
Circuits Syst Signal Process (2012) 31:1787–1807
DOI 10.1007/s00034-012-9397-y

Direction of Arrival Estimation using EM-ESPRIT
with Nonuniform Arrays

Carine El Kassis · José Picheral · Gilles Fleury ·
Chafic Mokbel

Received: 21 September 2011 / Revised: 10 February 2012 / Published online: 24 February 2012
© Springer Science+Business Media, LLC 2012

Abstract This paper deals with the problem of the Direction Of Arrival (DOA) esti-
mation with nonuniform linear arrays. The proposed method is based on the Expecta-
tion Maximization method where ESPRIT is used in the maximization step. The key
idea is to iteratively interpolate the data to a virtual uniform linear array in order to
apply ESPRIT to estimate the DOA. The iterative approach allows one to improve the
interpolation using the previously estimated DOA. One of this method’s novelties lies
in its capacity of dealing with any nonuniform array geometry. This technique mani-
fests significant performance and computational advantages over previous algorithms
such as Spectral MUSIC, EM-IQML and the method based on manifold separation
technique. EM-ESPRIT is shown to be more robust to additive noise. Furthermore,
EM-ESPRIT fully exploits the advantages of using a nonuniform array over a uni-
form array: simulations show that for the same aperture and with a smaller number of
sensors, the nonuniform array presents almost identical performance as the equivalent
uniform array.
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1 Introduction

The estimation of signal parameters from noisy observations is a fundamental prob-
lem in array signal processing. The Direction Of Arrival (DOA) estimation is impor-
tant in many fields including radar, sonar, seismology, communications and medical
imaging. Most existing algorithms are devised for Uniform Linear Arrays (ULA).
However, the estimation of DOA for Nonuniform Linear Arrays (NLA) is also of
great importance in a wide range of applications. For example, sensor failure can lead
to missing-data problems. This problem occurs for example in seismology where ex-
plosions are used to create the waves. These explosions can deteriorate some of the
sensors. Besides, physical and geographical conditions may prohibit the construction
of uniformly spaced sensors [15]. Another motivation is to reduce the number of sen-
sors in order to decrease the production cost, minimizing the impact on performance.
Furthermore, it would be interesting to be able to increase the aperture of an antenna
using the same number of sensors in order to obtain better performance [6, 12].

Among the different geometries of linear arrays, two types are taken into consid-
eration in this paper. The first type is the sparse arrays which can be considered as
a ULA where some sensors are omitted and the second type is the nonregular linear
arrays where the intersensor separations are chosen in an arbitrary way.

Many works in the literature have studied the estimation of DOA in the NLA case.
First of all, the spectral MUSIC [13] algorithm can be directly applied to any NLA
geometry. But it presents high computational cost since it implies a multiple search
of maximum. Root-MUSIC can only be used in the case of sparse arrays [6] but not
for nonregular arrays. Other high resolution methods cannot be directly applied to
NLA. Thus, some processing should be applied first in order to use one of the high
resolution methods. This processing can be an interpolation of the array output over
a Virtual Linear Uniform Array (VULA). The interpolation can be sector-dependant
[8], but in this case, the interpolation error is due to the modeling error and cannot be
reduced by increasing the Signal-to-Noise Ration (SNR). In [14], the authors propose
the Expectation-Maximization (EM) algorithm in order to interpolate the observed
data on a VULA using the noise-free model, followed by IQML. This method can be
applied only to sparse arrays and presents high computational complexity. Another
method is the positive definite Toeplitz completion method [1] which fills the missing
values of the Toeplitz covariance matrix of a sparse array which does not present any
hole in the coarray function; that means that all the intersensor separations should
exist. In the manifold separation technique (MST) [3], the authors proposed to model
the NLA steering vector as a product of a matrix that depends only on the array
parameters and a Vandermonde vector depending only on the angle. From this Van-
dermonde structure, a polynomial is obtained, whose roots can be used to estimate
the DOA. Reference [10] uses the truncated Fourier series expansion of the Spectral
MUSIC criterion which is periodic in order to transform the DOA estimation prob-
lem to a polynomial rooting problem. These methods suffer from the error due to the
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Fourier expansion truncation. In [4], fourth order cumulants are calculated on the data
and then ESPRIT [11] or Root-MUSIC [2] can be applied. But this method requires a
great number of snapshots in order to obtain a good estimation of the cumulants and
it is limited to the case of non Gaussian sources.

