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a b s t r a c t

Given a graph Y on n vertices and a desired level of fault-tolerance k, an objective in fault-
tolerant system design is to construct a supergraph X on n + k vertices such that the
removal of any k nodes from X leaves a graph containing Y . In order to reconfigure around
faults when they occur, it is also required that any two subsets of k nodes of X are in the
same orbit of the action of its automorphism group. In this paper, we prove that such a
supergraph must be the complete graph. This implies that it is very expensive to have an
interconnection network which is k-fault-tolerant and which also supports automorphic
reconfiguration. Our work resolves an open problem in the literature. The proof uses a
result due to Cameron on k-homogeneous groups.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The interconnection network of a computing system is modeled as a graph X = (V , E) whose vertices correspond to
processors and with two vertices being adjacent whenever the corresponding two processors are connected by a direct
communication link (cf. [14,16]). In order to execute an algorithm on this computing system, it is required that the
architecture X contain a given basic graph Y as a subgraph. If some of the nodes of X become faulty, in order to continue
operation it is required that the functioning part of the network still contain the basic graph Y . We assume the basic graph
Y is nonempty, i.e. it contains at least one edge. Any notation or terminology on graphs used in this paper which we do not
explicitly define here is standard and can be found in [1].

Let Y be a nonempty graph on n vertices. A graph X is said to be a k-fault-tolerant realization of Y if X can be obtained
from Y by adding a set of k new vertices (called spare nodes) and some edges so that the resulting graph X has the property
that the removal of any k vertices from X leaves a graph which still contains Y (cf. [7]). In other words, X is a k-fault-tolerant
realization of Y if X has exactly n+k vertices and X −W contains a subgraph isomorphic to Y for each k-subsetW ⊆ V (X). In
this case, if any k nodes of X become faulty, the network corresponding to the nonfaulty nodes of X contains the architecture
Y and hence can continue to operate. In this sense, the architecture X can tolerate up to k node failures.

A graph X is a supergraph of Y if it is possible to add vertices and edges to Y to obtain X , i.e. if V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X).
A graph X is an edge-supergraph of Y if V (X) = V (Y ) and E(Y ) ⊆ E(X). In this paper, we consider the method of constructing
supergraphs X of a given graph Y such that for all k-subsets F ⊆ V (X), X − F contains the subgraph Y . This type of design
method is called global sparing because the k spare nodes added to Y are associatedwith all ofV (Y ). In local sparing,wewould
partition V (Y ) into t subsets V1, . . . , Vt (for some t ≥ 2) and associate t sets of spare nodes to the t subsets Vi, respectively,
such that ki spare nodes are associated with Vi (i = 1, . . . , k) and k1 + · · · + kt = k. Local sparing simplifies the design and
reconfiguration process, while global sparing achieves k-fault-tolerance with fewer processors.

Many authors have investigated the use of algebraic methods in interconnection networks; see the surveys [10,15] and
the references therein. The present paper investigates an open problem posed in [7] on fault-tolerant supergraphs whose
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automorphism group satisfies certain properties. Another research area at the interface of graph automorphisms and inter-
connection networks is the study of the structure of interconnection network topologies; for example, several authors have
investigated the automorphism group of graphs that arise as the topology of interconnection networks [5,8,9,11] [12,17].
More recently, researchers have questioned the practicability and advantages of interconnection networks with large
automorphism groups; for example, data center interconnection networks are not hyperbolic [4].

We now recall some basic definitions on permutation groups; for more details, the reader is referred to [6, Chapter 1], [3].
Let G be a nonempty set and let × a binary operation on G that assigns to each ordered pair (x, y) of elements from G an
element x × y (abbreviated xy) in G. We say that (G, ×) is a group, or simply that G is a group, if the following axioms are
satisfied: (a) associativity, i.e. xy(z) = (xy)z, for all x, y, z ∈ G; (b) identity, i.e. there exists an element e ∈ G such that
xe = ex = x, for all x ∈ G; (c) inverses, i.e. for each x ∈ G, there exists an element x′

∈ G such that xx′
= x′x = e. A bijection

from a setG to itself is called a permutation ofG. The set of all permutations ofG is a group under the operation of composition
of mappings. This group is denoted Sym(G) and is called the (full) symmetric group on G. If H is a subset of some symmetric
group Sym(G) and H satisfies the group axioms, then H is called a permutation group on G. We shall use the notation xf to
refer to the image f (x) of x under some mapping f . A homomorphism from a group G to a group G′ is a mapping µ from G to
G′ such that (xy)µ = xµyµ, for all x, y ∈ G.

