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Abstract: In the grid environment, some of the nodes may be working while 
others may not be active. Alternatively, all the computers could be operational, 
but their interconnection network may fail. From the perspective of one 
computer, such network partitioning may appear as a failure to other 
computers. These types of failures may lead to a major impact on the whole 
application, which is executing on the Grid for many days. In this paper we 
will be meta-modelling the computational grid and implementing the fault 
tolerant mechanism using Java agents. The purpose of the work proposed in 
this paper is to automate the development of a computational grid and  
creating graphical workflows of applications using domain-specific modelling 
techniques. This paper is to provide a high level view for the construction of 
Grid applications with the flexibility in design and deployment. 
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1 Introduction 

Grid computing emerges as a distributed infrastructure for large-scale data processing 
and scientific computing. One of the objectives of computational grids is to offer 
applications the collective computational power of distributed but typically shared 
heterogeneous resources. Unfortunately, efficiently harnessing the performance potential 
of such systems (i.e., how and where applications should execute on the grid) and 
successfully executing the applications without any failures are the challenges principally 
to the distributed, shared and heterogeneous nature of the resources involved. The 
essence of a Grid can be represented by a checklist proposed by Foster (2006): 

1 a grid coordinates resources that are not subject to centralised control 

2 a grid uses open, standard protocols and interfaces 

3 a grid is able to deliver non-trivial qualities of service. 

This checklist acts as an informal definition of ‘grid’ and a system that is called a grid 
must fulfil these requirements. Grid applications require lot of computation power and 
will perform long tasks which may run for many days or months on different boundaries 
and heterogeneous nodes require powerful mechanism to handle failures (Naveed, 2006). 
Failures may occur due to various reasons such as dynamic nature, heterogeneous nodes, 
network QoS, accidentally user shutdowns node and physical damage. These are some of 
the problems arises in grid environments. Detecting the root cause of these problems in a 
massive environment is very difficult (Schmidt, 2003). Due to the diverse faults and 
failure conditions, developing, deploying and executing long running applications over 
the grid remains a challenge. So fault tolerance is an essential factor for grid computing. 

Fault tolerance (Siva Sathya et al., 2007) is the ability to preserve the delivery of 
expected services despite the presence of fault caused errors within the system itself. It 
aims at the avoidance of failures in the presence of faults. A fault tolerant service detects 
errors and recovers from them without participation of any external agents, such as 
humans. 

This paper focuses on modelling the computational grid, interpret them and add 
agents to the existing workflow for fault diagnosis and make the precautionary measure. 
The exact problem which we are considering in our paper is partial failures – the failure 
of apart, but not all, of the system. The grid computing infrastructure is designed and 
implemented using meta-modelling approach, which is mainly concerned with fault 
tolerance by using job replication. We mainly considered three types of failures node 
operating system and network. We will first model the grid computing architecture using 
GME and identify the fault prone areas and apply the necessary mechanism like  
check-pointing and mostly replication mechanism wherever necessary. 

When designing fault tolerant systems, we have assumed that hardware or software 
components may fail. Faults in embedded software in computational Grid are commonly 
caused by deviations from specification of the supporting platforms or programming 
errors. Fault tolerance is a technique that attempts to neutralise the potential faults to 
avoid system failures, by incorporating redundancy in system components. Blindly 
duplicating all components that may fail in the implementation platform is clearly an 
inefficient solution in a computational grid. By monitoring the node status using agents 
for each node we can load the executing application to another available node in the grid 
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environment. In this way we can identify node failure and can do recovery process by 
migrating application transparently to another node. 

When all the nodes in the grid environment are busy, then agent will fail to locate the 
available node with the suitable resources to execute the application. We assumed that 
there are no application or process failures when a application is loaded to get executed. 
Because processes usually fail by two reasons: 

1 Implementation errors (bugs): are caused by programming errors, such as a 
programme tries to access an absent vector position. Since the process cannot be 
recovered, the error has to return and taken care. 

2 Incidental errors (transient bugs): are typically related to execution environment 
conditions, such as hardware fault (e.g., transient devices faults), limit conditions 
(e.g., out of storage/memory, counter overflow), race conditions. 