In this paper, a new iterative method is proposed: EM-ESPRIT. The principle
of [14] is followed but IQML is replaced by ESPRIT to improve the performance
and reduce the computational complexity in comparison to IQML. Furthermore, this
method is extended to the case of nonregular arrays. This method presents better per-
formance than most of the existing ones. The EM algorithm is used to interpolate
the NLA output on a Virtual Uniform Linear Array (VULA) using the signal model.
Since the new constructed data form a uniform array, a high resolution method can be
directly applied to estimate the DOA. ESPRIT [11] is chosen because it is a simple
and efficient method. The iterative approach allows to improve the interpolation using
the previously estimated DOA. Since the interpolation is based on the signal model,
the error due to interpolation is reduced iteratively. Thus, EM-ESPRIT gives better
results than the interpolation of Friedlander [8] specially in the asymptotic domain.
Furthermore, no error due to truncation of the Fourier expansion is introduced as in
[3] and [10]; thus, EM-ESPRIT behaves better than these two methods. The superi-
ority of EM-ESPRIT over other methods, specially on noisy data with low SNR, is
illustrated by simulations in this paper. The originality of EM-ESPRIT is that it can
be applied to any type of NLA: the sparse array and the nonregular array, yielding
best performance for both types. Besides, EM-ESPRIT exploits the advantages of
using an NLA instead of a ULA. This advantage is illustrated by simulation in this
paper. In particular, the reduction of a certain number of sensors of a uniform array
degrades only very slightly the performance with EM-ESPRIT, thus the production
and calculation costs are reduced compared to ULA.

This paper is organized as follows. Section 2 introduces the signal model used
along the paper. In Sect. 3, the complete data construction, the EM general approach
and the EM-ESPRIT are presented in the case of sparse arrays. The method is ex-
tended to the case of nonregular linear arrays in Sect. 4. The computational complex-
ity of EM-ESPRIT is given in Sect. 5. Simulation results are presented in Sect. 6 to
support the analysis and Sect. 7 provides some conclusions.

2 Signal Model

Consider N far-field narrowband sources incident on an M-elements linear array
(M ≥ N ), from directions θ = [θ1, . . . , θN ]�. The sensors, assumed to be omnidi-
rectional, are situated at positions dm (m = 1, . . . ,M). Two kinds of NLA are con-
sidered: the sparse array, which can be considered as a ULA where some elements
are omitted, i.e. dm = km� where � is the ULA intersensor separation and km is an
integer; and the nonregular linear array, where the sensors positions are chosen in an
arbitrary way.

Grouping the signals received by the M array elements in the M × 1 vector y(t),
the sensor output can be written as

y(t) = A(θ)s(t) + ν(t), (1)
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Fig. 1 Example of NLA and its
equivalent VULA, with
d = [0,2,5] λ

2 , p = [1,3,4] λ
2

and g = [1,0,1,0,0,1].
�: existing sensors (Y),
O: omitted sensors (Ŷp)

where A(θ) = [a(θ1), . . . ,a(θN)] is the M ×N steering matrix and a(θn) is the steer-
ing vector of the nth source:

a(θn) = [
e−j2π

d1 sin θn
λ , . . . , e−j2π

dM sin θn
λ

]�
. (2)

The N × 1 vector s(t) contains the complex amplitude of the source signals. The
M × 1 vector ν(t) represents a complex additive white Gaussian noise, with zero
mean and such as E{ν(t)ν(t)H } = σ 2I. the sources are assumed to be independent.

The received signal is sampled, and the received data Y = [y(t1), . . . ,y(tL)] can
be expressed as

Y = A(θ)S + V, (3)

where L is the number of samples, S = [s(t1), . . . , s(tL)] and V = [ν(t1), . . . ,ν(tL)].
The parameters to estimate are the DOA θ = [θ1, . . . , θN ]T . The number of

sources N is considered as known.

3 DOA Estimation in the Case of Sparse Arrays

In this section, the method is presented in the case of sparse array and in the next
section it is generalized to the case of nonregular arrays. Consider the NLA of M

sensors having an aperture of M ′ (M ′ ≥ M) that can be seen as a ULA of M ′ sensors
where some sensors are omitted. Thus, consider the VULA of M ′ sensors formed by
the NLA sensors and by the omitted virtual sensors as represented in Fig. 1. In this
case, the nonuniform array output can be seen as incomplete data and the complete
data are the output of the VULA. Thus, the EM algorithm approach can be applied
in order to estimate the complete data and the model parameters θ . In summary, the
main idea consists of interpolating the nonuniform array in a way that a uniform
array is formed and then estimating the DOA through ESPRIT [11] applied to the
new VULA.

3.1 Data Construction

Let Y denote the observed data (or incomplete data) corresponding to the M sensors
output of the NLA output and X the complete data that correspond to the M ′ virtual
sensors output of the VULA output. X is formed by the observed data and the miss-
ing data corresponding to the missing sensors output denoted by Yp. The relation
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between Y and X can be described as a linear transformation mapping X to Y given
by

Y = G�X, (4)

where the M ′ × M matrix G is constructed by eliminating the zero columns of
diag(g). The M ′ × 1 vector g describes the binary transformation between X and
Y: the mth component of g is 1 if the mth sensor of the VULA is part of the NLA
and 0 otherwise. For example in Fig. 1, since the sensors 0,2,5 of the VULA form
the NLA, g = [1,0,1,0,0,1]. The relation between the output of the missing sensors
Yp and the complete data X is expressed by

Yp = Ḡ�X, (5)

where Ḡ is of dimension M ′ × (M ′ − M). It is constructed similarly to G.
By construction, the noise-free parametric model of the complete data X is given

by

μ(Θ) = (
GA(θ) + ḠAp(θ)

)
S, (6)

where Θ = [θ�,vect(S)�] are the source parameters to be estimated.
Ap(θ) is the steering matrix for the omitted sensors. Let the vector p =

[p1, . . . , pM ′−M ] of length (M ′ − M) represent the positions of the omitted sensors.
Then, Ap(θ) can be written as

Ap(θ) = [
ap(θ1), . . . ,ap(θN)

]
,

ap(θn) = [
e−j2π

p1 sin θn
λ , . . . , e−j2π

p
M ′−M

sin θn

λ
]�

.

