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We consider the evolution of nonlinear optical pulses in inhomogeneous optical media wherein the pulse
propagation is governed by the nonlinear Schrödinger equation with varying dispersion. We adopt the
Painlevé analysis in order to obtain the condition for the soliton pulse propagation. We find that there
exist two dispersion profiles satisfying this criterion, namely, the constant dispersion and exponentially dis-
persion decreasing profiles. In the exponentially varying dispersion media, we explain the existence and the
formation of chirped optical soliton through the equation for the chirp parameter that results from variation-
al analysis. For further elucidation, we provide the phase-plane diagram in terms of the normalized chirp and
intensity (peak power), which explains the physical mechanism of linearly chirped soliton pulse compression
in the exponentially dispersion decreasing media. In addition, we discuss the generation of exact chirped
higher order solitons using the Bäcklund transformation method. As a special case, we find an oscillatory
two-soliton breather pulse, which, at decreasing intervals, evolves into a familiar hyperbolic secant shape
whose amplitude is twice that of a fundamental soliton. We highlight on the point that the crux of this
work in realizing a compact pulse compressor could possibly result in a myriad of applications in modern op-
tical fiber communications systems.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In optical fibers, a dynamical balance occurs between a linear effect
called anomalous group velocity dispersion (AGVD) and a nonlinear ef-
fect called self-phase modulation (SPM). While AGVD induces a nega-
tive chirp, SPM brings in a positive chirp. Hence, the resulting pulse
exhibits zero chirp in its evolution, and the same is called a soliton [1–
4]. Soliton pulse propagation in optical fibers is governed by the well-
known nonlinear Schrödinger equation (NLSE) [1–4]. Although an
ideal fundamental soliton is very robust, the pulse propagation in real
optical fiber systems does face many limitations, especially, on the de-
sign of the communication system. Of all the issues, fiber loss turns to
be the most detrimental in communications. Nonetheless, this problem
is being addressed very well, in recent times, by using optical amplifiers
[3]. An alternate approach for this loss compensation stems from using
fibers with exponentially decreasing dispersion profile [3]. In modern
technology, this desired profile can easily be fabricated by tapering
the core of the optical fiber. In 1995, for the first time, exponentially de-
creasing dispersion fibers over lengths 38 km and 40 kmwere fabricat-
ed for compensating the fiber loss [5,6]. In this paper, we demonstrate
the existence of bizarrely chirped solitons in optical fibers with expo-
nential decreasing dispersion profile. Contrary to the solitons in fibers
n).
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with constant dispersion profiles, these solitons are the chirped ones.
We further investigate these chirped solitons and their applications
for achieving effective pulse compression in exponentially decreasing
dispersive media.

Soliton pulse compression and adiabatic pulse compression tech-
niques are most commonly used ones for the compression process.
In soliton pulse compression, the compressed pulses suffer from sig-
nificant pedestal generation, leading to nonlinear interactions be-
tween neighboring solitons [7]. On the other hand, adiabatic pulse
compression provides highly compressed pulses with minimal pedes-
tals. Nevertheless, it is difficult to maintain the adiabatic condition
throughout the compression process [7]. Thus, soliton effect compres-
sion and adiabatic compression do not meet all the desired expecta-
tions. It has been demonstrated that going into higher order solitons
results in higher compression factor. However, the compressed pulses
do possess large pedestals owing to the absence of linear chirp. There-
fore, it has become the need of the hour to develop a compression
technique which should be capable of generating high quality pulses
with large compression factor.