Let G be a group and let Ω be a nonempty set. Suppose the map µ : Ω × G → Ω, (α, x) ↦→ αx satisfies the following
two conditions: (i) (αx)y = αxy, for all α ∈ Ω and all x, y ∈ G, and (ii) α1

= α for all α ∈ Ω , where 1 denotes the identity
element of the group G. Then, we say that this map defines an action of G on Ω and that G acts on Ω . This action naturally
induces a homomorphism from G into the symmetric group Sym(Ω), and so each element of G induces a permutation of Ω .
Conversely, every homomorphism from G into Sym(Ω) induces an action of G on Ω . The orbit of a point α ∈ Ω under this
action is the set αG

:= {αx
: x ∈ G}. Thus, the action of G on Ω partitions Ω into orbits. The action of G on Ω is transitive if

for all α, β ∈ Ω , there exists a g ∈ G such that αg
= β; equivalently, G acts transitively on Ω if the action of G on Ω has a

single orbit.
Suppose G acts on Ω . The action of G on Ω induces an action of G on the set of all subsets of Ω by the rule Γ x

:= {γ x
:

γ ∈ Γ }, for all Γ ⊆ Ω . It is clear that the set Ω {k} of all k-subsets of Ω is G-invariant, i.e. (Ω {k})x = Ω {k} for all x ∈ G. The
group G is said to be k-homogeneous if G acts on Ω {k} transitively. (What we call k-homogeneous in this paper is referred to
as k-subtransitive in [7].)

A k-tuple of distinct elements from Ω is an ordered subset of k distinct elements from Ω . For example, if {δ1, . . . , δk} is
a k-subset of Ω , then (δ1, . . . , δk) is a k-tuple of distinct elements from Ω . Let Ω (k) denote the set of all k-tuples of distinct
elements from Ω . We say that G is k-transitive if G acts transitively on Ω (k). Thus, the action of G on Ω is k-transitive iff
for every two k-tuples (α1, . . . , αk), (β1, . . . , βk) of distinct elements from Ω , there exists a g ∈ G such that α

g
i = βi

(i = 1, . . . , k). For further details on group actions,we refer the reader to [6, Chapter 1]; an introduction tomultiply transitive
groups and k-homogeneous groups can be found in [18, Chapter II] and [6, Sections 2.1 and 9.4].

Let X = (V , E) be a simple, undirected graph. Let Sym(V ) denote the full symmetric group acting on the vertex set
V = V (X). Then, Sym(V ) acts naturally on the set V {2} of all 2-subsets of V by the following rule: for all x ∈ Sym(V ) and
for all {u, v} ∈ V {2}, {u, v}

x
:= {ux, vx

}. An automorphism of the graph X = (V , E) is a permutation g ∈ Sym(V ) which
preserves adjacency and nonadjacency. In other words, g ∈ Sym(V ) is an automorphism of X if {x, y} ∈ E iff {x, y}g ∈ E.
The set of all automorphisms of X forms a permutation group, called the automorphism group of X , denoted by Aut(X). Thus,
Aut(X) := {g ∈ Sym(V ) : Eg

= E}. A graph X is said to be vertex-transitive if its automorphism group Aut(X) acts transitively
on the vertex set V (X). For an introduction to automorphisms of graphs, the reader is referred to [13].

Having stated our terminology on group actions and automorphisms of graphs, we can now describe an approach
for restructuring around faults in an interconnection network. This approach, called automorphic reconfiguration, was
introduced in [7], and refers to a specific type of reconfiguration using automorphisms inwhich the k spare nodes are directly
mapped to the set of k faulty nodes. Automorphic reconfiguration, as defined in [7], is an impractical way of designing and
reconfiguring graphs (and in particular, multiprocessor networks), and was a definition given just for theoretical purposes
to finally lead to the type of k-fault-tolerant supergraphs designed in [7] that are not complete graphs.

