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a b s t r a c t

The total variation-based image denoising model has been generalized and extended in numerous

ways, improving its performance in different contexts. We propose a new penalty function motivated

by the recent progress in the statistical literature on high-dimensional variable selection. Using a

particular instantiation of the majorization-minimization algorithm, the optimization problem can be

efficiently solved and the computational procedure realized is similar to the spatially adaptive total

variation model. Our two-pixel image model shows theoretically that the new penalty function solves

the bias problem inherent in the total variation model. The superior performance of the new penalty

function is demonstrated through several experiments. Our investigation is limited to ‘‘blocky’’ images

which have small total variation.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Denoising is probably the most common and most studied
problem in image processing. Approaches developed so far
include many methods arising from the field of engineering,
computer science, statistics and applied mathematics. There are
several popular classes of existing denoising algorithms, from
simple linear neighborhood filtering to mathematically more
involved wavelet methods based on solid statistical foundations
[1–3]. The PDE-based methods first proposed in [4] are unique in
their formulation of images as functions in a suitable function
space. Relatively few comparison studies exist among different
methods, which is quite understandable due to (i) there are a
large number of existing denoising approaches with many
different modifications and extensions; (ii) the success or failure
of different approaches depends largely on the characteristics
exhibited by different types of images, whether cartoon or natural
scene images, grayscale or colored, textured or solid objects. One
exception is the work [5] which compared the standard total
variation (TV) model with wavelet denoising and finds that TV is
inferior for some standard test images. With different fine tunings
and extensions available in both the class of PDE-based and
wavelet-based methods, such as using higher order derivatives or
correlated wavelet coefficients, it is still hard to judge from their
results the relative merits of these two approaches, although it
ll rights reserved.
seems to be the prevailing mindset that the wavelet-based
methods work better for general images.

Denoting the unobserved original noiseless image by u, the
goal of denoising is to recover this original image given an
observed noisy image f¼u+n, where n denotes the noise. In
traditional filtering as well as wavelet-based approaches, we
either think of images as m� l matrices or N¼ml-dimensional
vectors, while the PDE-based method will generally treat images
as bivariate functions defined on the unit square O¼ ½0,1� � ½0,1�.
Introduced in [4], the standard total variation (TV) image
denoising method estimates the original image by solving the
following minimization problem

û ¼ arg min
u

Jf�uJ2
þlTVðuÞ, ð1Þ

where J:J is the L2 norm of the function and TVðuÞ ¼
R
Ojruj is the

total variation norm of u [4]. The regularization parameter l
controls the tradeoff between the fidelity to the observed image
and smoothness of the recovered image. Actually the paper [4]
used the somewhat equivalent formulation of minimizing the
total variation with constraints on the noise level, which is
assumed to be known. But the penalized L2 version stated above is
more convenient when the level of the noise is unknown and we
will adopt this formulation in our study. Both practically and
theoretically, this model is the best understood one among PDE-
based methods as of today, where the images are considered as
belonging to the space of functions of bounded variation (BV)
and the existence and uniqueness of solution is well-established
[6–8]. Discrete version of the TV model is considered in [5],
arguing that all approaches have to go through the discretization
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procedure when implemented anyway. Our point of view is
that using either the continuous or discrete formulation for the
PDE-based methods makes little difference in practice.

Although the standard TV model above might not be compe-
titive for general image denoising tasks, it is believed to be ideal
for blocky images, i.e., images that are nearly piece-wise constant.
From a statistical point of view, this can be simply seen by the fact
that it penalizes the first order partial derivatives (or, in discrete
version, first order differences) and thus shrinks them towards
zero. Such images are interesting for at least two reasons. First,
examples of blocky images abound in real life, such as vehicle
registration plates, traffic signs, postal code on envelopes, etc.
A more complicated example in medical imaging is found in [9].
Second, studying of such relatively simple images can usually lead
to deeper insights into different denoising approaches. [10] noted
the inherent bias in the TV model and proposed the spatially
adaptive total variation (SATV) model that applies less smoothing
near significant edges by utilizing a spatially varying weight
function that is inversely proportional to the magnitude of image
derivatives. SATV is a two-step procedure where the weight
function obtained from the first step using standard TV is then
used to guide smoothing in the second step. The authors showed
that with a modest increase in computation, SATV is superior to
standard TV in restoring piece-wise constant image features.