Instead of chirp-free solitons, more recently, attention has been
riveted on the generation of chirped solitons. Chirped solitary waves
can be compressed more efficiently if the dispersion decreases ap-
proximately exponentially [8]. Recently, self-similar analysis has
been employed to obtain the linearly chirped solitary wave pulses
which, indeed, facilitate efficient compression or amplification [9].
Very recently, using the self-similar analysis, the pedestal-free Bragg
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soliton pulse compression has been examined in fiber Bragg gratings
(FBGs) [10]. In addition, FBGs with the stepwise approximation of the
exponentially decreasing dispersion have also been proposed to gen-
erate the nearly transform-limited pulses [11]. In this paper, we de-
scribe the existence and the formation of chirped optical solitons in
exponentially decreasing dispersive media. The paper is organized
as follows. In Section 2, we demonstrate that exponentially decreas-
ing dispersion profile of the governing media is a condition for soliton
pulse propagation using Painlevé analysis. It would also mean that
the NLSE with variable dispersion coefficient is integrable only
when the dispersion varies exponentially. We derive the exact
chirped one-soliton solution using the Bäcklund transformation (BT)
method in Section 3. By variational analysis, we arrive at the physical
explanation for the formation of chirped optical solitons in Section 4.
In Section 5, we show the implementation of the chirped optical sol-
iton in terms of an effective chirp-free and pedestal-free pulse com-
pression technique. Next, we discuss the existence of chirped higher
order solitons in Section 6. We address the evolution and interaction
of the chirped higher order solitons in Section 7. In addition, we delin-
eate a special chirped soliton pulse, known as chirped soliton breath-
er, whose amplitude is twice that of the fundamental soliton at
decreasing intervals. Finally, we conclude in Section 8.

2. Theoretical model

We consider pulse propagation in a nonlinear medium wherein
the dispersion varies along the propagation direction. Pulse propaga-
tion in such a medium is governed by the variable coefficient NLSE

iψz−
β zð Þ
2

ψtt þ γ ψ 2ψ ¼ 0;
������ ð1Þ

where ψ is the slowly varying envelope of the axial electrical field,
β(z) and γ represent the group-velocity dispersion parameter which
varies along the propagation direction and the SPM parameter, re-
spectively. The variables z and t represent distance and time, respec-
tively. Although these definitions of the variables and parameters are
for the context of envelope soliton propagation in optical fibers, they
get changed for other physical systems governed by the NLSE [12].
The variable coefficient NLSE (1) also governs the dynamics of
dispersion-managed (DM) optical fiber solitons which is another im-
portant type of pulse propagation in fibers useful for high-speed data
transmission [2]. Eq. (1) has been extensively investigated by many
researchers in different contexts [9,13–16].

To check the possibility of soliton pulse propagation in dispersion
varying media, we apply the well known Painlevé analysis to Eq. (1).
The Painlevé analysis demands that the dispersion vary in an expo-
nential manner or else remain constant for the system Eq. (1) to be
completely integrable. That is, soliton pulse propagation is possible
only if the dispersion varies exponentially as

β ¼ β0 exp −σzð Þ; ð2Þ

where β0 and σ are integration constants. It should be emphasized
that the exponential scaling (for the dispersion profile), obtained
here by Painlevé analysis, is the same as that of the one obtained
through self-similar analysis [9]. As has been discussed in the intro-
duction, 38-km and 40-km of exponentially decreasing dispersion fi-
bers had been fabricated to compensate for the fiber loss [5,6]. The
integrable form of Eq. (1) can be written as (with σ=β0α0)

iψz−
β0 exp −β0α0zð Þ

2
ψtt þ γ ψ 2ψ ¼ 0:

������ ð3Þ

We would now like to point out a conjecture regarding the reso-
nance values derived in the Painlevé analysis. The resonances
−1,0,3,4 obtained here for the variable coefficient NLSE (1) are the
same as that of the constant coefficient NLSE. Past experience has
shown that such coincidence usually implies that the newly derived
integrable nonlinear evolution equation can be connected to existing
systems of equations. This is in fact true and there is a connection be-
tween the variable coefficient NLSE (3) and the conventional NLSE.
Now, we consider the gauge transformations

ψ→ψexp iα0t
2
=4

� �
; t→t exp −β0α0z=2ð Þ; ð4Þ

which map the exponentially varying dispersion NLSE (3) into the
following variable coefficient NLSE:

iψz−
β0

2
ψtt þ γ ψ 2ψ−β0

8
α2
0t

2ψ−i
β0

4
α0ψ ¼ 0:

����
���� ð5Þ

The variable coefficient NLSE (5) has been analyzed for its integra-
bility through Painlevé analysis and is found to possess a transforma-
tion relating to constant coefficient NLSE [17]. Thus the above
mentioned conjecture about the resonance values of the Painlevé
analysis holds good as there is a connection between the integrable
dispersion varying NLSE (3) and the conventional constant coefficient
NLSE. Eq. (5) is also applicable in many physical contexts such as av-
eraged DM fiber system, nonlinear compression of chirped solitary
waves, quasi-soliton propagation in DM optical fiber, etc.
[18,8,19,20]. Although the results on Painlevé analysis for the NLSE
with the variable coefficients have already been reported in the liter-
ature, we emphasize over the fact that, till date, there has been no
clear discussion on the existence of chirped optical solitons in the
nonlinear optical media and eventually, this issue turns out to be
the ultimate crux of this paper.