In order to achieve so-called automorphic reconfiguration (cf. [7, p. 253]), it is required that, when k or fewer nodes of
the interconnection network become faulty, there exists an automorphism of the graph X that maps the spare nodes to the
faulty nodes. During this reconfiguration process, the faulty nodes are relabeled as spare nodes, and the nonfaulty nodes are
relabeled as nodes of Y and contain a subgraph isomorphic to Y . In graph-theoretic terms, the interconnection topology X
must satisfy the property that if A and B are any two k-subsets of V (X), then there is an automorphism of X that maps A to
B. Equivalently, the interconnection network topology X must satisfy the property that its automorphism group Aut(X) is
k-homogeneous.

Thus, our objective is the following: given a basic graph Y and a desired level of fault-tolerance k, construct a graph X
such that X is a k-fault-tolerant realization of Y and such that Aut(X) is k-homogeneous. In other words, given a basic graph
Y , we add k spare nodes S to V (Y ) and edges to get a supergraph X such that for any k-subset F ⊆ V (X) of faulty nodes, there
exists an automorphism g ∈ Aut(X) such that Sg = F and such that the set of nonfaulty nodes contains the subgraph Y . Dutt
and Hayes settled this problem for the case k = 2 by proving the following result:

Theorem 1 ([7, Theorem 2]). If Y is a nonempty graph on n vertices, X is a 2-fault-tolerant realization of Y and Aut(X) is
2-homogeneous, then X is the complete graph Kn+2.



Please cite this article in press as: A. Ganesan, Fault tolerant supergraphs with automorphisms, Discrete Applied Mathematics (2018),
https://doi.org/10.1016/j.dam.2018.06.012.

A. Ganesan / Discrete Applied Mathematics ( ) – 3

Dutt and Hayes (cf. [7, p. 253]) posed the problem of generalizing the k = 2 result of Theorem 1 to arbitrary k. In this
paper, we resolve this open problem (cf. Theorem 2).

The following is the main result of this paper:

Theorem2. Let k ≥ 2. If Y is a nonempty graph onn vertices, X is a k-fault-tolerant realization of Y andAut(X) is k-homogeneous,
then X is the complete graph Kn+k.

We point out that if Y has n vertices and X is a k-fault-tolerant realization of Y , then X has exactly n + k vertices. The
condition thatX have exactly n+k vertices can be relaxed; see Corollary 10 and the remarks preceding it. Oneway to state the
more general version of our main result is as follows: If Y is a nonempty graph, and X is such that Aut(X) is k-homogeneous
for some k ≥ 2 and the removal of any k nodes from X leaves a graph containing Y , then X is a complete graph. We say ‘‘a’’
complete graph, rather than ‘‘the’’ complete graph because the order of X can be arbitrary. In most of this paper, we follow
the statement of the open problem in [7, p. 253] and so assume that X has exactly n + k vertices.

2. Preliminaries

We recall some results on permutation groups.

Lemma 3. Suppose G acts on Ω . If G is k-transitive, then G is k-homogeneous.

Proof. Let A = {a1, . . . , ak} and B = {b1, . . . , bk} be k-subsets of Ω . To show G is k-homogeneous, it suffices to show there
exists g ∈ G such that Ag

= B. By k-transitivity of G, there exists g ∈ G such that (a1, . . . , ak)g = (b1, . . . , bk), i.e. there exists
g ∈ G such that agi = bi (i = 1, . . . , k). Hence, Ag

= {ag1, . . . , a
g
k} = B. ■

Lemma 4 ([6, p. 35]). Suppose G acts on Ω and |Ω| = n. Then, G is k-homogeneous iff G is (n − k)-homogeneous.

Proof. Suppose G is k-homogeneous. To show G is (n − k)-homogeneous, let A, B ∈ Ω {n−k}. It suffices to show there exists
a g ∈ G such that Ag

= B. Let A′
:= Ω − A, B′

:= Ω − B. Then, A′, B′
∈ Ω {k}. By hypothesis, there exists a g ∈ G such that

(A′)g = B′. Since g acts on Ω , g takes the complement of A′ to the complement of B′, i.e. Ag
= B. The converse is proved in a

similar manner. ■

Lemma 5. Suppose G acts on Ω , |Ω| = n and 2 ≤ k ≤ n. If G is k-transitive, then G is (k − 1)-transitive.

