the number of pulses. For the hyperbolic secant input 
pulses, both the compression factor and energy ratio decrease 
while the combination length increases with the pulse-to-pulse 
separation. For a given pulse shape (RC or hyperbolic secant) 
and number of pulses, the combination length increases with 
input pulse width. The combination length increases and the 
compression factor decreases with the increase in the input 
number of pulses for the same input pulse width. Besides, we 
have also compared the compression of chirped and chirp-free 
input pulses in order to understand the influence of initial chirp. 
By dint numerical simulation, we have inferred that the multiple 
hyperbolic secant pulses do not combine into a single pulse and 
hence no compression at all, which implies the importance of 
the initial pulse chirp. We have also varied the initial pulse chirp 
or dispersion decay rate, and find the suggested scheme is less 
sensitive to the change of initial pulse chirp. The proposed 

compression scheme is a good candidate for high energy 
ultrashort pulse generation. 
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