3. Chirped optical soliton: Bäcklund transformation method

Now we present the essential steps for deriving the exact chirped
soliton solution of the variable coefficient NLSE (5) using the Bäcklund
transformation method. Before investigating the chirped soliton, it is
customary to construct the Lax pair associated with Eq. (5). In order
to construct the chirped soliton of Eq. (5), we start with the zero-
soliton solution ψ=0. By using this trivial solution, the explicit form
of Γ(0) is obtained as

Γ 0ð Þ ¼ exp ζ z; tð Þ þ iθ z; tð Þ½ �: ð6Þ

where ζ(z, t) and θ(z, t) are given by

ζ z; tð Þ ¼ −4β0∫u zð Þv zð Þdzþ 2v zð Þt; ð7Þ

θ z; tð Þ ¼ 2β0∫ u2 zð Þ−v2 zð Þ
h i

dz−2u zð Þt: ð8Þ

The explicit form of ζ and θ can be derived from the above two
equations using the variable spectral parameter. The exact 1-soliton
solution for the exponentially decreasing dispersion NLSE (3) can be
derived as

ψ 1ð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
−β0

γ

s
e
χ
2

T0
sech

teχ

T0

� �
exp

i
2

α0t
2− 1

α0T
2
0

 !
eχ

" #
; ð9Þ

where χ=α0β0z. Here T0 represents the initial pulse width parameter.
This soliton solution is similar to that of chirped soliton obtained by
self-similar analysis reported in the literature [8,9,16]. From the factor
χ in the 1-soliton solution (9), it is clear that the soliton pulse intensity
and chirp increase exponentially and the width decreases exponentially
at the same rate along the propagation direction. The conventional chirp-
free soliton formation is usually explained based on the dispersion length
(LD=T0

2/|β0|) and nonlinear length (LNL=1/(γP)), where P(=|β0|/γ/T0)
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Fig. 1. Phase plane diagram for the chirped soliton pulse compression in terms of nor-
malized chirp and intensity.
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is the peak intensity of the pulse. In a similar way, to explain the chirped
soliton formation, we need to define another length scale called chirp
length, LC=1/(α0β0), to take into account the effect of chirp. Note that
the dispersion and nonlinear lengths decrease exponentially while
chirp length is constant during the formation of chirped solitons. In this
context, the concept of chirp length emerges in a natural way as disper-
sion and nonlinear lengths.

4. Physical explanation of chirped optical soliton:
variational analysis

To explain the dynamics of the chirped optical solitons we make
use of the following variational analysis [21]. When we consider the
hyperbolic secant ansatz

ψ ¼ x1sech
t
x2

� �
exp ix3

t2

2
þ ix4

 !
;

in the variational analysis of the NLSE (1), the evolution equations for
the pulse amplitude (x1), width (x2), chirp (x3) and phase (x4) are de-
rived as:

dx1
dz

¼ β zð Þ
2

x1x3;

dx3
dz

¼ β zð Þ x23−
4

π2x42

 !
−4γx21

π2x22
;

dx2
dz

¼ −β zð Þx2x3;
dx4
dz

¼ β zð Þ
3x22

þ 5γx21
6

:

ð10Þ

As we are interested in the formation of chirped soliton, we focus
only on the chirp parameter to explain the relation amongst the dis-
persion length, nonlinear length and the chirp length. In particular,
the evolution equation of the chirp can be written as

dx3
dz

¼ β zð Þx23 þ
4

π2x22

1
LD

− 1
LNL

� �
; ð11Þ

where LD=−x2
2/β(z) and LNL=1/(γx12), which, respectively, repre-

sent the dispersion and nonlinear lengths. In what follows, we discuss
the possibility of chirp-free solitons and chirped solitons in the optical
systems which are governed by the integrable NLSE (3).