We will be designing a agent-based approach to migrate the job which is executing on a 
node (going to failure) to another node which is available in the grid by using the fault 
tolerant workflow designed for computational grid in generic modelling environment 
(GME) which gives automatic code generation. 

The paper is organised in the following way. Section 2 deals about the related work 
in the computational grid. The proposed system architecture with the implementation are 
given in Sections 3 and 4 and conclusion and future work in Section 5. 

2 Related work 

There are lot more grid projects implemented today, with different objectives, 
implementation issues, target applications and computer infrastructure. Each of them has 
a particular manner to treat the occurrence of failures. 

A fault tolerance framework for grids is presented in Hwang and Kesselman (2003). 
It consists of failure detection service (FDS) and a failure handle service (Grid-WFS). 
The FDS enables the detection of both application crashes and user-defined exceptions. 
The Grid-WFS allows users to achieve failure recovery in a variety of ways, depending 
on requirements and constraints of their applications. It uses a workflow structure as a 
high-level recovery policy specification, which enables support for multiple failure 
recovery techniques and separating failure handling strategies from application code. 
FDS requires that the user explicitly registers the application in a heartbeat monitor, 
through an application programming interface (API) (Foster, 2005). Condor provides 
fault tolerance for grid applications through check pointing approach. To be executed 
with check-pointing support in the condor system, grid applications must be re-linked 
(but not re-compiled) to include the condor checkpoint library. This library allows condor 
fault tolerance mechanism to periodically capture the application checkpoint, and gives 
to programmes the ability to checkpoint itself at any moment. These checkpoints are 
stored with compression in a checkpoint server, i.e., a dedicated machine that stores all 
system checkpoints. 

Traditionally, software dependability has been achieved by fault avoidance 
techniques such as structured programming and software reuse in order to prevent faults, 
or fault removal techniques such as testing in order to detect and delete faults. However, 
in the case of grid computing, these approaches, although still very much useful, may not 
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be enough (Mincer-Daszkiewicz, 2006). Fault tolerance is an important property in grid 
computing as the dependability of individual grid resources may not be guaranteed. As 
resources are used outside of organisational boundaries, it becomes increasingly difficult 
to guarantee that a resource being used is not malicious in some way. In many cases, an 
organisation may send out jobs for remote execution on machines upon which trust 
cannot be placed; for example, the machines may be outside of its organisational 
boundaries, or may be desktop machines that many people have access to. 

A fault tolerant approach may therefore be useful in order to potentially prevent a 
malicious node affecting the overall performance of the application. As applications scale 
to take advantage of grid resources, their size and complexity will increase dramatically. 
However, experiences (Abawajy, 2004) tell that systems with complex asynchronous and 
interacting activities are very much prone to errors and failures due to their extreme 
complexity, and we simply cannot expect such applications to be fault free, no matter 
how much effort is invested in fault avoidance and fault removal. In fact, the likelihood 
of errors occurring may be exacerbated by the fact that many grid applications will 
perform long tasks that may require several days of computation (de Camargo et al., 
2004). Hence, the cost and difficulty of recovering from faults in grid applications is 
higher than that of normal applications. Furthermore, the heterogeneous nature of grid 
nodes means that many grid applications will be functioning in environments where 
interaction faults are more likely to occur between disparate grid nodes. The 
heterogeneous architectures and operating system platforms (Fukuda and Smith, 2006), 
give rise to a number of problems that are not present in the traditional homogeneous 
systems. 

The complexity of both 

a varying architectural features, such as data representation and instruction sets 

b varying operating system features, such as process management and communication 
interfaces, must be masked from the application programmer. 

