organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline

F. Nawaz Khan,^a S. Mohana Roopan,^a Venkatesha R. Hathwar^b and Mehmet Akkurt^c*

^aOrganic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey Correspondence e-mail: akkurt@erciyes.edu.tr

Received 24 March 2010; accepted 28 March 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.089; data-to-parameter ratio = 14.1.

In the title compound, $C_{15}H_{12}ClN_3O$, the quinoline ring system is essentially planar, with a maximum deviation of 0.017 (1) Å. The crystal packing is stabilized by π - π stacking interactions between the quinoline rings of adjacent molecule, with a centroid-centroid distance of 3.5913 (8) Å. A weak C-H··· π contact is also observed between molecules.

Related literature

For pyrimidine analogues, see: Svenstrup *et al.* (2008). For quinoline analogues, see: Roopan & Khan (2009); Khan *et al.* (2009, 2010*a,b*). For the biological activity and mode of action of alkylating agent, see: Singer (1986). For the synthesis and regioselective alkylation of 4(3H)-pyrimidone, see: Roopan *et al.* (2010). For bond-length data, see: Allen *et al.* (1987). For a structural discussion on hydrogen bonding, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{12}ClN_{3}O\\ M_{r}=285.73\\ \text{Monoclinic, }P2_{1}/n\\ a=11.9975 \ (2) \ \text{\AA}\\ b=8.45037 \ (15) \ \text{\AA}\\ c=12.95869 \ (19) \ \text{\AA}\\ \beta=96.7619 \ (16)^{\circ} \end{array}$

 $V = 1304.66 (4) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.29 \text{ mm}^{-1}$ T = 295 K $0.23 \times 0.18 \times 0.15 \text{ mm}$

CrossMan

13753 measured reflections

 $R_{\rm int} = 0.031$

2564 independent reflections

2005 reflections with $I > 2\sigma(I)$

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer Absorption correction: multi-scan (*CrysAlis PRO RED*; Oxford Diffraction, 2009) $T_{\rm min} = 0.936, T_{\rm max} = 0.958$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.033$	182 parameters
$vR(F^2) = 0.089$	H-atom parameters constrained
S = 1.07	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
2564 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 is the centroid of the C4–C9 ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C10-H10A\cdots Cg3^{i}$	0.97	2.72	3.5132 (15)	140
Symmetry code: (i) $-x$	+1, -y + 1, -	z.		

Data collection: *CrysAlis PRO CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis PRO CCD*; data reduction: *CrysAlis PRO RED* (Oxford Diffraction, 2009); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON* (Spek, 2009).

We thank the FIST program for the data collection at SSCU, IISc, Bangalore and Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2289).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010a). Acta Cryst. E66, 0200.
- Khan, F. N., Mohana Roopan, S., Hathwar, V. R. & Ng, S. W. (2010b). Acta Cryst. E66, o201.
- Khan, F. N., Subashini, R., Roopan, S. M., Hathwar, V. R. & Ng, S. W. (2009). Acta Cryst. E65, 02686.
- Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England.
- Roopan, S. M. & Khan, F. N. (2009). ARKIVOC, xiii, 161-169.
- Roopan, S. M., Khan, F. N. & Mandal, B. K. (2010). *Tetrahedron Lett.* doi:org/ 10.1016/j.tetlet.2010.02.128.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Singer, B. (1986). Cancer Res. 46, 4879-4885.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Svenstrup, N., Kuhl, A., Ehlert, K. & Habich, D. (2008). Bioorg. Med. Chem. Lett. 18, 3215–3218.

supplementary materials

Acta Cryst. (2010). E66, o1010 [doi:10.1107/S1600536810011694]

2-Chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline

F. N. Khan, S. M. Roopan, V. R. Hathwar and M. Akkurt

Comment

Alkylating agents have been studied extensively both for their biological effects and for their mode of action (Singer *et al.*, 1986). There have been over the past 25 years a veritable deluge of reviews, often focusing on a single aspect or agent or adduct. Direct alkylation of oxygens in pyrimidine nucleosides, under physiological conditions, has been known only since the middle 1970s. The pyrimidine analogues (Svenstrup *et al.*, 2008) such as naturally occurring azacamptothecin based molecule have been focused of great interest by reason of their diversified biological activities. Thus, modifications of biologically active azacamptothecin synthesis and regioselective alkylation of 4(3H)-pyrimidone (Roopan *et al.*, 2010), we report herein the synthesis of 2-chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline.