4.1. Chirped solitons

The same integrability condition (2) for a lossless fiber can also
support a chirped optical soliton. From the soliton solution (9), we
can get the expressions for the pulse width and intensity as
x2=x20exp(−χ) and x1

2=x10
2 exp(χ) (where x10 and x20 are initial

pulse amplitude and width, respectively). From the integrability con-
dition the dispersion can decrease exponentially as β(z)=β0exp
(−χ). Thus the dispersion and nonlinear lengths for the chirped sol-
iton propagation are given by LD=−x20

2 exp(−χ)/β0 and LNL=exp
(−χ)/(γx102 ), respectively. Unlike the situation in conventional opti-
cal soliton, the dispersion and nonlinear lengths decrease in the
same way as the dispersion along the propagation direction in the
case of chirped soliton. The dispersion length is equal to the nonlinear
length at every point of the fiber. This is possible only because of the
evolution of the chirp. When we substitute the expressions for the
dispersion, pulse width, linear length (LD) and the nonlinear length
(LNL) in the chirp evolution Eq. (11), we get dx3/dz=β0exp(−χ)x32.
If we consider the initial chirp of the soliton pulse as α0, then the
chirp would evolve as x3=α0exp(χ). This is also obvious from the
1-soliton solution (9) derived for the dispersion varying NLSE (3).
In the case of conventional optical soliton, the chirp produced by
the dispersion is balanced by the chirp produced by the nonlinearity.
In the variable coefficient NLSE (3) the dispersion parameter de-
creases exponentially and the nonlinear parameter remains a con-
stant. Thus we can say that, in the absence of any chirp, the chirp
produced by the linear effect is not balanced by the nonlinear effect.
Hence, it looks like the nonlinear effect overwhelming the linear ef-
fect. However, the additional chirp, present initially in the pulse
(the sign of this initial chirp is the same as that of the chirp produced
by the anomalous dispersion fiber) grows exponentially and adds to
the chirp generated by the dispersion to balance with the chirp pro-
duced by the nonlinear effect for the formation of chirped solitons.
Thus these chirped optical solitons are formed basically because of
the growth of the chirp in contrast to the zero chirp in the case of
the conventional solitons. Very recently, we have observed that the
chirped solitons evolve in a different manner when compared to
chirp-free solitons [10].
5. Deploying chirped soliton: pulse compression

Now, we turn to discuss the deployment of chirped soliton as an
effective pulse compression technique. Fig. 1 explains the phase-
plane diagram in terms of normalized chirp and peak power. The
dot-dashed curve represents the pre-chirping of an initial chirp-free
hyperbolic secant pulse that results from the pulse parameter equa-
tions under the condition γ=0. Once the required chirp is obtained,
the pulse is sent to a nonlinear medium with an exponentially de-
creasing dispersion profile. Hence the pulse is compressed and the
normalized chirp also gets decreased in the compression process
(solid curve). The residual chirp can be removed by the de-chirping
process (dashed curve).

In Fig. 1, the pulse compression has been analyzed for two differ-
ent values of initial chirp. In the first case, we consider the initial nor-
malized chirp to be C(z)=−0.4012. During the compression, the
normalized chirp decreases and eventually the compressed pulse
possesses a small amount of normalized chirp C(z)=−0.1046. If
the initial normalized chirp is relatively large, C(z)=−1.3374, the
pulse undergoes, relatively, a higher compression as shown in Fig. 1.
After the compression process, the normalized chirp gets reduced to
−0.1373. In both the cases, the compressed pulses possess a small
amount of chirp. Thus, at the end, chirp-free pulses are achieved by
a suitable de-chirping process (dashed curve).