If no fault tolerance is provided, the system cannot survive to continue when one or 
several processes fail, and the whole programme crashes. In this sense, a technique is 
needed that would enable a system to perform fault tolerant procedures that can continue 
to execute even in the presence of a fault. Since the primary purpose of grids is to 
provide computational power to scientists, the intended application developer is a domain 
expert, typically a physicist, a biologist or a meteorologist, not necessarily a grid expert 
(Gupta et al., 2001). So, most application developers are unaware of the different types of 
failures that may occur in the grid environment and hence, fault tolerance becomes 
increasingly important. Our paper mainly concentrates on the identifying the architectural 
features and the operating system features and failures involved in it and provide the 
precautionary measure. This meta-modelling approach mainly concentrates on 
identifying the root cause of the failure which is the biggest challenge in the 
heterogeneous grid environment. 

 

 

 



   

 

   

   
 

   

   

 

   

    Implementation of the fault tolerance in computational grid  5    
 

 

    

 

 

   

   
 

   

   

 

   

       
 

3 Proposed system 

The proposed system focuses on three research issues such as: 

1 The creation of a meta-model that maps the computational grid components to a 
graphical model. This meta-model defines the language used to construct workflow 
models. 

2 The generation of Java programmes from the graphical workflows. This is realised 
by using a model interpreter that traverses the graphical workflows and generates a 
programme that manages the application execution using GME. 

3 We will be introducing agents in the Java programmes which has been generated in 
the fault prone areas and making the precautionary measure before actually 
deploying in the grid computing environment. 

Two actions are necessary to create domain-specific models for the computational grid 

1 definition of the meta-model and defining the paradigm (language) to be used to 
create workflow models 

2 implementation of the interpreter that translates the workflow models into 
corresponding Java code. 

Both of these actions are implemented using GME. One of the advantages of using GME 
is that it allows a modeller to define base elements that can be reused in more complex 
models as shown in Figure 1. 

Figure 1 Proposed system architecture 
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Model integrated computing (MIC) facilitates model analysis and automatic programme 
synthesis by incorporating model integrated programme synthesis (MIPS) to transform a 
model in a specific domain to a physical artefact. More precisely, GME is a domain 
specific modelling tool that supports the MIC methodology and contains a MIPS 
environment for interpreting and generating physical artefacts of that model. GME uses 
the unified modelling language (UML) and the object constraint language (OCL) 
technologies to construct domain specific environments. 

GME uses UML class diagrams to compose domain specific environments. GME 
supports MIPS through the Builder Object Network version 2.0 (BON2). BON2 is a 
GME component interface used to transform models to physical artefacts. BON2 consists 
of software classes and interfaces to support the interpretation of a model. These classes 
and interfaces are automatically generated by GME, and most of them are independent of 
the specific domain (Sharma and Bawa, 2008). However, a domain specific interface is 
generated that allows traversal of objects in a specific domain. 

In a grid environment, workflow execution failure can occur for various reasons: the 
variation in the execution environment configuration, non-availability of required 
services or software components, overloaded resource conditions, system running out of 
memory, and faults in computational and network fabric components. Grid workflow 
management systems should be able to identify and handle failures and support reliable 
execution in the presence of concurrency and failures (Foster et al., 2004). So failure 
prone areas are identified and agents are deployed in that areas .We will be recovering 
from the failure by using the following: 

• retrying – stopped and started from scratch 

• check-pointing – repository the execution states and restores at point of failure 

• replication – simultaneously executing task on n different nodes 

• check-pointing and replication – this mechanism is highly required for high-end 
tasks. 

The overall design flow of a modelling environment for computational grid applications 
is presented in Figure 1. The flow begins with the designer constructing a visual 
application model for the computational grid paradigm. GME stores objects (nodes in the 
grid computing) in the model in a model database. The designer instantiates an 
interpreter from the GME user interface to initiate the model interpretation on objects in 
the model database. The graphical model is interpreted to generate a configuration file for 
the execution model (the run-time environment). The configuration file is used to 
generate and build the code for a complete executable model of the computational grid 
graph. 