Curiously, there is an almost parallel development in the
statistical literature in the context of high-dimensional linear
regression with variable selection. As explained in the next
section, these studies focus on the regression problem where
although there exist numerous covariates a priori, most of the
regression coefficients are exactly zero, implying that the
corresponding covariates have no effects on the response variable.
Thus shrinking most regression coefficients to zero is a viable
strategy for efficient estimation. For piece-wise constant images,
with first derivatives in most locations exactly equal to zero,
shrinking them to zero is thus also a reasonable approach. Taking
advantage of this observation, we propose to adapt the smoothly
clipped absolute deviation (SCAD) penalty [11,12] that has
become extremely popular in the statistical community for our
image denoising task. Although in the case of TV model the
correspondence between the functional-analytical approach and
the statistical approach seems to be well-known, and some have
studied in detail the properties of total variation from a statistical
point of view [13,14], these statistical works are only restricted to
the one-dimensional case. Besides, as far as we know, the
parallelism stated above has not been fully utilized and in
particular the SCAD penalty has not been applied to penalize
the first order differences even in the one-dimensional case.
Besides its superior performance in practice, there are several
advantages of SCAD penalty compared to SATV, most notably
getting rid of the extra parameter that a user needs to tune for
SATV in implementation. As mentioned before, we think using
either discrete or continuous formulation formally makes little
difference, but we choose to use the continuous formulation since
it can simplify description and notation significantly. The only
problem is that the objective functional using the SCAD penalty
being nonconvex, existence of solution is not guaranteed. The
theoretically inclined reader might want to think in discrete terms
so that such technical point does not arise. Our computational
experiments show that SCAD is superior to SATV in terms of mean
squared error (MSE). Although MSE is notorious for describing the
visual quality of an image, it is arguably less so for blocky images
where MSE can describe the accuracy of restoration rather
faithfully.

The rest of the paper is organized as follows. In the next
section, we briefly review the TV and the SATV model and point
out the almost trivial connection to Lasso and the adaptive Lasso
developed in the statistical literature so that we hope readers
from both fields can follow the motivation and development of
the current paper. In Section 3, we adapt the SCAD penalty for our
image denoising problem and discuss some properties in detail in
this context. We also developed a majorization-minimization
procedure using first order Taylor expansion so that the
computation involved simply reduces to that similar to the SATV
model, although with a different weight function. In Section 4, we
will briefly review a method called Monte-Carlo SURE [15] for
regularization parameter selection which is used in our study
when required. In Section 5, several computational experiments
are used to show the superiority of the proposed method in
denoising blocky images. In these experiments, we also inten-
tionally emphasize the difficulty encountered with SATV model in
tuning its performance. We conclude the paper with a discussion
in Section 6.
2. Review of the TV and SATV model

The TV model proposed by [4] and presented above in Eq. (1)
has received a great deal of attention in the last decade. In [10],
the authors argued that it is desirable that less smoothing is
carried out where there is more detail in the image. This
motivated the replacement of TV norm by the following more
general weighted TV functional

TVwðuÞ ¼

Z
O

wðx,yÞjruðx,yÞjdx dy: ð2Þ

The weight w should be small in the presence of an edge so that
less smoothing is performed near an edge. [10] used a weight
function inversely proportional to the partial derivatives, with a
parameter e40 added both to avoid dividing by zero and to be
used as a tuning parameter to control the amount of adaptivity.
Thus in their proposal of the spatially adaptive total variation
(SATV) model w¼ 1=ðjuxjþeÞþ1=ðjuyjþeÞ where ux and uy are the
partial derivatives. [10] used a two-step method. In the first
step the standard TV model (1) is used to estimate u based on
which the partial derivatives (first order differences) are com-
puted. Then the derivatives are used in (2) to compute the final
restored image. If e is chosen sufficiently large, SATV basically
reduces to the standard TV. On the other hand, if e is too small,
artificial edges will appear and the algorithm will be numerically
unstable as well. We will see in our simulations that the result is
somewhat sensitive to the choice of e and the appropriate amount
of adaptivity is not universal to all images, which makes it
difficult to choose e in practice, or leads to a sizable increase on
the amount of computation required to say the least.

As we mentioned in the introduction, there is an almost
parallel line of development in the statistical literature that uses
the same idea of SATV in a different context. Consider a linear

regression problem yi ¼ xT
i bþei based on independent and

identically distributed (i.i.d.) data {yi,xi}i¼1
n , where xi¼(xi 1,y,xip)T

are the covariates, b¼ ðb1, . . . ,bpÞ
T are the regression coefficients,

and ei is a zero mean noise. Sometimes one has good reasons to
believe that only a few of the x

iq
’s are related to yi, i.e., many of the

bq’s are exactly zero. In these situations it is desirable to design an

approach that shrinks many regression coefficients to zero
automatically. Lasso [16] does exactly that and IS formulated as
the minimization of the following objective function:

Xn

i ¼ 1

Jyi�xT
i bJ

2
þl

Xp

i ¼ 1

jbij:

It is now well-known that this algorithm encourages many
coefficients to be exactly zero as desired due to the use of L1
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norm penalty for b. Later [17] proposes the adaptive Lasso, which
possesses better theoretical properties than Lasso and also proves
to be superior in practice, that solves the following minimization
problem

Xn

i ¼ 1

Jyi�xT
i bJ

2
þl

Xp

i ¼ 1

jbij=jb̂ij,

where b̂ ¼ ðb̂1 , . . . ,b̂pÞ is the standard least square estimate. Any

other reasonable estimate can be used (to be more rigorous, b̂
must be consistent in statistical terms in order to enjoy the
theoretical properties stated in that paper).