As discussed in the introduction, the dispersion varying NLSE (3)
governs the nonlinear pulse propagation in dispersion decreasing fi-
bers and also near the photonic band gap of a nonuniform FBG
[22,23]. In the present study, FBG has been preferred as it possesses
a huge amount of grating induced dispersion of six orders of magni-
tude larger than the conventional telecommunication fiber. The pres-
ence of large dispersion in FBG allows the study of soliton dynamics
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on the length scales of centimeters. Thus, one can realize very short
and efficient pulse compressors with high degree of compression
and pulses of good quality. In this work, we assume a nonlinear
FBG of length L=6 cm with the initial dispersion of β(0)=
−33 ps2 cm−1. We take the effective core area of the FBG as
20 μm2 and the nonlinear coefficient as 2.3×10−16 cm2 W−1. The
initial dispersion monotonically decreases to a final value at the end
of the dispersion decreasing nonlinear FBG as β(L), which can easily
be calculated from Eq. (2) as β(z=L)=−4.56 ps2 cm−1 for a given
value of the initial chirp α0=−0.01 THz2. Having calculated the dis-
persion at the end point of the grating, the maximum compression
factor, in the case of constant nonlinearity and no loss/gain, is deter-
mined by the ratio of the input to output dispersion. In this case,
the compression factor turns out to be 7.24. The evolution of the
Bragg soliton (9) with pulse compression is shown in Fig. 2.

6. Chirped higher order solitons

As is well known that the conventional solitons of NLSE with con-
stant coefficients sustain both fundamental and higher order solitons,
we envisage such fundamental and higher order solitons would exist
for NLSE with dispersion varying profile too. Thus, in this section,
using the chirped higher order solitons, we demonstrate a new type
of pulse compression that exploits the combination of chirp and
higher order soliton effect. We now proceed to generate the chirped
higher order solitons by Bäcklund transformation method [24]. The
chirped two-soliton in an exponentially decreasing dispersion medi-
um is given by

ψ 2ð Þ ¼ Nr1−Nr2
μDr

exp i
α0

2
t2

� �
; ð12Þ

where

Nr1 ¼ 2v1exp iθ1ð Þsech ζ1ð Þ Δuð Þ2 þ v21−v22 þ 2i Δuð Þv2tanh ζ2ð Þ
h i

;

Nr2 ¼ 2v2exp iθ2ð Þsech ζ2ð Þ − Δuð Þ2 þ v21−v22 þ 2i Δuð Þv1tanh ζ1ð Þ
h i

;

Dr ¼ Δuð Þ2 þ v21 þ v22−2v1v2tanh ζ1ð Þtanh ζ2ð Þ
−2v1v2 sech ζ1ð Þsech ζ2ð Þcos θ2−θ1ð Þ

ζ j ¼ ζ j z; tð Þ ¼ −4β0∫uj zð Þvj zð Þdzþ 2vj zð Þt;
θj ¼ θj z; tð Þ ¼ 2β0∫ uj zð Þ2−vj zð Þ2

h i
dz−2uj zð Þt;

where

Δu ¼ u2−u1 and j ¼ 1; 2:

The parameters (u1,u2) and (v1,v2) are the physical parameters of
the chirped two-soliton and they represent the velocities and ampli-
tudes, respectively. As has been discussed in the chirped one-soliton,
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Fig. 2. 3D plot of bright Bragg soliton pulse compression for the physical parameters
β(0)=−33 ps2cm−1, α0=−0.01 THz2, T0=10 ps and z=6 cm.
here also we write the chirped two-soliton in terms of initial pulse
width parameters T01 and T02 as follows:

ψ 2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
−β0

γ

s
exp α0β0z=2ð Þ

T01T02

F0
G0

; ð13Þ

where

F0 ¼ T2
02−T2

01

� �
T02e

im1 sech
t

T01
eα0β0z

� �
−T01e

im2 sech
t

T02
eα0β0z

� �� 	
;

G0 ¼ T2
01 þ T2

02−T01T02sech
t

T01
eα0β0z

� �
sech

t
T02

eα0β0z
� �

× cosh ξþ

 �

−cosh ξ−ð Þ þ 2cos δθð Þ� 

;

with

mj ¼
1
2

α0 t2− 1
α0T

2
0j

 !
eα0β0z; ξ� ¼ T02 � T01

T01T02
teα0β0z; δθ ¼ T2

02−T2
01

2α0T
2
01T

2
02

eα0β0z:

It should be emphasized that the chirped solitons obtained by this
method has already been correlated with the chirped solitons derived
by the self-similar scaling analysis [10]. Based on this fact, the chirped
two-soliton may emulate the self-similar property during the course
of propagation along the exponentially decreasing dispersive media.
This chirped two-soliton also enhances the chirp and maintains it
during the propagation by establishing a balance between the expo-
nentially growing chirp and that of the exponentially decreasing
chirp induced by the exponentially decreasing dispersion. The highly
enhanced linear chirp as well as the higher order soliton property can
be utilized to achieve the pedestal-free compression which will be
discussed in the following section.