3.1 The interactive meta-modelling workflow system 

In domain-specific modelling, a design engineer creates models for a specific domain 
using concepts and terminology from that domain (Bronevetsky et al., 2006). The domain 
specific models are developed by first creating a meta-model that specifies the ontology 
of the domain. The meta-model serves as a paradigm, or language, that defines the syntax 
and static semantics for models of that domain; the dynamic semantics are introduced by 
an interpreter that synthesises the models into different representations (Gioiosa et al., 
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2005) (e.g., XML configuration files or source code). The GME is a graphical tool  
that automates the creation of domain-specific models. The interactive work flow  
meta-modelling consists of five stages and the process involved in the system design is 
shown in Figure 2: 

Figure 2 Application development process flow 

 

3.1.1 Model building 

The step includes not only the software, but also a precise specification of the 
functionality it provides with all dependencies (hardware, software, version and other 
components .We model the complex system so that it helps in understanding and also 
simplifies the testing and maintenance of the computational grid. 

The model-driven architecture (MDA) has been proposed to promote the concept of a 
common stable meta-model, which is language-, platform- and vendor-neutral. The main 
idea is that even if the underlying infrastructure shifts over time, the meta-model remains 
stable, and the only changes are the tools to bridge the meta-model and infrastructure. 
Computational grid usually consists of number of computing elements. Each computing 
element consists of the hardware and software characteristics. 

The resource description of the computational grid consists of hardware and a 
software design. Figure 3 explains the meta-modelling characteristics involved in the 
hardware part of the computing element. The resources are scored based on the ranking. 
The ranking is done based on the processor, memory configurations and MTTF (mean 
time to failure). High priority jobs which are failed are given to the lower ranked 
resource. The meta-modelling design for the software of the computing element is also 
done similarly. The hardware and software design is done mainly to categorise the fault. 

Design of the software component of the computational grid that deals with  
meta-modelling is shown in Figure 4. By the design of the above two components we 
will be able to differentiate the software and hardware faults. 

The root cause of the failure can be clearly identified in the case of the hardware 
faults. The cluster design is constructed by the taking into account the above components. 
Figure 5 shows the meta-model construction of the cluster. We have taken to be cluster 
as we are grouping the resources in the computational grid by the characteristics of the 
hardware and software. Homogeneous resources are grouped into single cluster so that 
fault tolerance can be achieved to a certain extent especially at the hardware level. 
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Figure 3 Meta-modelling design for hardware of the computing element 

 

Figure 4 Meta-modelling design for software of the computing element 
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Figure 5 Meta-modelling design for cluster of the computational grid (see online version  
for colours) 

 

3.1.2 Model deployment and analysis 

Operations are the smallest element in the grid workflow. Based on the ‘problem 
description’ of the operation in the workflow, it picks up appropriate and available grid 
services, schedules the operations to the grid resources, execute the workflow operation, 
and collects the operation results. Then, operations are executed on the grid resources 
within the organisations. Each operation in a grid workflow corresponds to a 
computational operation and is usually carried out on an individual grid node. 

Figure 6 Modelling of the cluster after interpretation (see online version for colours) 
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Figure 7 Resources are sorted to the ranks (see online version for colours) 

 

The meta-modelling design is interpreted and 16 nodes are taken. In that 12 nodes are 
grouped together into the single cluster S and the other four nodes are put in the  
separate cluster H (Figure 6). Each resource consists of both hardware and software 
characteristics. The active nodes are highlighted (Figure 7) where the resources are ready 
to take up the jobs. 

The resources that are highlighted are ready to take up the jobs and the jobs will be 
allotted based on first come first serve basis. Resources are sorted in the descending order 
according to the ranks. The individual computing element analysis is given in Figure 8. 

Figure 8 Analysis of a computing element in the computational grid (see online version  
for colours) 
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3.1.3 Model analysis and identifying the failure prone areas 