The readers can immediately see the parallel developments in
statistics and TV-based image processing. When it is desirable to
shrink the first order differences in an image towards zero, the
same arguments that lead to Lasso and adaptive Lasso now
assume the form of TV and SATV, respectively. In the statistical
literature, [13,14] studied the TV problem in its discrete form, but
we have not seen any mention of utilizing adaptive Lasso to
penalize the first order differences.

Historically, before the appearance of adaptive Lasso, to
address the shortcomings of Lasso (which in general cannot
identify the non-zero coefficients in the linear model with high
probability), [11] proposed the smoothly clipped absolute devia-
tion (SCAD) penalty which is motivated by the desire to achieve
several properties of the estimator such as continuity, asymptotic
unbiasedness, etc. We discuss these properties in more detail in
the next section. They also show that the resulting estimator
possesses the so-called oracle property, i.e. it can identify non-
zero coefficients with high probability and behaves the same as
when the positions of the non-zero coefficients are known in
advance. In the next section, we adapt the SCAD penalty for image
processing tasks. Using SCAD penalty gets rid of the clumsiness of
having to choose the parameter e in SATV and our experiments
show that its performance is superior to SATV.
3. Image denoising with the SCAD penalty

In linear regression, using the SCAD penalty amounts to
minimizing the following functional

Xn

i ¼ 1

Jyi�xT
i bJ

2
þ
Xp

i ¼ 1

plðjbijÞ, ð3Þ

where plð:Þ is more conveniently defined by its derivative

p0lðyÞ ¼ l IðyrlÞþ
ðal�yÞþ
ða�1Þl

Iðy4lÞ
� �

for y40 with a42,
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Fig. 1. (a) The SCAD penalty function and its linear approxim
and plð0Þ ¼ 0, where If�g denotes the indicator function. As usual,
a¼3.7 is used. The recommendation of this value for a in [11] is
based on some Bayesian arguments which also show that the
estimate is not very sensitive to the value of a. Although it is
possible to optimize over a for each specific problem, such an
implementation can be computationally expensive and thus we
use the recommended value in this paper.

We plot the function pl in Fig. 1(a) for l¼ 1 and its derivative
in Fig. 1(b). As seen in (3) we only use pl and its derivative with a
nonnegative functional argument. We plot both functions in Fig. 1
as even functions for convenience, although the derivative should
be an odd function if pl is defined as an even function. Note that
this penalty function, unlike the L1 penalty used in Lasso, is not
convex. To use the SCAD penalty for image denoising, we formally
write down the functional

Jf�uJ2
þ

Z
O

plðjrujÞ: ð4Þ

Some readers will have the objection that pl is nonconvex and
thus the existence of solution to the above functional is in
question. Even the definition of plðjrujÞ itself seems to be a
difficult task, if not impossible. Note [7] only defined fðjrujÞ

when f is convex and u is a BV function. Due to this problem we
encourage the reader to change to a discrete formulation which is
straightforward from (4). The expression (4) in the continuous
form is so much cleaner so we prefer to keep it. This should
hopefully be just a minor nuisance for practitioners.

As argued in [11], the SCAD penalty function is motivated by
the following desired properties.
(P1)
−

0

0.5

1

1.5

ation
(Continuity) The estimates should smoothly depend on the
data to avoid instability in estimation.
(P2)
 (Sparsity) In linear regression, it should correctly identify the
zero linear coefficients. Adapting this property in our
context, for image denoising tasks, it should correctly
identify clusters of pixels with identical intensities.
(P3)
 (Unbiasedness) The effective shrinkage applied to large
coefficients should decrease to zero.
These properties can be easily seen by considering a one-
component model

1
2ðy�yÞ

2
þplðjyjÞ,

where y is the single noisy observation with unknown mean y. In
this case, the minimizer ŷ has a closed-form expression as shown
in Eq. (2.8) in [11]. If instead of the SCAD penalty, we use the Lasso
penalty plðjyjÞ ¼ ljyj, the minimizer becomes ŷ ¼ ðy�lÞþ , where
6 −4 −2 0 2 4 6

. (b) The derivative of the SCAD penalty function.
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(a)+¼a if a40 and zero otherwise. Thus we see the Lasso penalty
results in soft thresholding of the observation. On the other hand,
if plðyÞ ¼ l2

�ðjyj�lÞ2Ifjyjolg, we have ŷ ¼ yIfjyj4lg, obtaining
the hard-thresholding rule. The soft threshoding rule does not
satisfy the unbiasedness property, the hard-thresholding rule
does not satisfy the continuity property, while the estimate
obtained using the SCAD penalty satisfies all three properties.

