
Graph-Controlled Insertion-Deletion Systems
Generating Language Classes Beyond Linearity

Henning Fernau1(B), Lakshmanan Kuppusamy2, and Indhumathi Raman3

1 Fachbereich 4 – CIRT, Universität Trier, 54286 Trier, Germany
fernau@uni-trier.de

2 SCOPE, VIT University, Vellore 632 014, India
{klakshma,indhumathi.r}@vit.ac.in

3 SITE, VIT University, Vellore 632 014, India

Abstract. A regulated extension of an insertion-deletion system known
as graph-controlled insertion-deletion (GCID) system has several com-
ponents and each component contains some insertion-deletion rules. A
rule is applied to a string in a component and the resultant string is
moved to the target component specified in the rule. When resources are
so limited (especially, when deletion is context-free) then GCID systems
are not known to describe the class of recursively enumerable languages.
Hence, it becomes interesting to find the descriptional complexity of such
GCID systems of small sizes with respect to language classes below RE.
To this end, we consider closure classes of linear languages. We show
that whenever GCID systems describe LIN with t components, we can
extend this to GCID systems with just one more component to describe,
for instance, 2-LIN and with further addition of one more component, we
can extend to GCID systems that describe the rational closure of LIN.

Keywords: Insertion-deletion systems · Graph-controlled systems ·
Descriptional complexity measures · Closure classes of linear languages

1 Introduction

The origin of insertion systems comes from linguistics, under the name of semi-
contextual grammars [6], as well from biology. In biology, the insertion opera-
tion is found in the process of mismatched annealing in DNA strands [14] and
in RNA editing, some fragments of messenger RNA are inserted or deleted [1].
Further motivation for insertion operations can be seen in [8]. On the other hand,
the deletion operation was introduced independently in [10]. Insertion and dele-
tion operations together were introduced in [11]; the corresponding grammatical
mechanism is called insertion-deletion system (abbreviated as ins-del system).
Informally, insertion means inserting a string η between the strings w1 and w2,
whereas deletion means deleting a substring δ from the string w1δw2.

Among the several variants of ins-del systems (e.g., see [15] for this), we
focus on graph-controlled ins-del systems (abbreviated as GCID systems). Such
a system was introduced in [5] where the concept of components is introduced,

c© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
G. Pighizzini and C. Câmpeanu (Eds.): DCFS 2017, LNCS 10316, pp. 128–139, 2017.
DOI: 10.1007/978-3-319-60252-3 10

Graph-Controlled Insertion-Deletion Systems 129

associated with insertion or deletion rules. The transition is performed by
choosing any applicable rule from the set of rules of the current component
and by moving the resultant string to the target component specified in the
rule. The descriptional complexity measures are based on the size, denoted by
(k;n, i′, i′′;m, j′, j′′) where the parameters from left to right denote (i) the num-
ber of components k (ii) the maximal length of the insertion string n, (iii) the
maximal length of the left context and right context used in insertion rules, i′

and i′′, respectively, (iv) the maximal length of the deletion string m, (v) the
maximal length of the left context and right context used in deletion rules, j′

and j′′, respectively. We will also refer to the last six numbers in the septuple as
ID size, where ID stands for insertion-deletion.

It is known that the class of linear languages LIN is not closed under concate-
nation and Kleene closure. Let L◦(LIN) and L∗(LIN) denote the super-classes
of LIN closed under concatenation and Kleene closure, respectively. It is shown
in [3] that if GCID systems can describe LIN with ID size s and t components,
then it can be extended to a GCID system with ID size s and t + 1 components
to describe L∗(LIN) and particular cases of GCID systems with ID size s and
t+2 components describing L◦(LIN) were reported. In this paper, we generalize
these results to show that even the rational or regular closure of LIN (denoted
as Lreg(LIN)) can be described by GCID systems with ID size s and t + 2
components. We also show that a subclass of Lreg(LIN) containing languages
which can be described as concatenation of two languages from L∗(LIN), can be
described by GCID systems with ID size s and t + 1 components. For the first
result, we employ a new normal form for Lreg(LIN). Due to space restrictions,
many illustrations, examples and proofs have been suppressed.

2 Preliminaries

We assume that the readers are familiar with the standard notations used in
formal language theory. However, we recall a few notations. Let N denote the set
of positive integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}. If Σ is an alphabet (finite
set), then Σ∗ denotes the free monoid generated by Σ. The elements of Σ∗ are
called strings or words; λ denotes the empty string. For a string w ∈ Σ∗, wR

denotes the reversal (mirror image) of w. Likewise, LR and LR are understood
for languages L and language families L. The family of linear, context-free and
recursively enumerable languages are denoted by LIN, CF and RE, respectively.

The language class LIN is neither closed under concatenation nor under
Kleene closure. This motivates to consider several so-called closure classes of
the linear languages. A detailed study of these closure classes is given in [12].