(7)

Notice that the model μ(Θ) can be rewritten as

μ(Θ) = AVULA(θ)S, (8)

where AVULA(θ) = GA(θ)+ ḠAp(θ) is the steering matrix of a uniform linear array,
in this case, the VULA.

3.2 The EM General Approach

Basically, EM is an iterative approach of the maximum likelihood estimator (ML)
[5]. Each iteration is composed of two steps: the Expectation step (E-step) and the
Maximization step (M-step). The E-step is the estimation of the conditional likelihood
of the complete data X̂(k), given the incomplete data Y and the previous estimate of
the parameters Θ̂(k−1), where k is the iteration number. In the M-step, the parameters
Θ̂(k) are estimated by maximizing the conditional likelihood criterion. Let L(Θ), the
log-likelihood of the observed data, be the function to be maximized. It can be shown
that L(Θ) increases at each iteration and that Θ̂(k) converges to a local optimum as
solution to the ML (see for instance [5]).
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A justification of the EM algorithm is as follows. Using Bayes’ rule, and taking
the logarithm of the probability densities,

lnfy(Y | Θ) = lnfx(X | Θ) − lnfx|Y(X | Y,Θ). (9)

Taking the conditional expectation of (9) given Y at the parameter value Θ̂(k−1)

yields

L(Θ) � lnfy(Y | Θ) = U
(
Θ | Θ̂(k−1)

) − V
(
Θ | Θ̂(k−1)

)
, (10)

where

U
(
Θ | Θ̂(k−1)

) = E
{
ln

{
fx(X | Θ)

} | Y, Θ̂(k−1)
}
,

V
(
Θ | Θ̂ (k−1)

) = E
{
ln

{
fx|Y(X | Y,Θ)

} | Y, Θ̂(k−1)
}
.

Knowing that V (Θ | Θ̂(k−1)) ≤ V (Θ̂ (k−1) | Θ̂ (k−1)) (Jensen’s inequality), if
U(Θ | Θ̂(k−1)) > U(Θ̂(k−1) | Θ̂(k−1)), then L(Θ) > L(Θ̂ (k−1)). Thus, the maxi-
mization of U(Θ | Θ̂(k−1)) improves the likelihood function. Exploiting this prop-
erty, the EM algorithm can be described as follows.

It starts with an initial guess Θ̂ (0), and maximizes L(Θ) by iterating the E and
M-steps, i.e. at iteration k:

E-step: Compute U(Θ | Θ̂(k−1)).

M-step: Estimate Θ̂(k) as Θ̂(k) = arg maxΘ U(Θ | Θ̂(k−1)).

3.3 EM-ESPRIT

In this paragraph, a new method for DOA estimation is proposed in the case of sparse
arrays. Using the formalism established above, it can be shown that the E-step is
equivalent to the estimation of the missing sensors output using an interpolation based
on the signal model. In the M-step, in order to reduce the complexity of the maximiza-
tion of the ML criterion, the maximization of U(Θ | Θ̂(k−1)) is replaced by the high
resolution method ESPRIT, since the virtual array is uniform. While the E-step of the
proposed approach follows exactly the classical EM algorithm, ESPRIT [11] used in
the M-step is sub-optimal compared to the maximization of the likelihood function.
Nevertheless, it is known that ESPRIT provides a close estimation to the ML [9].
Now, EM is applied in the NLA case in order to estimate the DOA.

3.3.1 E-step

The application of the general algorithm involves the determination of U(Θ |
Θ̂(k−1)). μ(Θ) is the unknown mean of the matrix X which is Gaussian and its co-
variance matrix equals σ 2I. Thus, fx(X | Θ), the probability density function of X,
given Θ , is given by

lnfx(X | Θ) = −M ′L ln
(
πσ 2) − ∥∥X − μ(Θ)

∥∥2
/σ 2. (11)
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Without getting into details, U(Θ | Θ̂(k−1)) can be written as

U
(
Θ | Θ̂(k−1)

) = c − ∥∥X̂(k) − μ
(
Θ̂(k−1)

)∥∥2
/σ 2, (12)

where c is a constant independent of Θ and X̂(k) is the expectation of X given Y and
Θ̂(k−1):

X̂(k) = E
{
X | Y; Θ̂(k−1)

}
. (13)

From (12), the maximization of U(Θ | Θ̂(k−1)) reduces to the minimization of
‖X̂(k) − μ(Θ)‖2. Thus X̂(k) is the only parameter to estimate in the E-step. The ex-
pression of X̂(k) is proved [7] to be equal to

