
Mobile Networks and Applications (2019) 24:1210–1213
https://doi.org/10.1007/s11036-019-01258-y

k -RNN: Extending NN-heuristics for the TSP

Nikolas Klug1 · Alok Chauhan2 · Vijayakumar V2 · Ramesh Ragala2

Published online: 23 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this paper we present an extension of existing Nearest-Neighbor heuristics to an algorithm called k-Repetitive-Nearest-
Neighbor. The idea is to start with a tour of k nodes and then perform a Nearest-Neighbor search from there on. After doing
this for all permutations of k nodes the result gets selected as the shortest tour found. Experimental results show that for
2-RNN the solutions quality remains relatively stable between about 10% to 40% above the optimum.

Keywords Nearest-neighbor · Travelling salesman problem · Domination number · Heuristic

1 Introduction

The traveling salesman problem (TSP) is one of the most
studied problems in theoretical computer science. Despite
its simplicity, no efficient algorithms exist. The problem is,
in fact, NP-hard and asks to find a shortest Hamiltonian
Cycle in a given graph – a permutation of vertices for which
the sum of the connecting edges is the least. We refer to
the TSP in undirected complete graphs as Symmetric TSP
(STSP) and in directed complete graphs as Asymmetric TSP
(ATSP). Following a popular convention for TSP-related
algorithms, we will also refer to a Hamiltonian cycle as a
tour.

Due to the problem’s popularity and its broad area of
application, many heuristics and approximation algorithms
have emerged. One of the popular ones are the 2-Opt
heuristic [2], the 3-Opt algorithm [4] and the k-opt extension
by Lin and Kernigham [5] which uses a dynamic k value.
Recent work in this area include a hierarchical hybrid
algorithm involving density peaks clustering algorithm, ant
colony optimization algorithm and k-Opt algorithms [9]. H.
D. Nguyen et al. proposed a hybrid genetic algorithm for
Large-Scale Traveling Salesman Problems [10].

The idea behind the algorithm which is presented here is
the “Nearest-Neighbor” heuristic (NN). It has already been
mentioned in the 1960s by Bellmore and Nemhauser [1].
The basic idea of this algorithm is to pick one starting node

� Alok Chauhan
alok.chauhan@vit.ac.in

1 University of Augsburg, Augsburg, Germany

2 VIT Chennai, Chennai, India

randomly and repeatedly extend the sub-tour by its current
nearest neighbor until a full tour is formed.

k-Repetitive-Nearest-Neighbor (k-RNN), the algorithm
presented here, provides some abstraction and generaliza-
tion to this Nearest-Neighbor heuristic. It is applicable
to both STSP and ATSP and the experimental results in
Section 4 do not show a big difference in quality of solution
between those two.

The original idea for this extension of Nearest-Neighbor
heuristics was what now has become 2-RNN. It was inspired
by an Indian philosophy called Madhyasth Darshan [6, 7].

In Section 2 we present the algorithm and show some of
its properties, then we show some related work. In Section 4
we show experimental results for 1- and 2-RNN obtained
from running some samples from TSPLIB [8].

2 Algorithm

In this section we will present the family of algorithms we
call k-Repetitive-Nearest-Neighbor (k-RNN) algorithms.
This abstracts the Nearest-Neighbor (NN) and Repetitive-
Nearest-Neighbor (RNN) heuristics and extend them to a
more general basis.

Let G = (V , E) be a complete graph and k ∈ N. Let v1,
v2, . . ., vn be distinct vertices of G. Let c: V × V → R be
a cost function describing the cost of the edge between two
vertices.

The algorithm consists of the following steps:

Step 1: For every combination of the k ver-
tices v1, v2, . . . , vk create the partial tour
T = (v1, v2, . . . , vk) and mark the vertices
v1, v2, . . . , vk as visited.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11036-019-01258-y&domain=pdf
mailto: alok.chauhan@vit.ac.in


Mobile Netw Appl (2019) 24:1210–1213 1211

Step 2: Set i = k. While there are unvisited vertices left:
Select vi+1 as the nearest unvisited neighbor of vi

and append vi+1 to T . If there are multiple nearest
neighbors, select any. Mark vi+1 as visited and
increment i by 1.

Step 3: Among all n!
(n−k)! tours found select the shortest as

the result

Note that for k = 1 the algorithm equals the well-
known Repetitive-Nearest-Neighbor approach, and one
might define the case k = 0 as the popular Nearest-
Neighbor algorithm, where one starting node gets selected
randomly.