Let Lop(F) be the smallest language class containing F and being closed
under the operation op. Since LIN is not closed under concatenation and Kleene
closure, the closure classes L◦(LIN) and L∗(LIN) are strict supersets of LIN.
The class L◦(LIN) is the class of metalinear languages. If L ∈ L◦(LIN), then
L = L1 ◦ L2 ◦ · · · ◦ Lk (in short L1L2 . . . Lk) for some k ≥ 1, where Li ∈ LIN
for each 1 ≤ i ≤ k. Fixing k ≥ 1, we arrive at the class k-LIN, a subclass

130 H. Fernau et al.

of L◦(LIN). In other words, L◦(LIN) =
⋃

k≥1 k-LIN and LIN = 1 − LIN by
definition. Similarly, if L ∈ L∗(LIN), then either L ∈ LIN or L = (L′)∗ for
some linear language L′. It is well known that L∗(LIN) and L◦(LIN) are not
closed under concatenation and Kleene closure, respectively; see [12]. The class
L := {L∗

1L2 | L1, L2 ∈ LIN} is also considered as an extension of L∗(LIN) in
[12].1 It has a nice characterization in terms of pushdown automata with finite
turns. Continuing to play around with the concatenation and Kleene closure
operators and extending our notation to lists of operators, we have L◦,∗(LIN),
the smallest language family containing LIN and being closed under concatena-
tion and Kleene closure. Recall that Lreg(LIN) is the smallest language family
that contains LIN and is closed under the three regular operators: union, con-
catenation and Kleene closure. In our notation, this corresponds to L∪,◦,∗(LIN).

2.1 Graph-Controlled Insertion-Deletion Systems

We define graph-controlled insertion-deletion systems following [5].

Definition 1. A graph-controlled insertion-deletion system (GCID system for
short) with k components is a construct Π = (k, V, T,A,H, i0, if , R), where k is
the number of components, V is an alphabet, T ⊆ V is the terminal alphabet and
V \ T is the non-terminal alphabet, A ⊆ V is a finite set of axioms, H is a set
of labels associated (in a one-to-one manner) to the rules in R, i0 ∈ [1 . . . k] is
the initial component, if ∈ [1 . . . k] is the final component, and R is a finite set
of rules of the form (i, r, j) where r is an insertion rule of the form (u, η, v)ins
or a deletion rule of the form (u, δ, v)del, with i, j ∈ [1 . . . k]. We say that a
GCID system handles terminals properly if terminal symbols are only inserted
in non-empty contexts containing non-terminals and never get deleted.

An insertion rule of the form (u, η, v)ins means that the string η is inserted
between u and v and it corresponds to the rewriting rule uv → uηv. Similarly, a
deletion rule of the form (u, δ, v)del means that the string δ is deleted between
u and v and this corresponds to the rewriting rule uδv → uv. The pair (u, v) is
called the context, η is called the insertion string, δ is called the deletion string
and x ∈ A is called an axiom. A rule of the form l : (i, r, j), where l ∈ H is the
label associated to the rule, denotes that the string is sent from component i
(for short denoted as Ci) to Cj after the application of the insertion or deletion
rule r on the string. If the initial component itself is the final component, then
we call the system to be a returning GCID system.
A graph-controlled ins-del system Π is said to be of size (k;n, i′, i′′;m, j′, j′′) if

k is the number of components
n = max{|η| : (i, (u, η, v)ins, j) ∈ R} m = max{|δ| : (i, (u, δ, v)del, j) ∈ R}
i′ = max{|u| : (i, (u, η, v)ins, j) ∈ R} j′ = max{|u| : (i, (u, δ, v)del, j) ∈ R}
i′′ = max{|v| : (i, (u, η, v)ins, j) ∈ R} j′′ = max{|v| : (i, (u, δ, v)del, j) ∈ R}

1 In [12], L was called L∗, which we avoid due to possible confusions with our Kleene
closure operator notation.

Graph-Controlled Insertion-Deletion Systems 131

In general, we follow the convention to use rule label names that are carrying
some meaning as follows. For instance, if we like to describe the simulation of a
rule p, then this is usually done by several rules in several components, so that
pi.j would refer to the jth simulation rule in component Ci. The underlying
control graph of a k-GCID system Π is defined to be a graph with k nodes
labelled C1 through Ck. There exists a directed edge from Ci to Cj if and only
if there exists a rule of the form (i, r, j) in R of Π. We also associate a simple
undirected graph on k nodes to a GCID system of k components as follows: There
is an undirected edge from a node Ci to Cj (i �= j) if and only if there exists
a rule of the form (i, r1, j) or (j, r2, i) in R of Π. If this underlying undirected
simple graph is a tree structure, then we call a returning GCID system tree-
structured. The language class generated by returning GCID systems of size s is
denoted by GCID(s).