X̂(k) = μ
(
Θ̂(k−1)

) + G∗[G�G∗]−1(Y − G�μ
(
Θ̂(k−1)

))
. (14)

Replacing μ(Θ̂(k−1)) by its expression and making the required calculation, (14)
becomes

X̂(k) = GY + GAp
(
θ̂ (k−1)

)
Ŝ(k−1), (15)

where Ŝ(k) is estimated by

Ŝ(k) = A†(θ̂ (k)
)
Y, (16)

and A† = (AH A)−1AH represents the pseudo-inverse of A and AH is the hermitian
of A. Following (15), the estimates of the complete data X̂(k) are equal to the mea-
sured data Y for the rows corresponding to the existing sensors, and for the rows of
the missing data, the data are interpolated using the parametric model μ(Θ̂(k−1)).
Let Ŷ(k)

p = Ap(θ̂ (k−1))Ŝ(k−1) be the interpolated missing data. Notice that the noise

contribution in Ŷ(k)
p could be omitted, because its expectation is null.

3.3.2 M-step

Since the new virtual array is uniform, any conventional method for DOA estimation
in the case of uniform arrays can be used at one condition: it should at least ensure
the increase of the likelihood function. The ESPRIT algorithm is chosen in order
to estimate the Θ̂(k) since it presents good performance and low complexity. The
ESPRIT algorithm is based on the eigendecomposition of the covariance matrix. Thus
the number of sources N should be smaller than M , otherwise, it is known that the
weakest sources cannot be estimated [11]. The VULA data correlation matrix, R̂(k),
is estimated using X̂(k) and the noise contribution on the interpolated data is modeled
by ḠḠH σ̂ 2, assuming that the noise contribution in Ŷ(k)

p has the same statistical
properties as ν(t):

R̂(k) = 1

L
X̂(k)X̂(k)H + σ̂ 2ḠḠH , (17)
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where σ̂ 2 is a consistent estimate of σ 2 obtained by averaging the smallest eigenval-
ues of the Y covariance matrix. The Θ̂(k) are estimated by ESPRIT which exploits
the translational invariance structure of the covariance data of the VULA, R̂(k).

3.4 Summary of EM-ESPRIT

In this section, the proposed method EM-ESPRIT is summarized in an algorithmic
form describing the calculation steps. This method is iterative.

1. Initialization: k = 0, choose θ̂ (0) and estimate the noise variance σ̂ 2.
2. Estimate the complete data X̂(k) using (15) and estimate the covariance matrix

R̂(k) using (17).
3. Use ESPRIT to estimate θ̂ (k).
4. Check convergence of θ̂ (k). If not, k = k + 1, go to step 2.

The convergence test is expressed by

∥∥θ̂ (k) − θ̂ (k−1)
∥∥ ≤ ε, (18)

where ε is chosen following the precision constraints required by the application.

4 DOA Estimation in the Case of Nonregular Arrays

In the nonregular arrays, the intersensor separations are not a multiple of �. The
sensors are placed in an arbitrary way. Consider the nonregular array of M sensors
represented at Fig. 2.

The nonregular arrays are used when the construction of a uniform array is not
possible due to physical constraints. EM-ESPRIT is generalized to the case of non-
regular arrays in this section. Thus, one of the advantages of the proposed method is
its ability to estimate the DOA for any geometry type of an NLA. In order to use the
proposed method in the case of nonregular arrays, some modifications are applied to
the steps of Sect. 3.

4.1 Data Construction

The sensors of the nonregular array cannot be a part of the VULA sensors and the
existing sensors cannot be simply completed in order to form the complete data. Nev-
ertheless, the idea of VULA should be kept to be able to apply ESPRIT. The VULA

Fig. 2 Example of a nonregular
array and its equivalent VULA,
with g = [1,0,0,0,1]. In the
VULA, �: existing sensors (Y),
O: omitted sensors (Ŷp)
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is formed of M ′ sensors, has the same aperture as the nonregular array so that the sen-
sors at each edge of the two arrays coincide. The output of the remaining (M ′ − 2)

sensors are interpolated. The construction of the VULA is represented at Fig. 2. The
VULA has the same aperture as the nonregular array but the number of sensors M ′
is not necessarily equal to M . The effect of the choice of M ′ is shown later: M ′ = M

gives the best results provided that it guarantees an intersensor separation � < λ
2 .

The change of the VULA construction leads to a modification in the construction of
the complete data X. Since only the first and last sensors are taken into consideration
in the VULA, the vector g of dimension M ′ has only the first and last elements equal
to 1 and the other elements are set to zero: g = [1,0, . . . ,0,1]. The matrix G is of
dimension M ′ × 2, the vector of omitted sensors is equal to p = [p1, . . . , pM ′−2] and
the matrix Ḡ has the dimension M ′ × (M ′ − 2).

4.2 EM-ESPRIT

The noiseless parametric model X is still given by (6). Besides, the expression of
lnfx(X | Θ) does not change and the DOA are estimated by maximizing U(Θ |
Θ̂(k−1)).