In the molecule of the title compound, Fig. 1, bond lengths and angles are in normal ranges (Allen *et al.*, 1987). The quinoline ring system (N1/C1–C9) is essentially planar, with a maximum deviation of -0.017 (1) Å for atom C1. The quinoline system (N1/C1–C9) makes a dihedral angle of 4.99 (6)° with the piyrimidone ring (N2/N3/C11–C14).

In the title molecule, there is a weak intramolecular C—H···O interaction, generating an S(5) graph-set motif (Bernstein *et al.*, 1995) (Table 1). The crystal packing is stabilized by π - π stacking interactions between the benzene rings of the quinoline ring system of the molecules related by the symmetry operator (1-x, 1-y, -z) [centroid-to-centroid distance = 3.5913 (8) Å]. In addition, a weak C—H··· π contact is also observed between molecules (Table 1). The packing diagram viewing down the b-axis is shown in Fig. 2.

Experimental

To a mixed well solution of 4(3*H*)-pyrimidone (96 mg, 1 mmol, in 5 ml DMSO), NaH (25 mg, 1 mmol) and 2-chloro-3-(chloromethyl)-8-methylquinoline (225 mg, 1 mmol) were added and the resulting mixture was refluxed for 1 h. Completion of the reaction was monitored by TLC. After the completion of the reaction, cooled and removed the excess of solvent under reduced pressure. Crushed ice was mixed with the residue. White solid was formed, filtered and dried, purified by column chromatography using hexane and ethylacetate as the eluant. The low polar compound was subjected into crystallization by solvent evaporation from a solution of the compound in chloroform.

Refinement

All H atoms were placed in geometrically idealised positions and constrained to ride on their parent atoms (C—H = 0.93, 0.96 and 0.97 Å) and $U_{iso}(H)$ values were taken to be equal to 1.2 $U_{eq}(C)$ for aromatic and methylene H atoms and 1.5 $U_{eq}(C)$ for methyl H atoms.

Figures

Fig. 1. The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Packing diagram of the title compound viewed down b-axis. All H atoms have been omitted for clarity.

2-Chloro-8-methyl-3-[(pyrimidin-4-yloxy)methyl]quinoline

Crystal data

C ₁₅ H ₁₂ ClN ₃ O	F(000) = 592
$M_r = 285.73$	$D_{\rm x} = 1.455 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 1065 reflections
<i>a</i> = 11.9975 (2) Å	$\theta = 2.5 - 26.0^{\circ}$
b = 8.45037 (15) Å	$\mu = 0.29 \text{ mm}^{-1}$
c = 12.95869 (19) Å	T = 295 K
$\beta = 96.7619 \ (16)^{\circ}$	Prism, colourless
$V = 1304.66 (4) \text{ Å}^3$	$0.23\times0.18\times0.15~mm$
Z = 4	

Data collection

Oxford Xcalibur Eos (Nova) CCD detector diffractometer	2564 independent reflections
Radiation source: Enhance (Mo) X-ray Source	2005 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \theta_{\text{min}} = 2.5^{\circ}$
Absorption correction: multi-scan (CrysAlis Pro RED; Oxford Diffraction, 2009)	$h = -14 \rightarrow 14$
$T_{\min} = 0.936, T_{\max} = 0.958$	$k = -10 \rightarrow 10$
13753 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
---------------------	--

Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.089$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_o^2) + (0.0503P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2564 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
182 parameters	$\Delta \rho_{\text{max}} = 0.18 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.20 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors wR and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1	0.52448 (3)	0.22861 (5)	-0.21533 (3)	0.0452 (2)
01	0.35909 (9)	0.13571 (11)	0.06428 (7)	0.0413 (4)
N1	0.66190 (10)	0.38546 (12)	-0.08362 (8)	0.0315 (4)
N2	0.22497 (11)	-0.02532 (14)	-0.02386 (9)	0.0398 (4)
N3	0.08616 (12)	-0.14701 (16)	0.06771 (13)	0.0569 (6)
C1	0.57162 (12)	0.30022 (16)	-0.09125 (10)	0.0297 (4)
C2	0.50756 (12)	0.25855 (14)	-0.01007 (10)	0.0282 (4)
C3	0.54805 (12)	0.31329 (15)	0.08638 (10)	0.0299 (4)
C4	0.69272 (13)	0.46034 (15)	0.20041 (11)	0.0365 (5)
C5	0.78847 (14)	0.54796 (16)	0.20983 (12)	0.0418 (5)
C6	0.84248 (13)	0.58407 (16)	0.12263 (12)	0.0399 (5)
C7	0.80215 (13)	0.53220 (16)	0.02491 (11)	0.0345 (5)
C8	0.70266 (12)	0.43947 (15)	0.01381 (10)	0.0291 (4)
С9	0.64712 (12)	0.40438 (15)	0.10159 (10)	0.0296 (4)
C10	0.40366 (12)	0.16051 (16)	-0.03229 (10)	0.0327 (5)
C11	0.26755 (13)	0.04265 (16)	0.06302 (11)	0.0344 (5)
C12	0.22415 (15)	0.02264 (18)	0.15667 (12)	0.0459 (6)
C13	0.13310 (16)	-0.0742 (2)	0.15376 (15)	0.0551 (7)
C14	0.13543 (15)	-0.11672 (19)	-0.01572 (14)	0.0514 (6)
C15	0.86040 (14)	0.57135 (18)	-0.06845 (13)	0.0465 (6)
H3	0.50970	0.29010	0.14280	0.0360*
H4	0.65740	0.43730	0.25880	0.0440*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supplementary materials

Н5	0.81850	0.58440	0.27500	0.0500*
H6	0.90750	0.64490	0.13120	0.0480*
H10A	0.34910	0.21490	-0.08100	0.0390*
H10B	0.42140	0.05980	-0.06240	0.0390*
H12	0.25520	0.07210	0.21750	0.0550*
H13	0.10170	-0.09080	0.21520	0.0660*
H14	0.10390	-0.16500	-0.07680	0.0620*
H15A	0.92390	0.63810	-0.04780	0.0700*
H15B	0.80920	0.62550	-0.11900	0.0700*
H15C	0.88530	0.47550	-0.09820	0.0700*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0438 (3)	0.0642 (3)	0.0278 (2)	-0.0083 (2)	0.0045 (2)	-0.0068 (2)
01	0.0385 (7)	0.0543 (6)	0.0322 (6)	-0.0162 (5)	0.0092 (5)	-0.0009 (5)
N1	0.0286 (7)	0.0364 (6)	0.0301 (6)	0.0026 (5)	0.0059 (5)	0.0019 (5)
N2	0.0355 (8)	0.0428 (7)	0.0406 (7)	-0.0044 (6)	0.0027 (6)	0.0005 (6)
N3	0.0425 (10)	0.0507 (9)	0.0792 (11)	-0.0086 (7)	0.0143 (8)	0.0065 (8)
C1	0.0293 (8)	0.0340 (7)	0.0259 (7)	0.0036 (6)	0.0034 (6)	-0.0007 (5)
C2	0.0268 (8)	0.0278 (7)	0.0303 (7)	0.0045 (6)	0.0046 (6)	0.0023 (6)
C3	0.0307 (9)	0.0319 (7)	0.0280 (7)	0.0033 (6)	0.0078 (6)	0.0029 (6)
C4	0.0409 (10)	0.0368 (8)	0.0313 (8)	0.0009 (7)	0.0025 (7)	0.0009 (6)
C5	0.0469 (11)	0.0396 (8)	0.0362 (8)	0.0005 (7)	-0.0062 (7)	-0.0046 (6)
C6	0.0315 (9)	0.0359 (8)	0.0507 (9)	-0.0041 (7)	-0.0015 (7)	-0.0012 (7)
C7	0.0306 (9)	0.0316 (8)	0.0418 (8)	0.0017 (6)	0.0060 (7)	0.0014 (6)
C8	0.0279 (8)	0.0285 (7)	0.0309 (7)	0.0037 (6)	0.0035 (6)	0.0006 (5)
C9	0.0297 (8)	0.0279 (7)	0.0310 (7)	0.0037 (6)	0.0029 (6)	0.0021 (5)
C10	0.0310 (9)	0.0386 (8)	0.0288 (7)	-0.0009 (6)	0.0054 (6)	0.0011 (6)
C11	0.0295 (9)	0.0343 (8)	0.0399 (8)	-0.0010 (6)	0.0063 (7)	0.0045 (6)
C12	0.0498 (11)	0.0489 (9)	0.0417 (9)	-0.0058 (8)	0.0165 (8)	0.0004 (7)
C13	0.0533 (12)	0.0523 (10)	0.0647 (12)	-0.0042 (9)	0.0281 (10)	0.0087 (9)
C14	0.0422 (11)	0.0501 (10)	0.0605 (11)	-0.0089 (8)	0.0008 (9)	-0.0019 (8)
C15	0.0387 (10)	0.0498 (10)	0.0526 (10)	-0.0108 (8)	0.0119 (8)	0.0019 (7)