Proof. Let ∆ = {δ1, . . . , δk−1} and Γ = {γ1, . . . , γk−1} be (k − 1)-subsets of Ω . Let α ∈ Ω − ∆ and β ∈ Ω − Γ . By
k-transitivity of G, there exists a g ∈ G such that (δ1, . . . , δk−1, α)g = (γ1, . . . , γk−1, β). Hence, there exists a g ∈ G which
takes the tuple (δ1, . . . , δk−1) to the tuple (γ1, . . . , γk−1). ■

If |Ω| = n, we write Sn for the full symmetric group Sym(Ω). The group of n! permutations in Sn acts naturally on the
set [n] := {1, . . . , n}, and it is clear that for any two k-tuples α = (α1, . . . , αk), β = (β1, . . . , βk) (k ≤ n), there exists a
g ∈ Sn such that αg

= β . Hence, Sn is k-transitive for every k ∈ [n]. By Lemma 3, Sn is also k-homogeneous for every k ∈ [n].
The next result shows some formal distinction between k-homogeneity and k-transitivity by exhibiting a permutation group
(subgroup of Sn) which is 2-homogeneous and not 2-transitive.

Lemma 6 ([6, p. 286]). Consider the permutations x = (12 . . . 7), y = (235)(476) in S7. Let G := ⟨x, y⟩ be the permutation
group in S7 generated by x and y. Then, G is not 2-transitive and G is 2-homogeneous.

Proof. Observe that xy = yx2 and so |G| = 21. To prove that G is not 2-transitive, it suffices to show that any 2-transitive
group on [7] must contain at least 42 elements. Because the order of G is 21, it would follow that G is not 2-transitive.

Consider any group G′ which acts transitively on the set [7](2) of all 2-tuples of distinct elements from [7]. All 2-tuples lie
in a single orbit of this action. Hence, for each (α, β) ∈ [7](2), there exists a group element g ∈ G′ such that (1, 2)g = (α, β).
The number of 2-tuples (α, β) of distinct elements from [7] is 7×6 = 42, and distinct 2-tuples can be obtained as the image
of (1, 2) only using distinct elements in G′. Hence, in order for all 2-tuples to lie in a single orbit of the group action, |G′

|must
be at least 42.

To show G is 2-homogeneous, suppose {α, β} ∈ [7]{2}. Then, there exists z ∈ ⟨x⟩ such that {α, β}
z
= {1, γ } for some γ . If

γ ∈ {2, 3, 5}, then {1, γ }
yi

= {1, 2} for some i. If γ ∈ {4, 7, 6}, then {1, γ }
yj

= {1, 7} for some j, andwe know {1, 7}x = {1, 2}.
Thus, there exists g ∈ G such that {α, β}

g
= {1, 2}. Thus, all 2-subsets of [7] can be mapped to {1, 2} by the action of some

element of G on [7]{2}. Also, the element {1, 2} can be mapped (by the inverse of the aforementioned elements in G, which
also belong to G) to each 2-subset of [7]. Hence, the action of G on [7]{2} has a single orbit and is thus transitive. Thus, G is
2-homogeneous. ■

Recall that if a group is k-transitive, then it is also (k − 1)-transitive. In general, a group which is k-homogeneous is not
necessarily (k−1)-homogeneous. Itwill follow fromourmain result that if a permutation groupG arises as the automorphism
group of a graph, then k-homogeneity of G does imply (k − 1)-homogeneity of G.

The proof of the main result uses the following result due to Cameron:
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Theorem 7 ([2, Theorem 2.2] [6, Theorem 9.4A]). Let G be a permutation group acting on a set Ω . Let m, k be integers with
0 ≤ m ≤ k and m + k ≤ |Ω|. Then, G has at least as many orbits in Ω {k} as it has in Ω {m}.

3. Main results

We first extend Theorem 1 from the 2-homogeneous case to the 3-homogeneous case. This result is actually a special
case of the main result (Theorem 2). We now give an elementary proof for the 3-homogeneous case which does not use the
theory of permutation groups. In fact, the condition that Aut(X) be 3-homogeneous is equivalent to the seemingly weaker
condition that every subset of 3 vertices of the graph induces the same subgraph.

Theorem 8. If X is a graph on 5 or more vertices containing at least one edge and if every subset of 3 vertices of X induces the
same subgraph, then X is a complete graph.