We assume the following normal form for linear grammars: p : X → aY ,
q : X → Y a and h : Z → λ where X, Y, Z ∈ N , a ∈ T as in [2–4]. We also
call a returning GCID system simple-deleting if it contains one rule of the form
h1.1 : (1, (λ,Z, λ)del, 1) intended to simulate h : Z → λ and that this rule is
always the last to be applied in order to obtain a terminal string. For simplicity,
we will denote the class of simple-deleting GCID systems (of size s), as well as the
corresponding language family, by GCIDSD(s). Moreover, we use the subscript
SDT if we want to emphasize that the control graph is tree-structured. With
these notations, we rephrase the previous LIN results of [2–4] as follows, omitting
the situation when even RE could be characterized.

Proposition 1. LIN�GCIDSD(3; 1, 1, 0; 1, 0, 0) ∩ GCIDSD(3; 1, 0, 1; 1, 0, 0) and
LIN � GCIDSDT (3; 2, 1, 0; 1, 0, 0) ∩ GCIDSDT (3; 2, 0, 1; 1, 0, 0).

3 Properties of Closure Classes

In this section, we show some auxiliary results needed to describe the closure
classes by GCID system and then provide a characterization of the rational
closure of LIN which follows directly from a normal form representation for
regular expressions which states that each regular expression can be expressed
as finite union of union-free expressions; see [13, Theorem 2].

Proposition 2. The language classes L∗(LIN), L◦(LIN), L ∪ LR, 2-LIN and
Lreg(LIN) are all closed under reversal, but L and LR are not.

Proof. The positive closure properties follow in a straightforward inductive way
from what is known about LIN and some algebraic identities.

Suppose L is closed under reversal. Then (L∗
1L2)R = L∗

3L4 for some linear
languages L3, L4 in particular if L1 = {anbn | n ≥ 1} and L2 = {cmdm |
m ≥ 1}. Clearly, (L∗

1L2)R is not a linear language. Discuss some djw ∈ L3,
where w does not start with d. If w �= λ, then (djw)2 ∈ L3 is not a prefix of
any word in (L∗

1L2)R. Hence, L3 ⊆ {d}∗. Consider again dj ∈ L3 with j > 0.
Then, cjbrar ∈ L4 for some r ≥ 0. But then, also (dj)2cjbrar ∈ L∗

3L4, but
(dj)2cjbrar /∈ (L∗

1L2)R, contradicting our assumption. �

132 H. Fernau et al.

Proposition 3 [12]. The following inclusions are true. Moreover, all are strict.

(i) LIN � L∗(LIN) � L ∪ LR
� Lreg(LIN) � CF.

(ii) LIN � 2-LIN � L◦(LIN) � Lreg(LIN).

Proposition 4 [12]. The following pairs of language classes are incomparable.
(i) 2-LIN and L∗(LIN), (ii) 2-LIN and L ∪LR, (iii) L◦(LIN) and L∗(LIN), (iv)
L◦(LIN) and L ∪ LR.

LIN

2-LIN L∗(LIN)

L◦(LIN) ∪ R

SMLIN MSLIN

Lreg(LIN)

CF The inter-relationship between the closure
classes of LIN stated in Propositions 3 and 4 is
shown on the left. A (path of) solid arrow from
A to B indicates A � B and no arrowed path
between A and B tells that A and B are incom-
parable. We also add MSLIN = L◦(L∗(LIN))
and SMLIN = L∗(L◦(LIN)).
The following proposition follows directly from
Theorem 2 of [13].

Proposition 5. Let L ⊆ T ∗. Then L ∈
Lreg(LIN) if and only if L is the finite union
of languages from L◦,∗(LIN).

Let us now consider a small example that illustrates this proposition. Con-
sider the language L described as follows.

L = (L′
1(L

′
2 ∪ (L′

3)
∗)(L′

1 ∪ L′
2)L

′
3)

∗

for linear languages L′
1, L

′
2, L

′
3 ⊆ T ∗. Then, we find the following representation:

L = ((L′
1L

′
2L

′
1L

′
3)

∗ ◦ (L′
1L

′
2L

′
2L

′
3)

∗ ◦ (L′
1(L

′
3)

∗L′
1L

′
3)

∗ ◦ (L′
1(L

′
3)

∗L′
2L

′
3)

∗)∗. (1)

Due to the previous proposition, we can focus now on expressions that have
only concatenation and Kleene star as operations and whose basic elements are
linear languages. Recall the well-known equivalence between expressions and
(expression) trees about which we talk in the following. So, the term subexpres-
sion corresponds to a subtree. In this sense, leaf labels can be subexpressions.
Also, we consider Kleene star as a unary operation, but concatenation can take
any arity of at least two. This allows us to assume that stars and concatenation
always alternate on any path in the expression tree.