In the E-step, the algorithm does not change. The same procedure is applied since
the statistical properties of the complete data did not change. Thus, X̂(k) = E{X |
Y; Θ̂(k−1)} should be computed using (15). The complete data X̂(k) are equal to the
measured data Y for the rows corresponding to the sensors at each end of the array
and for the rows of the missing data, the data are interpolated using the parametric
model μ(Θ):

Ŷ(k)
p = Ap

(
θ̂ (k−1)

)
Ŝ(k−1),

where Ŝ(k) = A†(θ̂ (k))Y, same expression of (16). Notice that even if the first and
the last sensors are the only ones taken into consideration in the construction of the
VULA, all the observed data Y are used in the interpolation. These data appear in the
calculation of Ŝ(k) which is estimated using Y, as shown in (16).

The M-step is identical to the one explained in Sect. 3.3. The ESPRIT algorithm
is applied on the VULA in order to estimate the DOA. In conclusion, the same algo-
rithm summarized in Sect. 3.4 is applied in the case of nonregular arrays but with a
modification in the construction of X.

5 Computational Complexity of EM-ESPRIT

In this section, the computational complexity of the main steps of EM-ESPRIT is
evaluated. Recall that M is the number of sensors in the NLA, M ′ the number of
sensors in the VULA, N the sources number and L the number of snapshots. Op-
eration means any mathematical operation carried out during the process, whether
it is multiplication or addition. Consider at first the case of one iteration, the com-
plexity of the calculation of Ŝ(k) = A†(θ̂ (k))Y is (2MNL); besides, A†(θ̂ (k)) =
(AH (θ̂ (k))A(θ̂ (k)))−1AH (θ̂ (k)) requires approximately 2N2M + N3 operations; the
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calculation of the complete data X̂(k), of which the most important step is estimating
the missing data Ŷp = Ap(θ̂ (k))Ŝ(k), is of complexity (2(M ′−M)NL). The following

step consists of estimating the matrix of covariance R̂(k) of the complete data X̂(k),
it requires (M ′2L) operations. The eigendecomposition of R̂(k) involves 4

3M ′3 oper-
ations. Finally, the M-step, i.e. ESPRIT, requires the computation of the eigenvalues
of the covariance matrix, which demands O(N3) operations. Thus, for one iteration,
the number of operations required is O(2N3 + 2M ′NL + M ′2L + 4

3M ′3) + 2N2M .

The predominant term is 4
3M ′3 corresponding to the eigendecomposition of R̂(k). The

complexity of this expensive phase can be reduced by methods of subspaces tracking
because only N eigenvectors associated with the N greater eigenvalues are required.
This number should be multiplied by the number of iterations. In practice, the number
of iterations required by EM-ESPRIT in order to converge is small (lower than 10).

6 Simulation Results

Several simulations were carried out in order to study different aspects of EM-
ESPRIT in different conditions. Several parameters are studied: the Root-MSE
(RMSE) in function of the SNR, the resolution, the convergence, the effect of the
initialization and the effect of the number of sensors used in the VULA. And finally,
the advantages of the NLA compared to the ULA using EM-ESPRIT are shown. � is
taken as the half-wavelength. The maximal number of iterations is fixed to 30 unless
otherwise indicated. The number of snapshots is 500 and 500 trials were achieved for
each value. The initialization is done using the classical beamforming estimation.

6.1 RMSE in Function of SNR

In this part, EM-ESPRIT is compared to other methods proposed in literature. The
RMSE of the DOA estimates is drawn in function of the SNR using EM-ESPRIT.
This study is achieved on both types of NLA. First consider the sparse array defined
by the positions of its sensors: d = [0,2,5]λ

2 . Notice that this array is not a minimum
redundancy linear array since it presents holes in the set of intersensor separations.
The equipowered sources are located at [−5°,10°]. The RMSE of the source at 10° is
plotted at Fig. 3. The result of the second source is similar and is not represented. The
corresponding CRB is also represented. Besides, EM-ESPRIT is compared to Root-
MUSIC [6], the interpolation method of Friedlander [8], to EM-IQML [14] and to the
method MST [3]. EM-ESPRIT presents better performance than the other methods.
For the low values of the SNR, EM-ESPRIT has a smaller RMSE than Root-MUSIC,
the interpolation of Friedlander and MST. EM-IQML presents a lower RMSE than
EM-ESPRIT, but in the middle zone, EM-ESPRIT is more performant. Besides, EM-
ESPRIT has a lower complexity than EM-IQML. In the asymptotic zone (high values
of SNR), EM-ESPRIT has similar behavior to Root-MUSIC whereas the RMSE of
the Friedlander interpolation moves away from the CRB, which is expected since the
interpolation error introduced by this method is independent of the SNR. The RMSE
corresponding to the MST method also moves away from the CRB because of the
truncation error, knowing that a high order is chosen (21) for the truncation. This
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Fig. 3 RMSE of the source at 10° for the sparse array d = [0,2,5] λ
2 , DOA = [−5°,10°]

means that the rooting search in the MST method is performed on a polynomial of
order (42).