Before we present further properties of the SCAD penalty in the
context of image denoising, it should be mentioned that [18] has
used SCAD penalty for wavelet denoising. They focus on one-
dimensional denoising problems and application to 2D denoising
is straightforward although no examples are provided for image
denoising in that paper. In [19], nonlinear shrinkage estimation in
the wavelet domain is proposed based on multiple differences of
sigmoid functions. In [20,21], a new sigmoid-based shrinkage
function motivated from similar considerations as discussed in
the previous paragraph is used also in the wavelet domain.
Different from all these works, we apply the SCAD penalty directly
on the image domain. The choice of penalty function is based on
its simplicity in form and that there is only one tuning parameter
in the penalty function to be chosen. The penalty function
proposed in [20] could be used but involves more tuning
parameters. Our main message here is that a carefully chosen
penalty function on the image domain can improve the simple
total variation penalty-based image denoising.

To see clearly the effect of SCAD compared to TV, we consider
the following simple discrete problem instead:

arg min
y1 ,y2

ðy1�y1Þ
2
þðy2�y2Þ

2
þplðjy1�y2jÞ, ð5Þ

i.e., we consider an ‘‘image’’ with only two pixels. We have the
following property of the minimizer comparing the SCAD penalty
Fig. 2. Several simple grayscale im
with the TV and SATV penalties, the proof of which is deferred to
the Appendix A.

Proposition 1. Suppose without loss of generality that y1Zy2.
(a)
ages
If y1�y24al, the minimizer of (5) is y1 ¼ y1,y2 ¼ y2.

(b)
 If y1�y2ol¼minxARðjxjþp0lðjxjÞ, the minimizer of (5) is

y1 ¼ y2 ¼ ðy1þy2Þ=2.
If instead the TV norm is used, i.e. plðjy1�y2jÞ is replaced by

ljy1�y2j in (5), then
(c)
 if y1�y2Zl, the minimizer is y1 ¼ y1�l=2,y2 ¼ y2þl=2.

(d)
 if y1�y2ol,the minimizer is y1 ¼ y2 ¼ ðy1þy2Þ=2.

When using the SATV penalty ljy1�y2j=ðjy1�y2jþeÞ, we have
(e)
 if ðy1�y2Þðy1�y2þeÞZl, the minimizer is y1 ¼ y1�l=ð2ðy1�

y2þeÞÞ,y2 ¼ y2þl=ð2ðy1�y2þeÞÞ.

(f)
 if ðy1�y2Þðy1�y2þeÞol, the minimizer is y1 ¼ y2 ¼ ðy1þy2Þ=2.
From the proposition, we see that for this simple two-pixel
image model, although both penalties have the effect of shrinking
y1 and y2 to be exactly equal to each other, the SCAD penalty has
the additional desired property that when the difference jy1�y2j is
large enough, no shrinkage is applied. This has the intuitive
appeal that when it is suspected an ‘‘edge’’ exists between two
pixels, no ‘‘borrowing of information’’ occurs across the edge.
From part (c) of the proposition the TV model is implicitly biased,
which is already known in more general contexts as shown in
[22,23]. Our experiments later also demonstrated this effect. From
the proof in the Appendix A it can be seen that this difference
arises basically from the fact that p0lðyÞ ¼ 0 when y is big enough.
Finally, although SATV has less bias for larger jy1�y2j, this bias
only vanishes asymptotically as jy1�y2j goes to infinity. One can
used in the experiments.
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also see the effect of the parameter e: larger e reduces the bias as
shown in part (e) of the proposition, but at the same time the
condition ðy1�y2Þðy1�y2þeÞol in part (f) is only satisfied for
smaller y1�y2, thus the parameter e represents a bias-sparsity
trade-off.

Compared to TV or SATV, optimization of the functional (4) is
more complicated since the functional is nonconvex and using
time evolution of the corresponding Euler–Lagrange equation (i.e.,
gradient descent) is potentially problematic. Thus we use the
following majorization-minimization (MM) algorithm instead.
Note that [5] also proposed an MM algorithm for standard TV
image denoising.