The failure prone areas are identified using the producer and consumer agents. The 
broker agent plays a very vital role in achieving the above mentioned task. The joining 
entity here is a virtual organisation of the grid and objects refer to the nodes in the VO’s 
of the computational grid. A joining entity comprises one or more cooperating objects in 
the Java programming language that have just received a reference to the lookup service 
and are in the process of obtaining services from, and possibly exporting them to a node. 
An entity may be a discovery entity, a joining entity, or an entity that is already a 
member (Medeiros et al., 2003). A group is a logical name by which a Java node is 
identified. In its most basic form, a consumer decomposes a job into discrete tasks with a 
unique Agent ID (Figure 9). Each task represents one unit of work that may be performed 
in parallel with other units of work. Tasks are associated with objects written in the Java 
programming language ‘Java objects’ that can encapsulate both data and executable code 
required to complete the task. The consumer writes the tasks into a space, and asks to be 
notified when the task results are ready. Producer query the space to locate tasks that 
need to be worked on and get listed the Agent ID. Each producer takes one task at a time 
from the space and performs the task computation. When a producer completes a task, it 
writes a result back into the space, and attempts to take another task. The consumer side 
agents takes the results from the space, and reassembles them, if necessary, to complete 
the job. 

Whenever a consumer (user) wants to execute a job, he will put the job into broker 
(space) subdivided into small tasks. Like a service registration into Lookup registrar. The 
producers which get notification and see into space will take the tasks and execute them. 
Number of producers is the strength of the grid and its computation power. After 
execution completes, the results are written to space and if some more tasks are there, 
again producer will take and execute. The broker is a rich shared memory location which 
is capable of handling tasks and executed results. It will notify the results back to the 
consumer. 

The consumers perform computing tasks by first locating then using suitable services. 
A central issue in this system is how to find services. Java provides the lookup services 
typically by service type and/or service attributes. In this current system, when ever a 
service is registered in the LUS with a unique serviceID, a new agent is deployed with a 
unique AgentID (ID is created by combination of host address and system current time in 
milliseconds). So no other agent can have the same ID. The lookup service uses the 
required service interface and attributes during service matching in its lookup ( ) method. 
When connecting to the system, producers also need to locate lookup services, and then 
find brokers. By tracking the AgentID we will be easily find out the failure prone areas. 

3.1.4 Deploying agent and recovery mechanisms 

Computing processes may be thought of as a kind of multi-agent cooperation, in the 
sense that an individual or a group of grid workflow agents can be used to perform an 
operation in a workflow, and a workflow can be used to orchestrate or control the 
interactions between grid services or agents. Multiple grid services or agents working 
cooperatively may accomplish a particular part of the workflow process, such as fault 
tolerant issue. 
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For recovery mechanisms, we are planning to apply state or code migration. These 
refer code transfer or state transfer of the agent. The state migration is composed of more 
aspects. The state transfer of an agent consists of current execution point and the current 
data of the agent. 

Figure 9 Proposed pseudo code for creation of sample agent 

//Assigning a Unique random number for a creation of agent process  which is static     
Public static final long serialVersionUID = 4057062707324824434L; 
// Generating the unique Agent identifier  
public AgentIdentity() { 
if (ID == null) { 
originatorIP = java.net.InetAddress.getLocalHost().getHostAddress(); 
creationTime = System.currentTimeMillis(); 
ID = UuidFactory.generate();  
// A key will be generated and assigned  
}} 
// comparison of two agent ID’s for finding out either same agent or another agent-
AgentID Should be unique 
public boolean equals(Object o) { 
if (o instanceof AgentIdentity) { 
AgentIdentity cmp = (AgentIdentity) o; 
if (cmp.getOriginatorIP().equals(originatorIP)) { 
if (cmp.getCreationTime() == creationTime) { 
if (cmp.getID().equals(ID)) { 
return true; 
}}}} 
return false;} 
// splitting ID for comparision 
public AgentIdentity(String ID) { 
String[] parts = ID.split("\\|"); 
System.out.println(parts.length); 
if (parts.length != 3) 
throw new RuntimeException("AgentIdentity not in correct format"); 
originatorIP = parts[0]; 
creationTime = Long.parseLong(parts[1]); 
this.ID = UuidFactory.create(parts[2]); 
}} 
// finding which machine has deployed the agent 
public String getOriginatorIP() { 
return originatorIP; 
} 
public int hashCode() { 
return originatorIP.hashCode() + ID.hashCode();   
} 

 

3.1.5 Model execution using Java interpreter 

After the workflow is specified, a model interpreter traverses the internal representation 
of the model and generates the control code that manages the application execution. The 
interpreter first gathers all the information from resources, jobs and other details from 
schedulers. 
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Figure 10 Final Java interpretation (see online version for colours) 

  

This information, along with the specification of the application workflow, constitutes 
the interpreter’s input. The interpreter then executes the semantic actions associated with 
each workflow task. The output of this step is a Java programme that manages the 
application execution is shown in Figure 10. The job replication mechanism algorithm 
for fault tolerance and match making algorithm is used for scheduling. 