The same simulation is repeated for the nonregular array. In this case, Root-
MUSIC cannot be applied neither EM-IQML. Thus, EM-ESPRIT is compared to
Spectral MUSIC, the Friedlander interpolation and to the method MST. The array is
defined by d = [0,1.32,3.03,5]λ

2 and the sources are the same as above located at
[−5°,10°]. The RMSE of the source at 10° is represented at Fig. 4 with respect to the
SNR. Figure 4 shows the superiority of EM-ESPRIT compared to Spectral MUSIC
for low SNR. It also shows that the corresponding RMSE approaches the CRB, in
contrary to the Friedlander interpolation and MST that move away from the CRB be-
cause of the presence of the interpolation error and the truncation error, respectively.
Thus, EM-ESPRIT does not suffer from the problems encountered in other methods.

In the results simulation shown in Fig. 5, the mean behavior of EM-ESPRIT is
studied not on a fixed geometry but on a set of arrays whose sensor positions are
known but randomly chosen. The idea is to fix the aperture and the number of sensors
of the NLA and for each trial, different sensors positions are uniformly generated
(only the positions of the first and the last sensors are fixed to insure the aperture).

Consider the sparse array with an aperture of 6 and a number of sensors of M = 3.
The sources are located at [−5°,10°]. The averaged RMSE over the whole sparse
array is represented at Fig. 5 in function of the SNR. It is compared to the aver-
aged RMSE of Root-MUSIC. EM-ESPRIT presents better performance, specially



1798 Circuits Syst Signal Process (2012) 31:1787–1807

Fig. 4 RMSE of the source at 10° for the nonregular array d = [0,1.32,3.03,5] λ
2 , DOA = [−5°,10°]

Fig. 5 RMSE for the sparse array of aperture 6 and a number of sensors of M = 3, DOA = [−5°,10°]

for highly noisy data. Furthermore, the averaged RMSE slightly changes from the
RMSE obtained with EM-ESPRIT applied to the array d = [0,2,5]λ

2 considered in
previous simulations. This simulation shows that EM-ESPRIT does not show any
dysfunctional behavior for particular geometry cases.
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Fig. 6 RMSE in function of SNR for the sparse array d = [0,1,4,7,13,15,18,23] λ
2 , DOA = [−10°,0°,

15°,30°,50°]

At last, the performance of EM-ESPRIT is studied for a major number of
sources. Consider the sparse array defined by the position of its sensors: d =
[0,1,4,7,13,15,18,23]λ

2 . The number of sources is fixed to 5, located at [−10°,0°,
15°,30°,50°]. EM-ESPRIT is compared to Root-MUSIC and the RMSE of all the
sources are represented at Fig. 6 with respect to the SNR.

This figure shows clearly the superiority of the EM-ESPRIT performance com-
pared to Root-MUSIC in the presence of an important number of sources, specially
for high noise level.

6.2 Resolution

In this simulation, the resolution of EM-ESPRIT is considered. This is an impor-
tant point, it shows whether EM-ESPRIT is capable of separating two close spaced
sources. Consider the case of nonregular array with the same array used before:
d = [0,1.32,3.03,5]λ

2 . The results for the sparse array case are not shown here but
they are similar. Consider N = 2 sources where the first angle is fixed to 0°. The sec-
ond angle is separated by �θ where �θ increases from 1° to 30°. The SNR is fixed to
10 dB. The RMSE of the source at 0° is represented at Fig. 7 in function of �θ . The
resolution of EM-ESPRIT is compared to the one corresponding to Spectral MUSIC
and to the Friedlander interpolation. EM-ESPRIT presents a better resolution than
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Fig. 7 Resolution of the source at 0° for the nonregular array d = [0,1.32,3.03,5] λ
2 , SNR = 10 dB,

N = 2 sources

the other methods. Results show that for �θ ≥ 3°, EM-ESPRIT is the most accurate
method and approaches the CRB. Furthermore, EM-ESPRIT presents better resolu-
tion than Spectral MUSIC specially for low values of �θ°. It is also more accurate
than the Friedlander interpolation for almost all the values of �θ .

6.3 Convergence

In this section, the convergence of the proposed method is studied. In general, the EM
algorithm is reputed of slow convergence. Thus, the approximate number of iterations
needed to reach the convergence is evaluated for several values of SNR.

In order to evaluate the convergence of the EM-ESPRIT algorithm, two criteria are
used. The first one is the error of the estimate at each iteration, since the simulation
is done only for one trial. The second one is the value of the simplified negative
log-likelihood function at each iteration (since the EM algorithm maximizes the ML
criterion in order to estimate the DOA). The log-likelihood of the observed data Y is
given by

L(Θ,Y) = −LM

2
ln

(
2πσ 2) − 1

2σ 2

L∑

l=1

∥∥Y(l) − A(θ)S(l)
∥∥2

. (19)

The evolution of L(Θ̂(k),Y) shows if the algorithm converges with the iterations.
When simplifying the expression of (19), the maximization of the criterion can be
reduced to the minimization of the simplified negative log-likelihood:

L1(Θ,Y) =
L∑

l=1

∥
∥Y(l) − A(θ)S(l)