MM algorithm is a general technique for finding the minimizer
(or maximizer) of a function, say gðyÞ. Suppose yðkÞ represents the
current estimate of y in search of the minimizer, and let Q ðyjyðkÞÞ
denote a real-valued function of y whose form depends on yðkÞ.
The function Q ðyjyðkÞÞ is said to majorize g at the point yðkÞ if

Q ðyjyðkÞÞZgðyÞ for all y and Q ðyðkÞjyðkÞÞ ¼ gðyðkÞÞ:

If yðkþ1Þ is the minimizer of Q ðyjyðkÞÞ, then we have

gðyðkþ1Þ
ÞrQ ðyðkþ1Þ

jyðkÞÞrQ ðyðkÞjyðkÞÞ ¼ gðyðkÞÞ:

This descent property is the key to the celebrated numerical
stability of the MM algorithm. Since the well-known EM
algorithm is a special case of MM algorithm, many results from
the EM algorithm literature, such as those contained in [24], carry
over without change to MM algorithms. See also Theorems A.1
and A.3 in [25].
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Fig. 3. Comparison of MSE for the three methods for the image shown in
For our problem, we first majorize the SCAD penalty function
using its first order Taylor expansion at an initial estimated image
u(0) (we could simply set u(0)

¼ f for example):

plðjrujÞrplðjruð0ÞjÞþp0lðjruð0ÞjÞðjruj�jruð0ÞjÞ,

which is illustrated in Fig. 1(a) as the dotted line. Using this
approximation, we can repeatedly solve the problem:

uðkÞ ¼ arg min
u

Jf�uJ2
þ

Z
plðjruðk�1ÞjÞ

þp0lðjruðk�1ÞjÞðjruj�jruðk�1ÞjÞ, k¼ 1,2, . . . ,K ,

i.e., replacing the SCAD penalty by its upper bound and then
solving the new optimization problem. Getting rid of terms that
are independent of u, we are actually minimizing the following
functional

uðkÞ ¼ arg min
u

Jf�uJ2
þ

Z
p0lðjruðk�1ÞjÞjruj, k¼ 1,2, . . . ,K , ð6Þ

which is in the same form as the functional with SATV penalty (2)
with a weight function w¼ p0lðjruðk�1ÞjÞ that is different for each
iteration k. Thus the computation involved is almost identical to
SATV, with an extra outer loop that modifies the weight function
in each iteration. Formally, each inner loop will use the
evolutionary PDE derived from the Euler–Lagrange equation to
solve (6):

ut ¼r � p0lðjruðk�1ÞjÞ
ru

jruj

� �
�ðu�f Þ: ð7Þ

From this analogy with SATV, we can also see the advantage of
SCAD from another point of view: the weight function
w¼ p0lðjruðk�1ÞjÞ is bounded and thus there is no instability
60 80 100
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Fig. 2(a), with different noise levels: (a) s¼ 10; (b) s¼ 20; (c) s¼ 40.
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problem as when w is inversely proportional to the first
derivative, which makes an extra tuning parameter e unnecessary
in the SCAD model.

In summary, the MM algorithm for minimizing (4) goes as
follows:
�

Fig
mo

tha
Set u(0)
¼ f
�

250

300
e=1
e=10
e=100
for k¼1:K
Minimize the convex function (6) by evolving the Euler–

Lagrange Eq. (7). The gradient r¼ ð@x,@yÞ is simply approxi-

mated by the difference of intensities of neighboring pixels

and jruj in the denominator is approximated by

jruj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

xþu2
yþb

2
q

with b¼ 0:001.
�

100

150

200

M
S

E

end for

From the general property of the MM algorithm, it produces a
sequence of monotonically decreasing values of the objective
functional (4) which makes the algorithm very stable. In practice
for our experiments, we find that the number of iterations K can
be taken as small as K¼2, thus the running time of the algorithm
is comparable to both standard TV and SATV.
0 20 40 60 80 100
50

lambda

Fig. 5. Comparison of MSE for the SATV model when different values for e are

chosen, with noise level s¼ 20.
4. Monte-Carlo SURE for regularization parameter selection

In all the above methods the value of the regularization
parameter chosen largely determines the quality of the denoised
image. We use MSE as the criterion for judging the relative merits
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. 4. The histogram of restored image intensities overlaid on top of each other. (a) H

del. (b) Histogram of restored image intensities obtained by SCAD over that obtaine

t obtained by SATV model.
of different methods in this paper, which is defined by

1

N
Ju�ûJ2,

where we take the original image u as a N-dimensional vector and
û is the restored image. Note that we will consider the discrete
formulation in this section. To calculate MSE we need to have the
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 over TV
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istogram of restored image intensities obtained by SATV over that obtained by TV

d by TV model. (c) Histogram of restored image intensities obtained by SCAD over



ARTICLE IN PRESS

0 20 40 60 80 100
0

50

100

150

200

250

lambda

M
S

E

MSE
SURE

Fig. 6. MSE and SURE estimate for the SCAD method.