7. Studies on chirped higher order solitons

The theoretical formalism of these chirped higher order solitons
will now be used to investigate pulse compression under the influ-
ence of chirping in the exponentially decreasing dispersive media.
In the first sub-section (7.1), we deal with the high degree of pulse
compression by utilizing the general higher order soliton property
as well as an initial chirp associated with the two-soliton. In the sec-
ond sub-section (7.2), we devote our attention on the compression by
chirped higher order soliton breathers i.e., special hyperbolic secant
pulses whose initial amplitude is twice that of a fundamental chirped
soliton.

7.1. Pulse compression: chirped higher order solitons

In this Section, we demonstrate pulse compression using higher
order soliton as well as chirped soliton properties to achieve efficient
compression. Further, we discuss pulse compression from the general
chirped two-soliton of Eq. (12). The chirped higher order soliton
pulses undergo either broadening or compression, depending on the
sign of the initial frequency chirp parameter. Here, we analyze the
compression of chirped two-soliton with the physical parameters,
namely, initial chirp α0, dispersion β0, velocities u1, u2 and amplitudes
v1, v2. As the resulting chirped two-soliton develops relatively large
chirp than the fundamental chirped soliton, highly compressed
pulse, owing to higher order solitons, is possible after the combina-
tion of chirp compensation and higher order soliton effects.

As discussed in Section 1, if N is an integer larger than 1 (N>1),
the pulse evolution is very different from the case of a fundamental
soliton [3,4]. Now, we discuss the physical mechanism of the periodic
evolution of the two-soliton under the influence of chirp in the expo-
nentially decreasing dispersive media. For all higher order solitons
(N>1), the effect of SPM dominates over the effect of AGVD. While
the effect of SPM is to generate a positive chirp, the effect of AGVD
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is to produce a negative chirp. Due to the large intensity of the two-
soliton, the amount of positive chirp generated by SPM is greater
than that of the negative chirp produced by the AGVD. Indeed, the
negative chirp due to AGVD decreases exponentially and at the
same time, is maintained by the exponential growth of the external
chirp. However, the resulting opposite chirps do not get canceled
out completely. As a result, the two-soliton pulses acquire a positive
chirp. The impact of AGVD on a positively chirped pulse leads to the
pulse compression [3].

Fig. 3(a) shows the compression of chirped two-soliton for the fol-
lowing physical parameters: β(0)=−20 ps2km−1, γ=2W−1km−1,
α0=−0.01 THz2, u1=0.05, u2=0.025, v1=0.025, v2=0.15 and
z=12 km. Solid and dashed curves in Fig. 3(b) represent the initial
and compressed pulses at z=12 km, respectively. In Fig. 3(c), the
solid and dashed curves show the initial and compressed pulses at
z=12 km in logarithmic scale, respectively. The spectra of the initial
(solid curve) and compressed (dashed curve) pulses are plotted in
Fig. 3(d). Fig. 3(e) shows the behavior of compression factor (solid
curve) and peak power (dashed curve) which grow approximately
at the reciprocal of the decay rate of the dispersion (dot-dashed
curve), i.e. the function exp(α0β0z).
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Fig. 3. (a) Compression of chirped two-soliton for the following physical parameters β(0)=
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(solid curve) and peak power (dashed curve) follow the decay rate of the dispersion (dot-d
7.2. Pulse compression: chirped soliton breathers