In order to describe our grammar constructions that show how to generate
all languages from the regular closure of LIN by appropriate GCID systems,
we need to specify which of the linear grammars (associated to the leaves of
the expression trees) should be simulated ‘next’, i.e., after finishing with the
simulation of the ‘current’ grammar. This is formalized in the following with the
notion of continuation points, reminiscent of the Glushkov transformation [7].

Assume that t is an expression tree with inner nodes labeled ∗ or ◦, and the
leaves be labeled with numbers from [1 . . . k]. For i ∈ [1 . . . k], we define the set of

Graph-Controlled Insertion-Deletion Systems 133

L′
1 L′

2 L′
1 L′

3

◦

∗

L′
1 L′

2 L′
2 L′

3

◦

∗

L′
1 ∗

L′
3

L′
1 L′

3

◦

∗

L′
1 ∗

L′
3

L′
2 L′

3

◦

∗

◦

∗

Fig. 1. The expression tree of our example; dotted lines indicate continuation points
by joining leaves i and j if j ∈ cont(i), suppressing the direction information.

continuation points cont(i) ⊆ [1 . . . k+1] as follows. Here, let subex(i) denote the
smallest subexpression to which i belongs, and r(i) be the root label of subex(i).
Moreover, range(i) be the subinterval of [1 . . . k] that spans from the first to
the last leaf label of subex(i). Slightly abusing notation, we also write range(n)
for the subinterval of [1 . . . k] that spans from the first to the last leaf label of
the subexpression rooted at some inner node n. Hence, subex(i) = subex(r(i)).
Inductively, we set subex1(i) = subex(i), r1(i) = r(i) and range1(i) = range(i),
as well as rj(i) = p(rj−1(i)), where p is the parent function, subexj(i) is the
subexpression rooted at rj(i), and rangej(i) be the subinterval of [1 . . . k] that
spans from the first to the last leaf label of subexj(i). We refer to j also as the
level. Clearly, at some point p(rj−1(i)) is no longer defined, as specified by the
height h(i). In the following, let j ≤ h(i).

– If rj(i) = ∗ and i = max(rangej(i)), then min(rangej(i)) belongs to cont(i).
Moreover, if j = h(i), we include max(rangej(i))+1 = k+1 as a continuation
point.

– If rj(i) = ◦ and i < max(rangej(i)) and either (a) j = 1 or (b) rj−1(i) = ∗
and i = max(rangej−1(i)), then let s1, . . . , sq be all the right siblings of (a) i
or (b) the root of subexj−1(i), respectively, such that the labels of s1, . . . , sq
are all ∗ but that of sq, which is ◦, or sq is a leaf; then, min(range(so)) belongs
to cont(i) for all 1 ≤ o ≤ q. As a special case, if there is no sq with label
◦ (because all right siblings carry stars), then we have to continue from the
beginning, with the left siblings, again from left to right, until we hit the first
s′
q with label ◦.

Look again at our example to illustrate this definition, calling the 16 linear
languages occurring in the leaves of the expression in Eq. (1) as L1, . . . , L16 from
left to right, also cf. Fig. 1. The following table lists the continuation points.

134 H. Fernau et al.

i = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cont(i) 2 3 4 1, 5, 9, 13 6 7 8 1, 5, 9, 13 10, 11 11 12 1, 5, 9, 13 14, 15 15 16 1, 5, 9, 13, 17

For instance, for i = 1, we have r1(1) = ◦, as the parent operation of L1 = L′
1 is

concatenation, r2(1) = ∗, as the subexpression L1L2L3L4 is starred, r3(1) = ◦
and r4(1) = ∗, with h(1) = 4. Moreover, range1(1) = [1 . . . 1], range2(1) =
[1 . . . 4], range3(1) = [1 . . . 4] and range4(1) = [1 . . . 16]. For the computation
of the continuation points, only r1(1) = ◦ is important and yields 2. The case
i = 4 is more interesting. Again, we have r1(4) = ◦, r2(4) = ∗, r3(4) = ◦ and
r4(4) = ∗, with h(4) = 4. However, the level j = 1 is no longer of interest, rather
j = 2, which puts 1 = min(range2(4)) into cont(4). Moreover, considering the
level j = 3, we get the first elements of the range of the siblings into the set of
continuation points, which is 5 = min(range(p(p(5)))), as p(p(5)) describes the
right sibling of p(p(4)), 9 = min(range(p(p(9)))), as p(p(9)) describes the right
sibling of p(p(5)), as well as 13. The next interesting case happens if i = 8, as
we now have to continue looking at siblings from the beginning. Finally, with
i = 9, we see something interesting with j = 1, as now the starred subexpression
L∗
10 = (L′

3)
∗ that follows L9 = L′

1 can be skipped.