Proof. Let A = {a, b, c} ⊆ V (X) and let X ′ denote the induced subgraph X[A]. By hypothesis, X ′ contains at least one edge.
We consider three cases for the structure of X ′. For the first case, suppose X ′ is a 3-clique. Then, X is the complete graph
because every subset of 3 vertices of X induces a 3-clique. For the second case, suppose X ′ is isomorphic to K1,2. Without
loss of generality, suppose ab, bc ∈ E(X), ac ̸∈ E(X). Let x, w ∈ V (X) − A. Then, {a, c, w} and {a, c, x} each induce a K1,2.
Since a and c are nonadjacent, it must be that ax, cx, aw, cw ∈ E(X). The subgraph induced by {b, x, w} must also be a K1,2
and hence contains at least one edge. The endpoints of this edge along with vertex a induce a K3, a contradiction. Hence, the
second case is impossible.

For the third case, suppose the induced subgraphX ′ is isomorphic to the disjoint union ofK2 andK1. Then, the complement
graph X ′ is isomorphic to K1,2. Since the automorphism group of a graph and of its complement are equal, Aut(X) is also
3-homogeneous, and by the second case above, X is the complete graph. But this implies X is the empty graph, contradicting
the fact that its induced subgraph X ′ contains an edge. Hence, this third case is also impossible. ■

It is obvious that if Aut(X) is 3-homogeneous, then every 3-subset of V (X) induces the same subgraph. The above result
proves the following converse: if every 3-subset of V (X) induces the same subgraph, then X is the complete graph, whence
Aut(X) is the full symmetric group andhence is 3-homogeneous. Thus, 3-homogeneity of Aut(X) is equivalent to the condition
that every 3-subset of V (X) induces the same graph. The lower bound of 5 in Theorem 8 is tight since the automorphism
group of C4 is 3-homogeneous and C4 is not a clique.

We now prove the main result Theorem 2, which is the following statement: Let k ≥ 2. If Y is a nonempty graph on n
vertices, X is a k-fault-tolerant realization of Y and Aut(X) is k-homogeneous, then X is the complete graph Kn+k.

Proof of Theorem 2. The case k = 2 is addressed in Theorem 1, so assume k ≥ 3. Let Y be a graph on n vertices. Here,
n ≥ 2 since Y contains at least one edge. Note that X is a graph on n + k vertices. Let G = Aut(X) and let Ω = V (X).
By hypothesis, the action of G on the set Ω is k-homogeneous. Thus, the number of orbits of G on Ω {k} is 1. Since 2 ≤ n,
2 + k ≤ n + k = |Ω|. Also, 2 ≤ k. Hence, by Theorem 7, the number of orbits of G on Ω {2} is also 1. Equivalently, the action
of G on Ω is 2-homogeneous.

Let {u, v} be an edge in Y . Then {u, v} is an edge in X . Let a and b be distinct vertices of X . Because G is 2-homogeneous,
there is an element g ∈ G that maps {u, v} to {a, b}. The automorphism g preserves adjacency, whence {a, b} is an edge of
X . This proves that any two distinct vertices in X are adjacent, i.e. X is the complete graph Kn+k. ■

In the proof above, we essentially showed the following:

Corollary 9. Let k ≥ 2. Let X be a nonempty graph on k + 2 vertices. If Aut(X) is k-homogeneous, then X is the complete graph
Kk+2.

As stated, Theorem 2 assumes that the order |V (X)| of X is exactly equal to n + k. The proof of the theorem goes through
even if this condition is relaxed to |V (X)| ≥ n + k:

Corollary 10. Let X be a nonempty graph. If Aut(X) is k-homogeneous for some 2 ≤ k ≤ |V (X)| − 2, then Aut(X) is
2-homogeneous and X is a complete graph.

We resolve some further open questions in the literature. In [7, p. 252], it is stated that there is likely no characterization
of k-homogeneous automorphism groups of graphs in the literature. In [7, p. 252], it is mentioned that k-homogeneity of
Aut(X) could be a ‘‘significantly weaker restriction’’ than k-transitivity of Aut(X). Also, in [7, p. 253], it is mentioned that
k-homogeneity of Aut(X) does not necessarily imply i-homogeneity of Aut(X) for 2 ≤ i ≤ k − 1. All these questions are
resolved by the following immediate consequence of our main result Theorem 2:

Corollary 11. Let X be a graph on 4 or more vertices. Suppose 2 ≤ k ≤ |V (X)| − 2. If Aut(X) is k-homogeneous, then Aut(X) is
i-homogeneous for i = 1, 2, . . . , k−1 andAut(X) is the full symmetric group. In particular, k-homogeneity of Aut(X) is equivalent
to k-transitivity of Aut(X).
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Fig. 1. (a) Removing diametrically opposite vertices from a cube Q3 gives a 6-cycle y1y2 . . . y6 . (b) Removing two adjacent vertices gives a graph containing
a 6-cycle y1y2 . . . y6 .