Table 1
MSE of using different methods on the image shown in Fig. 2(b).

Noise level TV SATV SCAD

s¼ 20 31.97 24.96(e¼100) 17.13

s¼ 40 114.71 95.76(e¼100) 92.00

s¼ 80 415.11 387.10(e¼100) 383.77

Table 2
MSE of using different methods on the image shown in Fig. 2(c).

Noise level TV SATV SCAD

s¼ 10 37.02 34.10 (e¼10) 29.10

s¼ 20 99.37 92.46(e¼10) 77.39

s¼ 40 370.68 275.08(e¼10) 266.65

s¼ 80 886.95 858.32(e¼100) 805.66

Fig. 7. Four images obtained from ALOI used for te

A. Chopra, H. Lian / Pattern Recognition 43 (2010) 2609–2619 2615
prior knowledge of the noise-free image which in most realistic
scenarios is unavailable. When the noise is Gaussian, [15]
proposed a technique called Monte-Carlo SURE, which does not
require any prior knowledge of the noise-free image or the
specific nature of the denoising algorithm. For the purpose of
presenting this method, we now should change to a discrete
formulation. For a noisy image f¼u+n, formulated in the discrete
domain, and a denoising algorithm considered abstractly as a
mapping û ¼Mðf Þ that returns a restored image û with f as the
input, [15] proved that

1

N
Jf�Mðf ÞJ2

�s2þ
2s2

N
divf Mðf Þ ð8Þ

is an unbiased estimator of the true MSE, where s is the standard
deviation of the Gaussian noise and divfM(f) is the divergence of
the multivariate function M. Note in our context the mapping M

implicitly depends on the regularization parameter l. Direct
calculation of divfM(f) is not feasible except for simple linear
filtering operation, and [15] used the Monte-Carlo approximation

divf Mðf Þ � bT
ðMðf þebÞ�Mðf ÞÞ,

where b is a N-dimensional vector with i.i.d. standard normal
random components, and e is a small positive constant. That is, we
artificially add more noise to the observed image and run the
same denoising algorithm again and then approximate the
divergence based on the differences of the two recovered images.
We will use Monte-Carlo SURE to choose the regularization
parameter whenever required in the next section. Since the noise
level is assumed to be unknown in our experiments, some pilot
estimate of s should be plugged into Eq. (8). In all our
experiments, we used the following simple estimate that is quite
robust empirically for blocky images:

ŝ ¼medianfjfi�fjjg=0:954, ð9Þ

where f¼(f1,y,fN) is the observed image and the differences fi� fj

are taken over all neighboring pixels (four neighbors for each
pixel). This estimate is based on the fact that with a normal
random variable X �Nð0,2s2Þ, medianðjXjÞ � 0:954s. Related to
sting the performances of different methods.
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this proposal, median-based noise estimate in the wavelet
domain has been adopted by [26].
5. Experiments

First we compare the performances of the three approaches TV,
SATV and SCAD using a simple black-and-white image shown in
Fig. 2(a). In this first experiment, we do not choose any single
regularization parameter but compare the performance over a
whole wide range of regularization parameters. Independent
Gaussian noise with standard deviations s¼ 10,20 and 40 are
added to the original image and taken as the observed noisy input.
For the initial step of SATV, we use TV with optimal parameter l
to estimate the weight function. We also search for a good value
of e in the second step (based on minimization of the true MSE)
for eAf1,10,100,500g, it turns out for all three different noise
levels for this image e¼10 gives the best result. Note that we
consider the intensity values of an image to be in the range of
[0,255]. Both choices actually make the results more favorable for
SATV, but we will see that even so it is being outperformed by
SCAD. Fig. 3 shows the evolution of the true MSE using different
regularization parameters for the three methods, with different
subfigures illustrating the observed image with different noise
levels. From these figures, it is clearly seen that SCAD performs
Table 3
MSE for different methods applied to four object images obtained from ALOI when

s¼ 40.