The running time of the algorithm consists of two major
parts. The first is the outer for-loop in Step 1. Since for
every k ∈ N there exist n!

(n−k)! (ordered) combinations of

nodes and since n!
(n−k)! ∈ O(nk), the for-loop in Step 1

does a total of O(nk) iterations. The second important part
for the running time is Step 2. In order to find the nearest
unvisited neighbor, the algorithm considers a maximum of
n edges emerging from the current node. Since this is done
for n − k = O(n) nodes, the total running time of Step 2
is O(n2). Therefore a k-RNN run takes time O(n2 · nk) =
O(nk+2). Space complexity of the algorithm is O(nk+1) for
k > 1.

Similar to the k-Opt algorithms [2, 5], for k = n, k-RNN
also gives the exact solution. In this case, the algorithm
degrades to a plain brute-force search. Due to the running
time of O(n!) this is not the preferable way to obtain an
exact solution.

In the following we refer to an execution of k-RNN for a
specific instance and fixed k as a “run” of the algorithm. We
now present a property of the algorithm about the quality of
the solution found by k-RNN.

Theorem 1 For k < l, if there exist no vertices a, b, c with
c(a, b) = c(a, c), the result of an l-RNN run is always better
or equal to the result of a k-RNN run.

Proof Let T be a tour found by a k-RNN run and
(v1, v2, . . . , vl) the first l nodes of T . A l-RNN run
considers every permutation of l nodes as a starting tour, so
especially the permutation (p1, p2, . . . , pl) where pi = vi

for 1 ≤ i ≤ l. From there on, both runs construct the same
tour.

There are also some variations of the presented algorithm
of which we want to mention two.

In case of multiple nearest neighbors in Step 2, one
node gets chosen randomly. In order to avoid this non-
deterministic choice, a variation of the algorithm constructs
multiple paths from there on, one for each nearest neighbor.

Although this eliminates the randomness, in some cases this
will make the running time exponential.

Another approach is the following: In Step 2 node vi+1

gets selected as the nearest unvisited neighbor of the last
node of the current partial tour. This can be extended in such
a way that the new node can also be selected as the nearest
unvisited neighbor of the first node of the partial tour. We
refer to this approach as bi-directional k-RNN (Bi-k-RNN).
Step 2 of the algorithm would then look the following:

Step 2: Set ve = vk and vs = v1. While there are unvisited
vertices left: Select q as

argmin
{
c(ve, p), c(ve, q)|p ∈ V and p is univisited

}

and mark q as visited. If c(q, vs) < c (ve, q), insert q at
the start of T and set vs = q. Else append q to the end of
T and set ve = q.

We also present results of this variation in Section 4.

3 Related work

Similar to Gutin, Yeo and Zverovich in their domination
analysis of greedy heuristics for the TSP [3], for every n ∈
N we define the domination number of an algorithm for the
TSP as the maximum integer d(n) for which the algorithm
produces a tour that is better or equal than d(n) other tours.

In general the Nearest-Neighbor approach has been
shown to be sub optimal [3]: For each number of nodes there
exist some instances for which the algorithm produces a
very poor result. In fact, the domination number for 0-RNN
is 1, the worst possible domination number. 1-RNN has a
domination number of at most n − 1 and at least n/2. As
shown in Theorem 1, every run of the algorithm for k ≥ 1
considers all tours a 1-RNN run for the same instance does.
Therefore for k ≥ 1, k-RNN also has a domination number
of at least n/2.

Despite this all samples tested in our experiments in
Section 4 produce reasonable results.

4 Experimental results

In the following we are going to present some experimental
results of the algorithm. The experiments were conducted
for several instances of TSPLIB [8], symmetric as well as
asymmetric, comparing 1- and 2-RNN runs. Because of the
running time, larger k-values could not be tested adequately.

Figures 1 and 2 show the results of experiments
conducted for 48 instances of the STSP and 18 instances
of ATSP taken from TSPLIB [8]. It can be observed that
the results of 2-RNN are only slightly better than those
of 1-RNN, sometimes they are even equal. We would like



1212 Mobile Netw Appl (2019) 24:1210–1213

Fig. 1 Results for 48 instances
of the Symmetric TSP taken
from [8]. The optimum and the
result are given in absolute
values. The excess represents
the percentage by which the
result exceeds the optimum

to point out two specific instances, the first is brg180.
For this 180-city instance, standard 1-RNN returns the poor
result of 8890 (355.9% above the optimum) while 2-RNN is
able to avoid this returning a tour with length 2020 (3.59%
above the optimum). For one other instance (br17), 2-RNN
even produces the exact result.