The bounds in 2 ≤ k ≤ |V (X)| − 2 are tight — there are many families of vertex-transitive graphs for which Aut(X) is
k-homogeneous for k = 1 (and hence also for k = |V (X)| − 1 by Lemma 4, and obviously for k = |V (X)|) and such that
Aut(X) is not i-homogeneous for i = 2, . . . , |V (X)| − 2. For example, take X to be a cycle graph.

Theorem 2 makes two assumptions: that X is a k-fault-tolerant realization of Y and that Aut(X) is k-homogeneous. The
conclusion of the theorem followsmainly from the second assumption and only a weak consequence of the first assumption
is used. To illustrate, we consider the following example of a graph X which is a 2-fault-tolerant realization of Y = Q3, the
3-dimensional cube. As this example shows, the first assumption alone is not sufficient to ensure that X is the complete
graph.

Theorem 12. Let Y be the 3-dimensional hypercube Q3. Let X be the graph obtained by adding to Y two spare nodes x1 and x2
and joining each xi (i = 1,2) to each vertex of Y . Then, X is a 2-fault-tolerant realization of Y , but Aut(X) is not k-homogeneous
for k = 1, 2, . . . , |V (X)| − 1.

Proof. Observe that if any two diametrically opposite vertices of the 3-cube Q3 are removed, the resulting graph is a 6-cycle
graph; see Fig. 1(a). Adding two new vertices to this 6-cycle graph and joining these two vertices to each vertex of the 6-cycle
gives an edge-supergraph of Q3. Hence, if a graph contains a 6-cycle, then adding two new vertices x1, x2 to the graph and
joining each xi to each vertex of the graph gives an edge-supergraph of Q3.

To prove that X is a 2-fault-tolerant realization of Y = Q3, let F = {f1, f2} be a set of two faulty nodes of X . We need to
show that X − F contains a subgraph isomorphic to Q3. This is clear if {f1, f2} = {x1, x2} and also if exactly one of the faulty
nodes is in Y because this node can be replaced by the non-faulty spare node. So suppose now that both faulty nodes f1 and
f2 are in Y . If f1 and f2 are nonadjacent in Y , then they can be replaced by the spare nodes x1 and x2, respectively, and Y − F
contains a subgraph isomorphic to Q3. Finally, suppose f1 and f2 are adjacent nodes of Y . Then Y − F contains a 6-cycle (see
Fig. 1(b)), and by the argument in the previous paragraph, X − F contains a subgraph isomorphic to Q3.

In the graph X , the degree of vertex xi (i = 1,2) is 8, and the degree of each of the remaining vertices is 4. Hence, X is
not vertex-transitive (i.e. Aut(X) is not 1-homogeneous). By Lemma 4, Aut(X) is not (|V (X)| − 1)-homogeneous. If Aut(X) is
k-homogeneous for some 2 ≤ k ≤ |V (X)| − 2, then by Theorem 2 X is the complete graph, a contradiction. Hence, Aut(X) is
not k-homogeneous if k ∈ {1, 2, . . . , |V (X)| − 1}. ■

The paper [7] designed an iterative reconfiguration technique which after k faults occur uses k different automorphisms
in a repeated manner to obtain a fault-free graph isomorphic to the basic graph Y from its k-fault-tolerant supergraph X
that does not require X to be a complete graph, and in fact is quite efficient in the additional edges needed in X with respect
to Y (cf. [7, Theorems 5 and 6]) as well as in the switch-based implementation of X . Both Theorem 12 and the technique
in [7] are evidence that k-fault-tolerance of X is not a sufficient condition for X to be complete, and further, in the case of the
technique in [7] the use of automorphisms to obtain k-fault-tolerance does not require X to be complete (and thus does not
require Aut(X) to be k-homogeneous).

Theorems 1 and 2 imply that it is very expensive to have an interconnection network which is k-fault-tolerant and which
also supports automorphic reconfiguration (i.e. for Aut(X) of the k-fault-tolerant graph X to also be k-homogeneous) because
such an interconnection network must be the complete graph.
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