TV SATV SCAD

duck 77.20 75.80 (e¼100) 69.70

person 93.22 84.89(e¼100) 79.35

board 82.58 74.95(e¼100) 68.87

fish 70.99 63.69(e¼100) 55.58

Fig. 8. Zooming into part of the image from the denoising re
better than SATV, while both are significantly better than TV. To
get some insights into the effect of the different penalties, the
image histograms for the recovered images are shown in Fig. 4
for the case of s¼ 20. One can see from the histograms of the
TV-based restoration that the TV estimate is biased, in that black
colored pixel intensities (with original intensity value of zero)
are generally shifted up while white colored pixel intensities
(with original intensity of 255) are shifted down, consistent with
the proposition stated previously. While SATV only partially
addresses this, SCAD seems to be more efficient in solving this
bias problem. Besides, Fig. 4(c) demonstrates that for the
recovered image using the SCAD penalty, the histogram is more
peaked and thus resulting in smaller MSE.

Using this experiment, we can also see the effect of e on the
result. As stated above e¼10 is optimal for SATV for this image.
We see from Fig. 5 that using e¼1 or e¼100 makes the MSE
bigger. Specifically, using e¼1 enlarged the minimum MSE
from 51.40 to 68.21, or by 34%, while using e¼100 enlarged
MSE by 13%. Based on the suggestion from one referee, for this
experiment, we further search for optimal e using a finer grid
(5,10,15,y). For three noise levels, the optimal MSEs from the
SATV model are 11.81, 50.03 and 226.05, respectively. In
comparison the MSEs from the SCAD method are 6.41, 31.01
and 221.57, respectively. Unfortunately there is no universally
best value for e, and our later experiments demonstrate that for
different images the optimal e is difficult to predict. Choosing a
wrong value for e makes the performance of SATV more
unpredictable. Although e could be selected by similar methods
that have been developed for selecting l, for example using
Monte-Carlo SURE, this at least increases significantly the
computational burden of the algorithm. And even with a good
estimate of e, our result here shows that it is still worse than SCAD
in terms of the MSE criterion.

We also use this test image of size 400�400 to give the
readers some idea of the running time of different algorithms.
sults on the duck image using (a) TV (b) SATV (c) SCAD.
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Exact comparison is difficult since each algorithm is iterative in
nature and the number of iterations used determine the running
time. In our implementation, we always use 100 iterations when
performing gradient descent evolution. The SATV uses the TV
result to compute the weight function. The SCAD model with K¼2
also has 200 iterations in total. Thus we expect the running times
of TV and SCAD are similar. Indeed, the time used in denoising for
TV, SATV and SCAD are 6.35, 14.00 and 15.37 s, respectively.

Our second experiment uses images as shown in Fig. 2(b) and
(c). The former is still a black-and-white image with thicker
nested squares. The latter is an image similar in structure to
Fig. 2(a) but with different grayscale levels and also rotated by
451. Image Fig. 2(b) is clearly easier to denoise due to the larger
scale of its features, thus we choose to add Gaussian noise with
standard deviations s¼ 20,40,80. For image (c) we use four
different levels s¼ 10,20,40,80. The regularization parameters
Fig. 9. Zooming into part of the image from the denoising results on

Table 4
MSE for different methods applied to five test images when s¼ 20.

TV SATV SCAD

barbara 174.52 171.13 (e¼10) 168.53

lena 92.08 89.83(e¼10) 89.11

mandrill 209.54 209.03(e¼100) 209.71

boat 115.59 111.82(e¼10) 112.80

house 78.10 74.73(e¼100) 74.12
now are selected using Monte-Carlo SURE as briefly described
previously with s assumed unknown and estimated using (9). The
effectiveness of Monte-Carlo SURE in general has been demon-
strated for some methods including the TV model in [15]. We
additionally verified its performance in our SCAD model under
several situations and found it to be quite accurate for our
proposed model. As an illustration, for denoising the image shown
in Fig. 2(b) with s¼ 20, we demonstrate that Monte-Carlo SURE
accurately predicts the true MSE in Fig. 6. The MSE of the
restoration results for the two images are presented in Tables 1
and 2, respectively. For the SATV method, the optimal values of e

in each situation is also indicated in the table. Note that the
optimal e is found from the true MSE and thus the results
presented are favorable for the SATV method. The reader can now
see that different situations require different choices of e and
there seems to be no universal way of specifying a good value a
priori. The conclusion is the same as before: SCAD is superior to
SATV.

Next, we use some slightly more complicated images to test
the performances. Amsterdam Library of Object Images (ALOI,
http://staff.science.uva.nl/simaloi/) is a color image collection of
one-thousand small objects, recorded for scientific purposes. We
pick four images as shown in Fig. 7 and transform them to
grayscale images, which looks close to piece-wise constant
visually. Gaussian noises with standard deviation of 40 are
added to each image and different methods are applied. The
results in terms of MSE are presented in Table 3, and the method
the Barbara image with s¼ 20 using (a) TV (b) SATV (c) SCAD.

http://staff.science.uva.nl/simaloi/
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using the SCAD penalty is still the best even for these more
complicated images. The denoising results for the duck image
are shown in Fig. 8. Since it is visually difficult to distinguish
the restored images in print using different methods, we
choose not to show the restored images here, but the images
are available from http://www3.ntu.edu.sg/home/henglian/
SCADcode/ in MATLAB’s .fig format, where the reader can also
find the MATLAB codes used in our implementations.