In general all results produced by 2-RNN are reasonable.
On average, the tours produced are 10% to 40% longer
than the optimum. Using these observations, we expect the
algorithm to perform similarly for other instances although
there might be instances were the output is of unreasonable
quality.

Considering that a 2-RNN run for an instance with
1379 vertices (namely TSPLIB’s nrw1379) takes about 60

minutes to finish while a 1-RNN run for the same instance
only takes about 3 seconds (tested on a standard laptop), the
quality of the solution does not increase by a big enough
amount to justify the running time.

The results of the bidirectional variant of 2-RNN are
of different quality. For some instances they outperform
2-RNN, for some others 2-RNN performs better. As the
bidirectional version tries to extend the tour in both
directions rather than only one, the running time is about
twice as long as for the normal variant.

Figure 2 shows experimental results for 18 instances of
the ATSP. In comparison to the 2-RNN results for the STSP,
the 2-RNN results here seem to be slightly worse: Whereas
there is no instance where the tour length exceeds the



Mobile Netw Appl (2019) 24:1210–1213 1213

Fig. 2 Results for 18 instances
of the Asymmetric TSP taken
from TSPLIB [8]. The optimum
and the result are given in
absolute values. The excess
represents the percentage by
which the result exceeds the
optimum

optimum by more than 25% for STSP there are 4 instances
for the ATSP where this is the case.

5 Conclusion

We presented an extension of the already known Nearest-
Neighbor heuristic to a family of algorithms we call
k-Repetitive-Nearest-Neighbor (k-RNN). This algorithm
takes all permutations of k vertices as a starting tour and
performs a Nearest-Neighbor search from there on. The
result is the shortest of all tours found that way.

We have proven that as k increases, so does the quality
of the tours found. Despite this, our experimental results
only show a slight increase in the quality of solution as k

increases, meanwhile the running time increases by a factor
of n. In one case a larger k (2-RNN) was able to avoid an
undesirable result from 1-RNN, reducing the excess by over
350%.

A scope of future research could be a more thorough
theoretical analysis of the algorithm, especially an extension
of the domination analysis to the more general k-RNN
will give more insight in its competitiveness among other
algorithms. Also, experiments on more varied and larger
instances are desirable.

References

1. Bellmore M, Nemhauser GL (1968) The traveling salesman
problem: a survey. Oper Res 16:538–558

2. Croes GA (1958) A method for solving Traveling-Salesman
problems. Oper Res 6(6):791–812

3. Gutin G, Yeo A, Zverovich A (2002) Traveling salesman should
not be greedy:domination analysis of greedy-type heuristics for
the TSP. Discret Appl Math 117(1):81–86

4. Lin S (1965) Computer solutions of the traveling salesman
problem. Bell Syst Tech J 44(10):2245–2269

5. Lin S, Kernighan BW (1973) An effective heuristic algorithm for
the Traveling-Salesman problem. Oper Res 21(2):498–516

6. Nagraj A (2011) Madhyasth Darshan Sahastitvavaad par Aadharit
Samvaad (Part 1). Jeevan Vidhya Prakashan

7. Nagraj A (2013) Madhyasth Darshan Sahastitvavaad par Aadharit
Samvaad (Part 2). Jeevan Vidhya Prakashan

8. Reinelt G (1991) TSPLIB - A traveling salesman problem library.
ORSA J Comput 3(4):376–384

9. Liao E, Liu C (2018) A hierarchical algorithm based on
density peaks clustering and ant colony optimization for traveling
salesman problem. IEEE Access 6:38921–38933

10. Nguyen HD, Yoshihara I, Yamamori K, Yasunaga M (2007)
Implementation of an effective hybrid GA for large-scale traveling
salesman problems. IEEE Trans Syst Man Cybern B Cybern 37(1):
92–99

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.


	k-RNN: Extending NN-heuristics for the TSP
	Abstract
	Introduction
	Algorithm
	Related work
	Experimental results
	Conclusion
	References
	Publisher's Note