Proposition 6. Let L ⊆ T ∗. If L ∈ L∗,◦(LIN), given by some expression tree t,
then there is a context-free grammar G = (N,T, S′

1, P) with L(G) = L, together
with some integer k ≥ 1 counting the leaves of t, satisfying the following:

– N is partitioned into N0, N1, . . . , Nk, where for each i = 1, . . . , k, Si ∈ Ni;
– N0 = {S′

1, S
′
2, S

′
3, . . . , S

′
k, S

′
k+1};

– P can be partitioned into P0, P1, . . . , Pk such that Gi = (Ni, T, Si, Pi) forms
a linear grammar for each i = 1, . . . , k;

– P0 = {S′
i → SiS

′
c | c ∈ cont(i)} ∪ {S′

k+1 → λ}.
If the continuation points satisfy cont(i) = {i + 1} for all 1 ≤ i ≤ k, then this
gives a characterization of the language class L◦(LIN).
In order to simplify some of our main results in the following sections, the

following observations from [4] are helpful.

Proposition 7. [4]. Let L be a language class that is closed under reversal and
k, n, i′, i′′,m, j, j′′ be non-negative integers. The following statements are true.

1. GCID(k;n, i′, i′′;m, j′, j′′) = [GCID(k;n, i′′, i′;m, j′′, j′)]R

2. L ⊆ GCID(k;n, i′, i′′;m, j′, j′′) iff L ⊆ GCID(k;n, i′′, i′;m, j′′, j′)

4 Describing Closure Classes of Linear Languages

Initially, our main objective was to find how much beyond LIN GCID systems (of
the four sizes stated in Proposition 1) can lead us. However, we then succeeded to
provide a general result showing that if there exists GCIDSD(T) systems of ID size
(n, i′, i′′;m, j′j′′) describing LIN, then these constructions can be extended to
GCIDSD(T) systems of the same ID size at the expense of two more components

Graph-Controlled Insertion-Deletion Systems 135

to describe Lreg(LIN). Unfortunately, we were not able to describe even CF with
GCID systems of these four sizes and this question is left open to the reader.

Describing Lreg(LIN) by GCID systems is rather an immediate consequence
of Proposition 6. Here, we slightly extend the notion cont(i) once more to the
case when i = 0. This is somehow interesting when rh(1)(1) = ∗ and allows to
skip, for instance, to the position k + 1 to easily incorporate the empty word.

Theorem 1. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1,
if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) for X ∈ {SD,SDT}, then Lreg(LIN) ⊆
GCIDX(t + 2;n, i′, i′′;m, j′, j′′).

Proof. Let L ∈ L∪,◦,∗(LIN) for some L ⊆ T ∗. By Proposition 5, we can assume
that L is the finite union of k languages from L◦,∗(LIN). We first show how
to simulate context-free grammars that are given as in Proposition 6, using
GCIDX(t + 2;n, i′, i′′;m, j′, j′′) for languages from L◦,∗(LIN). By using disjoint
nonterminal alphabets, we get a GCID system for the finite union of such lan-
guages, as well, because we can assume that the constituent systems handle
terminals properly.

Since LIN ⊆ GCIDSD(T)(t;n, i′, i′′;m, j′, j′′), each Gi can be simulated by
a simple-deleting GCID system Πi = (t, Vi, T, {Si},Hi, 1, 1, Ri) for 1 ≤ i ≤ k,
each of size (t;n, i′, i′′;m, j′, j′′). We assume, without loss of generality, that
Vi ∩ Vj = T if 1 ≤ i < j ≤ k. Let us first consider the case i′ ≥ 1 and i′′ = 0.
We construct a GCID system Π for G as follows: Π = (t + 2, V, T, {S0S

′
c | c ∈

cont(0)},H ∪ H ′, 1, 1, (R \ R̂) ∪ R′ ∪ R′′), where

– V =

(
k⋃

i=1

Vi

)

∪ {S0, S
′
1, . . . , S

′
k+1}

– H ′ =
k⋃

i=1

{ri(t + 1).1, ri(t + 1).2, ri(t + 2).1} ∪ {rk+1(t + 1).1}

– H =
k⋃

i=1

Hi; R =
k⋃

i=1

Ri; R̂ =
k⋃

i=1

{hi1.1 : (1, (λ,Xi, λ)del, 1)};

– R′ =
k⋃

i=0

{hi1.1 : (1, (λ,Xi, λ)del, t + 1) | Xi → λ ∈ Pi ∨ X0 = S0}
– R′′ is the set with the following rules: for each 1 ≤ i ≤ k and c ∈ cont(i),

ri(t + 1).1 : (t + 1, (S′
i, Si, λ)ins, t + 2),

ri(t + 1).(c + 1) : (t + 1, (Si, S
′
c, λ)ins, 1)

ri(t + 2).1 : (t + 2, (λ, S′
i, λ)del, t + 1);

Further, rk+1(t + 1).1 : (t + 1, (λ, S′
k+1, λ)del, 1)

Since Li = L(Gi) is generated by Πi, respectively, for 1 ≤ i ≤ k, the linear
rules of Πi are simulated by rules of Ri in the first t components and there is
no interference between rules of different systems Πi and Πj , since Vi ∩ Vj = T
if 1 ≤ i < j ≤ k.