In this subsection, we investigate pulse compression by a special
pulse, which is also known as chirped soliton breather, whose initial
amplitude is twice that of the fundamental soliton. The N-breather
is a bound state of N-fundamental solitons. More generally, an N-
soliton solution (higher order breather), with the pulse amplitudes
vj=(2j−1) for j=1,…,N, has the shape ψ=Nsech(t) when z=0 if
the soliton phases are chosen properly. Note that there is no binding
energy between the solitons in the breathers, i.e., the total energy of
the breather is equal to the sum of the energies of its constituent sol-
itons [2]. The continuous interaction of the N-solitons gives rise to the
periodic behavior of the combined pulse. The most important and in-
teresting special case occurs at z=0, when the eigenvalues are 1 and
3. Under these parametric conditions, the general two-soliton solu-
tion becomes a familiar hyperbolic secant shape whose initial ampli-
tude is doubled i.e., 2 sech(t). This special 2-soliton breather was first
found by Satsuma and Yajima [25] and has also been observed in ex-
periments in optical fibers and planar waveguides [26]. Similarly, we
also catch up with this type of special chirped 2-soliton breather pulse
from the chirped two-soliton solution at z=0. For the following
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choices of physical parameters (eigenvalues) u1=1/2T0, u2=3/2T0
and v1=v2=0, the general chirped two-soliton becomes a familiar
hyperbolic secant shape whose amplitude is doubled that of a one-
soliton,

ψ z ¼ 0; tð Þ ¼ 2
T0

ffiffiffiffiffiffi
β0

γ

s
sech

t
T0

� �
exp i

α0

2
t2 þ π

8

� �h i
; ð14Þ

where α0=−4/(T02π). The resulting chirped soliton breather differs
from the conventional breathermainly because of the initial chirp associ-
ated with the special ‘sech’ type pulse. This is the simplest example of a
higher order soliton breather (N=2), where the initial amplitude is dou-
bled compared to that of a fundamental soliton. This kind of initially
chirped higher order soliton breather enjoys advantages over the funda-
mental soliton in optical communication systems, as it undergoes
extremely high degree of pulse compression. We adopt the split-step
Fourier method for studying the chirped 2-soliton breather and the
simulation results do agree with the analytic solution very well. Fig. 4
(a) shows the evolution of chirped 2-soliton breather in the exponentially
decreasing dispersion for the following physical parameters: T0=10 ps,
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Fig. 4. (a) Compression of chirped 2-soliton breather for the following physical parameters β
resent initial and compressed pulses at z=12 km, respectively. (c) Solid and dashed curves
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the dispersion (dot-dashed curve): the function exp(α0β0z).
β(0)=−20 ps2km−1, γ=2 W− 1km−1, u1=1/2T0, u2=3/2T0 and
v1=v2=0, and z=12 km. In Fig. 4(b), the solid and dashed curves
represent the initial and compressed pulses at z=12km, respective-
ly. Fig. 4(c) explains the initial (solid curve) and compressed (dashed
curve) pulses at z=12 km in logarithmic scale, respectively. In
Fig. 4(d), solid and dashed curves represent the spectra of initial and
compressed chirped 2-soliton breather pulses. Fig. 4(e) represents the
variation in the compression factor (solid curve) and peak power
(dashed curve) which follow the reciprocal of the decay rate of the dis-
persion (dot-dashed curve): the function exp(α0β0z). The period of the
chirped 2-soliton breather is found to be z0=ln[1+1/(2k+1)]/(α0β0),
where k=1,2,3…. The 2-sech pattern is repeated over each section of
length z0, where z0 decreases with the propagation length.

8. Conclusion

We have employed the Painlevé analysis for determining the condi-
tions for soliton pulse propagation in dispersion decreasing fibermedia.
The analytical results suggest the possibility of two dispersion profiles,
namely, constant and exponentially varying dispersion profiles. For
the exponentially scaled dispersion, the fiber system equation has a
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connection with the constant coefficient NLSE through another well-
known variable coefficient NLSE. The explicit chirped one-soliton solu-
tion is generated by means of the Bäcklund transformation method.
Furthermore, using the variational equation of the chirp, the formation
of the chirped optical soliton has been discussed in detail. Further, we
have presented an application of the chirped optical solitons for pulse
compression through the dispersion decreasing nonlinear fiber Bragg
grating. We believe that the results reported in this work could also
be applicable to other physical systems governed by NLSE with varying
dispersion profiles. In addition to the chirped fundamental soliton, we
have also discussed the chirped two soliton solution for the exponen-
tially decreasing dispersive media. Besides, we have investigated the
compression process through the chirped soliton breathers. The authors
are of the opinion that the investigations and results that have emanat-
ed of this work shall pave the way for realizing compact as well as effi-
cient pulse compressor, capable of generating transform-limited pulses
with incredibly negligible pedestals.
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