Finally, we perform some experiments on five standard test
images: Barbara, Lena, Mandrill, Boat and House. The MSE are
presented in Table 4. Both SATV and SCAD produce comparable or
better results than simple TV model. However, note that our
implementation is biased favorably towards SATV in that the
optimal parameter e is used based on minimization of the MSE.
The results for the Barbara image are shown in Fig. 9 while the
rest are provided on the same website mentioned above.
6. Conclusion

In this paper, we proposed a new penalization functional for
image denoising. The penalty function is directly motivated by the
well-known oracle property of the SCAD penalty from the
statistical literature originally proposed for high-dimensional
statistical regression problems. Using a simple argument in a
maybe overly simplistic situation, i.e., our two-pixel image model
(5), we show that the functional with SCAD penalty solves the bias
problem inherent in TV regularization, which is also verified by
our experimental results. Compared to spatially adaptive TV, the
newly proposed method gets rid of the headache of choosing an
extra parameter that controls the stability and adaptivity of the
algorithm, and achieves better mean squared error at the same
time. Our goal in this paper is not to propose a general image
denoising method to compete with the state-of-the-art such as
the wavelet-based method or the nonlocal mean [27] which has
become very popular recently, but to show that a carefully
designed penalty function can improve existing PDE-based
approaches without extra computational burden. Due to its
shrinkage to zero of the first order differences, the method is
most suitable for recovering blocky images. For TV regularization,
some extensions using higher order derivatives have been
proposed, but this is outside the scope of the current paper.
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Appendix A
Proof of the Proposition. We only prove the proposition for
parts (a) and (b), the proofs for parts (c)–(f) are similar and
slightly simpler. Let Q ðy1,y2Þ ¼ ðy1�y1Þ

2
þðy2�y2Þ

2
þplðjy1�y2jÞ.

Obviously the minimizer satisfies y1Zy2 when y1Zy2 (otherwise
exchanging the values of y1 and y2 makes the functional smaller).
The partial derivatives are (for y14y2)

@Q

@y1
¼ 2ðy1�y1Þþp0lðjy1�y2jÞ,

@Q

@y2
¼ 2ðy2�y2Þ�p0lðjy1�y2jÞ:

The complication only comes from nondifferentiability when
y1 ¼ y2. When constrained to y1 ¼ y2, it is easy to see from the
quadratic form of Q that the only potential minimizer is y1 ¼
y2 ¼ ðy1þy2Þ=2. Meanwhile, when y1�y24al, we have
Q ððy1þy2Þ=2,ðy1þy2Þ=2Þ ¼ ðy1�y2Þ

2=24 ðaþ1Þl2=2¼ plðjy1�y2 jÞ

¼Q ðy1,y2Þ. Here the equality ðaþ1Þl2=2¼ plðjy1�y2jÞ follows
directly from the definition of the SCAD penalty which is also
explicitly written out in [28]. Thus the minimizer must satisfy
y1ay2 and the functional is differentiable near the minimizer,
which in turn implies that both partial derivatives are equal to
zero. Adding and subtracting the two partial derivatives, we get

y1þy2 ¼ y1þy2, ð10Þ

y1�y2 ¼ y1�y2�p0lðjy1�y2jÞ: ð11Þ

From (11), y1�y2 is a solution to the equation xþp0lðxÞ ¼ y1�y2.
The function on the left hand side, when written down explicitly,
is

xþp0lðxÞ ¼

lþx xol
al

a�1
þ 1�

1

a�1

� �
x lrxral

x x4al,

8>>><
>>>:

ð12Þ

which is strictly increasing for x40 and the equation
xþp0lðxÞ ¼ y1�y2 obviously has a unique solution x¼y1�y2 when
y1�y24al. Combining this with (10), we get y1 ¼ y1,y2 ¼ y2, and
part (a) is proved. &

For part (b), if the minimizer satisfies y1ay2 so that the
minimizer is a stationary point, then y1�y240 is a solution to the
equation xþp0lðxÞ ¼ y1�y2 by exactly the same arguments as
before. From (12), it is easy to see that the left hand side is
bounded below by l40 and thus there exists no solution when
y1�y2ol, leading to a contradiction. Now with the constraint
y1 ¼ y2, it is immediate from the form of the functional Q ðy1,y2Þ

that y1 ¼ y2 ¼ ðy1þy2Þ=2.
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