∥
∥2

. (20)

The criterion L1(Θ,Y) is used in the simulations. It should decrease with the
iterations to reach the minimal value of the negative log-likelihood noted by
L1,min(Θ̂ML,Y) obtained by a direct minimization of the ML function L1(Θ,Y).
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Fig. 8 RMSE of the source at 10° for the nonregular array d = [0,1.32,3.03,5] λ
2 , at SNR = −10, 0 and

10 dB, DOA = [−5°,10°]

Consider the same nonregular array d = [0,1.32,3.03,5]λ
2 with the sources im-

pinging from [−5°,10°]. The estimation error |θ − θ̂ (k)| of the source at 10° in func-
tion of the iterations is plotted at Fig. 8 for three SNR values: −10, 0 and 10 dB.
The negative log-likelihood L1(Θ,Y) is also plotted at Fig. 9 for the 3 SNR val-
ues: −10, 0 and 10 dB, as well as the minimal value of the negative log-likelihood
L1,min( ˆΘML,Y).

Iteration 0 corresponds to the initialization value using the classical beamforming
algorithm. EM-ESPRIT converges for the three SNR values. Furthermore, Fig. 8 and
9 show that the number of iterations to reach the convergence is small: for SNR =
−10 dB, it is about 10 and for SNR = 0 and 10, it is approximately 5. Thus, the
convergence of EM-ESPRIT is relatively fast. In Fig. 9, the negative log-likelihood
reaches the minimal value L1,min(ΘMV ,Y) for each SNR. This is an illustration of
the convergence of the method.

6.4 Initialization Sensitivity

The effect of the initial values on the results of EM-ESPRIT is considered now. It is
known that the algorithm EM is sensitive to the initialization. Until now, the initial
values are estimated using the beamforming algorithm, but in this situation, the initial
value is fixed. In this simulation, consider the case of one source and study the effect
of the initial value choice on the EM-ESPRIT behavior. Consider the nonregular array
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Fig. 9 Negative log-likelihood for the nonregular array d = [0,1.32,3.03,5] λ
2 , at SNR = −10, 0 and

10 dB, DOA = [−5°,10°]

defined by d = [0,1.32,3.03,5]λ
2 and the source located at θ1 = 10°. The initial value

θ(0) varies inside [θ1 − 30°, θ1 + 30°]. The RMSE of the source in function of θ(0)

is plotted at Fig. 10 for SNR = −10 and 10 dB. In the case of SNR = −10 dB the
required accuracy of the initialization is about ±10° so that EM-ESPRIT to converge.
For SNR = 10 dB, the initial value can be logically less accurate and the required
accuracy is about ±17°. Other simulations have shown that when the array aperture
increases, the required accuracy of the initial value also increases. In practice, the
initialization by the beamforming is enough for the algorithm to converge.

6.5 Number of Snapshots

In this simulation, the effect of the number of snapshots is considered. Consider the
case of nonregular array with the same array used before: d = [0,1.32,3.03,5]λ

2 .
Consider N = 2 sources where the sources are located at [−5°,10°]. The SNR is
fixed to 10 dB. The RMSE of the source at 5° is represented at Fig. 11 in function
of the number of snapshots. The result of EM-ESPRIT is compared to the one corre-
sponding to Spectral MUSIC.

It can be seen that the number of snapshots does not affect the performance of
EM-ESPRIT. EM-ESPRIT approaches the CRB curve since L = 10. Also, the result
of EM-ESPRIT is better than Spectral MUSIC for a small number of snapshots.
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Fig. 10 RMSE of the source for the nonregular array d = [0,1.32,3.03,5] λ
2 , SNR = −10 and 10 dB,

N = 1 source

6.6 Number of Sensors of the VULA

The effect of the choice of the number of sensors M ′ of the VULA in the case of
nonregular array case is studied. Consider the case M ′ ≥ M . Consider the array d =
[0,1.32,3.03,5]λ

2 and the sources at [−5°,10°]. The RMSE of the source at −5° as
well as the CRB are plotted in function of the number the sensors in the VULA M ′
at Fig. 12 for SNR = 10 and 0 dB. For both SNR values, it is clear that increasing
the number of sensors does not provide any advantage. Therefore, our choice falls on
M ′ = M , it needs less computational time compared to larger values of M ′.

7 Application: Reduction of the Number of Sensors

In the introduction, it is stated that an interesting application would be to remove
sensors of an array to limit the production cost without modifying the performance.
In this section, the advantages of using the NLA instead of its equivalent ULA are
illustrated by applying EM-ESPRIT. Let us denote by ULAM ′ the ULA with aperture
and number of sensors equal to M ′ and by NLAM ′,M an NLA with aperture M ′ and
M sensors. In [6], an analytical study was achieved in order to show the advantages
of the NLA. This study was made using the CRB values on a NLA with a centro-
symmetric with empty center and in the case of one source. In the case of a ULA and
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Fig. 11 Effect of the number of snapshots for the nonregular array d = [0,1.32,3.03,5] λ
2 , SNR = 10 dB,