136 H. Fernau et al.

We start with the axiom S0S
′
c for some c ∈ cont(0). S0 is deleted and in

C(t + 1) and C(t + 2), a simulation of Gc is initiated: (S0S
′
c)1 ⇒ (S′

c)t+1 ⇒
(S′

cSc)t+2 ⇒ (Sc)t+1 ⇒ (ScS
′
d)1 for some d ∈ cont(c). Now, a string w1 ∈ Lc is

produced by simulating Gc in the first t components of the system Π. In general,
the simulation goes from left to right. When the string wc ∈ Lc is produced, the
terminating rule of Lc, namely hc.1, takes the string to component t + 1, where
we either arrive in configuration (wcS

′
d)t+1, and the simulation continues with

producing a word according to Gd etc. The whole process ends on applying the
rule rk+1(t+1).1 : (t+1, (λ, S′

k+1, λ)del, 1), which deletes the nonterminal S′
k+1.

Conversely, any derivation within Π can be split into phases, where each
linear phase starts and ends in the first component with a string that starts
with a terminal string, followed by SiS

′
c for some c ∈ cont(i) in the beginning,

and by some XivS′
c in the end of this phase, where v is some terminal string. Now,

on applying hi1.1, Xi gets deleted and the transition phase is initiated, moving
a string starting with a terminal string and ending with some S′

c into C(t + 1).
Now, apart from the special case when S′

k+1 is the last symbol of the string, by
applying rules from C(t + 1) or C(t + 2), some string is moved back to C1 that
satisfies the conditions expressed as the beginning of a linear phase. It is now
clearly seen that this alternation of linear and transition phases corresponds to
generating words from L from left to right, following some concrete instantiation
of the expression tree. The case when i′ = 0 and i′′ ≥ 1 follows from Propositions
2 and 7. �

5 Reducing Components for Certain Closure Classes

In this section, we show that with GCID systems of ID size s and t+1 components
we can describe L2

∗(LIN) := {M1M2 : M1,M2 ∈ L∗(LIN)}. Hence, L2
∗(LIN) =

2-LIN ∪ (L ∪ LR) ∪ {L∗
1L

∗
2 : L1, L2 ∈ LIN}. We prove the next theorem by

providing three different simulations of its three subsets stated above, in the
subsequent theorems.

Theorem 2. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a
simple-deleting simulation, then L2

∗(LIN) ∈ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

Theorem 3. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a
simple-deleting simulation, then 2-LIN ⊆ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

Proof. Let G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be linear grammars
of L1 and L2, respectively, with N1 ∩ N2 = ∅ and whose rules are of the
form pi : Xi → aYi, qi : Xi → Yia and hi : Xi → λ, with Xi, Yi ∈ Ni

for = 1, 2. Since LIN ⊆ GCIDSD(t;n, i′, i′′;m, j′, j′′), each of the rule types
pi, qi, hi can be simulated by rules of a simple-deleting GCID system Πi =
(t, Vi, T, {Si},Hi, 1, 1, Ri) for i = 1, 2, each of size (t;n, i′, i′′;m, j′, j′′). Hence,
the hi rule type is simulated by the GCID rules hi1.1 : (1, (λ,Xi, λ)del, 1). First,

Graph-Controlled Insertion-Deletion Systems 137

consider the case when i′ ≥ 1 and i′′ = 0. We construct a GCID system
Π3 = (t + 1, V1 ∪ V2 ∪ {#}, T, {λ, S1#},H1 ∪ H2 ∪ {r1.1, r(t + 1).1}, 1, 1, R)
for L(G1)L(G2), with R = ((R1 ∪ R2) \ {h11.1 : (1, (λ,X1, λ)del, 1)}) ∪ R′,
where R′ has the following three rules: (i) h11.1 : (1, (λ,X1, λ)del, t + 1), (ii)
r(t + 1).1 : (t + 1, (#, S2, λ)ins, 1), (iii) r1.1 : (1, (λ,#, λ)del, 1).

Starting with the axiom S1# and using rules of R1, a string w1 ∈ L1 is
produced first with being the last rule applied is h11.1. This leads to w1# in
C(t+1). The only rule in C(t+1) is applied which inserts S2 after # and moves
back to C1. Continuing with w1#S2, w2 ∈ L(G2) is generated reaching to the
configuration (w1#w2)1 where # is deleted by r1.1. If r1.1 is applied before
h11.1, then the string is stuck at C(t + 1) which is not the target component.