4 Experimental studies 

This research work aims at designing the computational grid environment in GME and 
deploy agent that will aid in automatic scheduling of jobs to the computer resources with 
the help of scheduler and takes care for fault tolerance. The approach uses a visual 
modelling environment where the designer can enter models and realise application 
instances from the computational grid such that errors can be easily reduced and the time 
to analyse the root cause of the problem is decreased to a greater extent. 

For doing the analysis a particular experiment was set up and we hypothesised that an 
agent oriented fault-tolerant approach will be more efficient if the time taken for 
interpreting the GME application in a computational grid environment is minimum. The 
tasks are performed only once and can be reused for any subsequent application. The 
estimated time to develop and create the grid environment in GME assumes a basic 
understanding of UML class diagrams. 

Table 1 lists the various test cases for the experimental setup. Here we have assumed 
that same number of agents was used for injecting and detecting the faults. The faults 
were injected randomly in any of the cluster. Types of faults and its recovery mechanism 
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have been identified for injecting into the computational grid through agents is given in  
Table 2. 

Table 1 Test case for analysis 

No of nodes 1st cluster 2nd cluster 

16 (case 1) 12 4 

32 (case 2) 24 8 

128 (case 3) 96 32 

1,024 (case 4) 768 256 

Table 2 Types of fault and recovery mechanism 

S. No Fault type Recovery mechanism 

1 Network level (packet loss) Retrying 

2 Operating system fault Check-pointing 

3 Memory level (memory leak Replication 

4 Software fault (unknown exception) Check-pointing and replication 

Table 3 Implementation time of the design environment 

Task Time in minutes 

Meta-modelling the computational grid 45 

Model deployment 12 

Injecting the fault through agents-agent development 90 

Final result – set identification and generation of interpreter code 108 

Figure 11 Analysis of the various faults with different test cases with other parameters fixed  
(see online version for colours) 
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A summary of the actual time and effort to create the computational grid design, agent 
deployment and run time environment (Table 3). Each fault was injected in all the four 
test cases, totally 16 sets of analysis were done. Time to inject the Fault 1, Fault 2,  
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Fault 3 and Fault 4 through the agents were eight, nine, ten and ten respectively and 
constant for all the test cases. Analysis (Figure 11) shows that even though the no of 
nodes were increased from 16 to 1,024, time to rectify the faults was not much varying . 
The most serious fault was the network fault (packet loss) which has to be started from 
scratch. For other type of faults there was not much variation in the time for detecting the 
type of failures in all the four test cases. 

5 Conclusions 

In this paper, we proposed and implemented approach for modelling the grid computing 
architecture and analysing the failure tolerant and mechanism to recover from the failures 
that are hardware oriented. When exploring various workflows scenarios in a complex 
environment like computational grid, modelling tools and their interpreters facilitate the 
more rapid ability to change the workflow details. That is, it is easier to manipulate and 
change domain models rather than the associated code and it is easier to find out the root 
cause of the problem. The advantage of this approach is that we can drill down to the 
lower levels of the computational grid architecture. 

Model-driven techniques possess the ability to generate multiple artefacts from the 
same model. Thus, with the same domain knowledge different output representations can 
be generated. Domain modelling removes the accidental complexities of creating 
workflows in a grid by focusing on higher levels of abstraction at the problem space 
rather than solution space. 

The current trend in grid computing is moving towards service oriented architecture. 
To make the environment capable of moving in that direction, future work will be 
focused in two aspects: 

1 the utilisation of grid services as workflow tasks 

2 the capability of generating grid services from workflows. 
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