N = 2 sources

Fig. 12 RMSE of the source at −5° for the nonregular array d = [0,1.32,3.03,5] λ
2 , SNR = 10 and 0 dB,

DOA = [−5°,10°]
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Table 1 The NLA and ULA geometries used in the simulations

Number
of sensors
(M)

NLA ULA

Array Aperture
(M ′)

Positions
[λ/2] (d)

Array Aperture
(M ′)

Positions
[λ/2] (d)

10 – – – ULA10 10 [0 1 2 3 4 5 6 7 8 9]
9 NLA10,9 10 [0 1 2 3 4 6 7 8 9] ULA9 9 [0 1 2 3 4 5 6 7 8]
8 NLA10,8 10 [0 1 2 4 5 7 8 9] ULA8 8 [0 1 2 3 4 5 6 7]
7 NLA10,7 10 [0 1 2 4 5 8 9] ULA7 7 [0 1 2 3 4 5 6]
6 NLA10,6 10 [0 2 4 5 8 9] ULA6 6 [0 1 2 3 4 5]
5 NLA10,5 10 [0 1 4 8 9] ULA5 5 [0 1 2 3 4]
4 NLA10,4 10 [0 5 8 9] ULA4 4 [0 1 2 3]
3 NLA10,3 10 [0 4 9] ULA3 3 [0 1 2]

an NLA having the same aperture M ′, i.e. ULAM ′ and NLAM ′,M , the ratio of CRB
correspondant to the arrays is given by

CRBULAM ′
CRBNLAM ′,M

≈ 1 −
(

δ

M ′

)3

, (21)

where δ = M ′ − M is the number of missing sensors in the NLA. If the number
of missing sensors δ is small enough with respect to M ′, the last term in (21) is
negligible. Thus, the NLA performance is almost the same as the ULA having the
same aperture. Now if a ULA and an NLA having the same number of sensors are
considered, i.e. ULAM and NLAM ′,M , the ratio of the CRB becomes

CRBULAM

CRBNLAM ′,M
= 1 + 3

(
M ′

M

)2

− 3
M ′

M
> 1. (22)

Thus, the NLA with a bigger aperture and the same number of sensors as the ULA
presents better performance.

In this section, the case of two sources is considered. Thus, the comparison cannot
be made on the CRB values, it is done with respect to the RMSE of the EM-ESPRIT
algorithm. Consider a ULA10 with M ′ = 10 sensors spaced by a half-wavelength. The
NLA are created by eliminating the sensors successively, one after another. Similar
results can be obtained when choosing other structures. The chosen NLA are given
in Table 1. Notice that all the NLA10,M have the same aperture as the original ULA10
with 10 sensors. The DOA are located at [−5°,10°]. The EM-ESPRIT method is
applied in order to estimate the DOA in the case of NLA and ESPRIT in the case
of ULA. The SNR is fixed at 10 dB and the RMSE is plotted versus the number
of sensors. Figure 13 shows the performance of the NLA defined previously and
the ULA, for the source located at 0°. The results for the source at 10° are similar.
For each value of M ,the performance of the arrays given by the corresponding row
in Table 1 is studied. Figure 13, shows that NLAM ′,M provides better performance
than the ULAM with the same number of sensors. Indeed, using an NLA10,5 with
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Fig. 13 RMSE for the source at −5° with M = 3,4, . . . ,10, SNR = 10 dB, DOA = [−5°,10°] in the
case of ULA and NLA

M = 5 sensors and with an aperture of 10 gives better results than using a ULA5
with 5 sensors. Thus, this example shows the importance of the aperture of the array
and that EM-ESPRIT efficiently exploits the larger aperture of NLA with respect to
ULA. Furthermore, focusing on the NLA10,M curve shows that going from M = 9 to
M = 5 slightly changes the performance. This means that instead of using 10 sensors,
similar RMSE can be achieved using only half of the number of sensors, thanks to
EM-ESPRIT. Thus, the NLA may have numerous gaps without affecting the RMSE
performance. In conclusion, this example shows the advantages of using the NLA
instead of the equivalent ULA, it needs less production cost since the performance of
an NLA having the same aperture and having only half of the number of sensors of
the ULA slightly changes.

8 Conclusion

In this paper, a new iterative method named EM-ESPRIT for DOA estimation is
proposed. The key idea of EM-ESPRIT is to interpolate the existing data using the
signal model in order to form a VULA and to use the ESPRIT algorithm to estimate
the DOA. Another important novelty proposed in this paper is to extend this approach
to all types of nonuniform array, where other methods fail to treat the nonregular case.
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Simulation results show that EM-ESPRIT is more robust to additive noise than the
other methods with lower computational cost. Furthermore, EM-ESPRIT can fully
exploit the advantages of using an NLA instead of a ULA, for instance it reduces
the cost of antenna by reducing the number of sensors. In fact, using an NLA with a
reasonably smaller number of sensors than the equivalent ULA preserves almost the
same variance for DOA estimation. Another advantage is that for the same number
of sensors, the NLA presents better performance since the aperture is bigger, which
means that the resolution is better.
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