Since 2-LIN is closed under reversal (due to Proposition 2), the case when
i′ = 0, i′′ ≥ 1 follows from Proposition 7. �

Theorem 4. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown by a
simple-deleting simulation, then L ∪ LR ⊆ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

Proof. Let G1 = (N1, T, S1, P1) and G2 = (N2, T, S2, P2) be linear grammars
of L1 and L2, respectively, with N1 ∩ N2 = ∅. Let i′ ≥ 1, i′′ = 0 and we will
now show L ⊆ GCIDSD(t + 1;n, i′, i′′;m, j′, j′′). We construct a GCID system
Π4 = (t+1, V1 ∪V2 ∪{#}, T, {λ,#S2},H1 ∪H2 ∪{r(t+1).1, r(t+1).2}, 1, 1, R)
for (L(G1))∗L(G2), with R = ((R1 ∪ R2) \ {h11.1 : (1, (λ,X1, λ)del, 1), h21.1 :
(1, (λ,X2, λ)del, 1)}) ∪ R′, where R′ has the following rules.

h11.1 : (1, (λ,X1, λ)del, t + 1) h21.1 : (1, (λ,X2, λ)del, t + 1)
r(t + 1).1 : (t + 1, (#, S1, λ)ins, 1) r(t + 1).2 : (t + 1, (λ,#, λ)del, 1)

If we start with the axiom #S2, w2 ∈ L2 is produced and #w2 moves to C(t+1).
The rules in C(t+1) initiate the simulation of the rules of G1 by inserting S1 after
and thereafter continuing with #S1w2 from C1, the configuration (#w1w2)t+1

is reached, with w1 ∈ L∗
1 and w2 ∈ L2. Now if r(t+1).1 is applied, the simulation

of G1 is restarted, and after generating w1 ∈ L(G1) for desired number of times,
the whole derivation stops. With this observation, we conclude that Π4 generates
(L(G1))∗L(G2) ∈ L .

Consider the case when i′ = 1, but we want to prove the inclusion for LR.
We aim at constructing a GCID system Π ′

4 for L2L
∗
1. The simulation is identical

to the one just presented except for the axiom, which is S2# now.
The case when i′ = 0 and i′′ ≥ 1 follows from the fact that L ∪LR is closed

under reversal and by Propositions 2 and 7. �

Theorem 5. For all integers t, n,m ≥ 1 and i′, i′′, j′, j′′ ≥ 0 with i′ + i′′ ≥ 1
and X ∈ {SD,SDT}, if L1, L2 ∈ LIN ⊆ GCIDX(t;n, i′, i′′;m, j′, j′′) was shown
by a simple-deleting simulation, then L∗

1L
∗
2 ∈ GCIDX(t + 1;n, i′, i′′;m, j′, j′′).

The following proof is a simple extension of Theorem 4. Hence, we give the
simulating rules and refrain from explaining the working.

138 H. Fernau et al.

Proof. For i′ ≥ 1 and i′′ = 0, we construct a GCID system Π3 = (t + 1, V1 ∪
V2∪{#1,#2}, T, {#1#2},H ∪{r1(t+1).1, r2(t+1).1, s1(t+1).1, s2(t+1).1}, t+
1, t + 1, (R \ R̂) ∪ R′ ∪ R′′) such that L(Π3) = L∗

1L
∗
2, where

– R̂ = {h11.1 : (1, (λ,X1, λ)del, 1), h21.1 : (1, (λ,X2, λ)del, 1)};
– R′ = {h11.1 : (1, (λ,X1, λ)del, t + 1), h21.1 : (1, (λ,X2, λ)del, t + 1)};

– R′′ is the set of the following four rules:

r1(t + 1).1 : (t + 1, (#1, S1, λ)ins, 1) r2(t + 1).1 : (t + 1, (#2, S2, λ)ins, 1)
s1(t + 1).1 : (t + 1, (λ,#1, λ)del, t + 1) s2(t + 1).1 : (t + 1, (λ,#2, λ)del, t + 1)

The case when i′ = 0 and i′′ ≥ 1 follows from Propositions 2 and 7. �
Remark 1. The proof of Theorem 5 can be extended to describe {L∗

1L
∗
2 . . . L∗

k :
Li ∈ LIN for 1 ≤ i ≤ k}. Consider the GCID system Π ′ as in Theorem 5 with
alphabet and label set extended from 2 to k. Let axiom be #1#2 . . . #k. The rules
of R̂, R′ ∈ Π3 are similarly extended to k rules and there are 2k rules in R′′. This
shows that L∗

1L
∗
2 . . . L∗

k ∈ GCID(t + 1;n, i′, i′′;m, j′, j′′) under the assumptions
of Theorem 5. Since there is no control on the number of applications of the rule
ri(t + 1).1 : (t + 1, (#i, Si, λ)ins, 1), we cannot enforce it to be applied exactly
once; hence L1L2 or L∗

1L2 or L1L
∗
2 alone cannot be produced this way.

Remark 2. By Proposition 1, LIN � GCID(4; 1, 1, 1; 1, 0, 0) and by Theorem 2,
L2

∗(LIN) � GCID(5; 1, 1, 1; 1, 0, 0). By [4], RE = GCID(5; 1, 1, 1; 1, 0, 0). This
opens the quest to prove computational incompleteness results, similarly to the
conjecture of Ivanov and Verlan [9] which states that RE �= GCID(s) if k = 2 in
s = (k; 1, i′, i′′; 1, j′, j′′), with i′, i′′, j′, j′′ ∈ {0, 1} and i′ + i′′ + j′ + j′′ ≤ 3.

6 Summary and Future Challenges

Up to the present, most of the research on the descriptional complexity of (graph-
controlled) insertion-deletion systems was about the limits to the resources so
that we can still show that such systems are able to describe all recursively enu-
merable languages. Although we do not have a proof showing that the borderline
that we reached is optimal, it might be an idea to look into smaller language
classes now. One natural question would be to see with which resources we can
still describe all context-free languages. While all results collected in this paper
show, in particular, that all linear languages can be described by the correspond-
ing resources, we put it up as a challenge to come up with non-trivial simulations
of context-free grammars.

In this paper, we tried to bridge between linear and context-free languages as
best as possible. Our main technical contribution is to describe these simulations
in quite a general fashion, so that we can save giving similar simulations for each
specific case of sizes of the systems.

Acknowledgments. Some part of the work done by the second author was during
the author’s visits to University of Trier, Germany in June-July and December 2016.
The possibility to use some overhead money from a DFG grant to support this stay is
gratefully acknowledged.

Graph-Controlled Insertion-Deletion Systems 139

References

1. Benne, R. (ed.): RNA Editing: The Alteration of Protein Coding Sequences of
RNA. Series in Molecular Biology. Ellis Horwood, Chichester (1993)

2. Fernau, H., Kuppusamy, L., Raman, I.: Descriptional complexity of graph-
controlled insertion-deletion systems. In: Câmpeanu, C., Manea, F., Shallit, J.
(eds.) DCFS 2016. LNCS, vol. 9777, pp. 111–125. Springer, Cham (2016). doi:10.
1007/978-3-319-41114-9 9

3. Fernau, H., Kuppusamy, L., Raman, I.: Generative power of graph-controlled
insertion-deletion systems with small sizes. J. Automata Lang. Comb. (2017)

4. Fernau, H., Kuppusamy, L., Raman, I.: On the computational completeness of
graph-controlled insertion-deletion systems with binary sizes. Theoret. Comput.
Sci. (2017). doi:http://dx.doi.org/10.1016/j.tcs.2017.01.019

5. Freund, R., Kogler, M., Rogozhin, Y., Verlan, S.: Graph-controlled insertion-
deletion systems. In: McQuillan, I., Pighizzini, G. (eds.) Proceedings of Twelfth
Annual Workshop on Descriptional Complexity of Formal Systems, DCFS, EPTCS,
vol. 31, pp. 88–98 (2010)

6. Galiukschov, B.S.: Semicontextual grammars (in Russian). Mat. Logica i Mat.
Ling., Kalinin Univ. 38–50 (1981)

7. Glushkov, V.M.: The abstract theory of automata (in Russian). Russ. Math. Surv.
16, 1–53 (1961)

8. Haussler, D.: Insertion languages. Inf. Sci. 31(1), 77–89 (1983)
9. Ivanov, S., Verlan, S.: About one-sided one-symbol insertion-deletion P systems. In:

Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G., Salomaa,
A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 225–237. Springer, Heidelberg (2014).
doi:10.1007/978-3-642-54239-8 16

10. Kari, L.: On insertion and deletion in formal languages. Ph.D. thesis, University
of Turku, Finland (1991)

11. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

12. Kutrib, M., Malcher, A.: Finite turns and the regular closure of linear context-free
languages. Discrete Appl. Math. 155(16), 2152–2164 (2007)

13. Nagy, B.: A normal form for regular expressions. In: Calude, C.S., Calude, E.,
Dinneen, M.J. (eds.) Supplemental Papers for DLT 2004, CDMTCS, vol. 252,
University of Auckland, New Zealand, Centre for Discrete Mathematics and The-
oretical Computer Science (2004)

14. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Para-
digms. Springer, Heidelberg (1998)

15. Verlan, S.: Recent developments on insertion-deletion systems. Comput. Sci. J.
Moldova 18(2), 210–245 (2010)

http://dx.doi.org/10.1007/978-3-319-41114-9_9
http://dx.doi.org/10.1007/978-3-319-41114-9_9
http://dx.doi.org/10.1016/j.tcs.2017.01.019
http://dx.doi.org/10.1007/978-3-642-54239-8_16

	Graph-Controlled Insertion-Deletion Systems Generating Language Classes Beyond Linearity
	1 Introduction
	2 Preliminaries
	2.1 Graph-Controlled Insertion-Deletion Systems

	3 Properties of Closure Classes
	4 Describing Closure Classes of Linear Languages
	5 Reducing Components for Certain Closure Classes
	6 Summary and Future Challenges
	References