Geometric parameters (Å, °)

Cl1—C1	1.7485 (14)	С7—С8	1.421 (2)
O1—C10	1.4330 (16)	C7—C15	1.504 (2)
O1—C11	1.3493 (18)	C8—C9	1.4158 (19)
N1—C1	1.2948 (18)	C11—C12	1.386 (2)
N1—C8	1.3770 (17)	C12—C13	1.362 (3)
N2—C11	1.3126 (18)	С3—Н3	0.9300
N2—C14	1.337 (2)	C4—H4	0.9300
N3—C13	1.338 (2)	С5—Н5	0.9300
N3—C14	1.317 (2)	С6—Н6	0.9300
C1—C2	1.4184 (19)	C10—H10A	0.9700
C2—C3	1.3672 (18)	C10—H10B	0.9700
C2C10	1.496 (2)	C12—H12	0.9300

С3—С9	1.410 (2)	С13—Н13	0.9300
C4—C5	1.360 (2)	C14—H14	0.9300
C4—C9	1.4134 (19)	C15—H15A	0.9600
C5—C6	1.401 (2)	C15—H15B	0.9600
C6—C7	1.373 (2)	C15—H15C	0.9600
Cl1···C15 ⁱ	3.5264 (17)	C5…H10A ^{vi}	2.9800
Cl1…H10A	2.8900	C6…H10A ^{vi}	2.8600
Cl1···H10B	2.8400	C7…H10A ^{vi}	2.9500
Cl1···H14 ⁱⁱ	3.0800	C10…H10B ^v	2.9600
O1…H3	2.3600	C11···H15B ^{vi}	3.0700
N1…H15B	2.7600	C12···H15B ^{vi}	3.0300
N1…H15C	2.8100	H3…O1	2.3600
N2…H10A	2.6700	H3…H4	2.5100
N2…H10B	2.5700	H4…H3	2.5100
N2…H4 ⁱⁱⁱ	2.9300	H4…N2 ^{ix}	2.9300
N3…H15A ^{iv}	2.9400	H5····C3 ^x	2.9800
N3…H15C ^v	2.8200	H6…H15A	2.3500
C1···C3 ^{vi}	3.5712 (19)	H10A…Cl1	2.8900
$C1 \cdots C11^{v}$	3.476 (2)	H10A…N2	2.6700
C2···C8 ^{vi}	3.5842 (19)	H10A···C5 ^{vi}	2.9800
C2···C9 ^{vi}	3.5278 (18)	H10A…C6 ^{vi}	2.8600
C3…C1 ^{vi}	3.5712 (19)	H10A…C7 ^{vi}	2.9500
$C7 \cdots C14^{v}$	3.595 (2)	H10B…Cl1	2.8400
C7…C10 ^{vi}	3.592 (2)	H10B…N2	2.5700
C8····C2 ^{vi}	3.5842 (19)	H10B····C2 ^v	2.9400
$C8 \cdots C14^{v}$	3.347 (2)	H10B····C10 ^v	2.9600
C9····C2 ^{vi}	3.5278 (18)	$H10B$ ··· $H10B^{v}$	2.5400
C10····C7 ^{vi}	3.592 (2)	H14…Cl1 ^{xi}	3.0800
C10C10 ^v	3.598 (2)	H15A…N3 ^{xii}	2.9400
C11···C1 ^v	3.476 (2)	H15A…H6	2.3500
C14····C8 ^v	3.347 (2)	H15B…N1	2.7600
C14····C7 ^v	3.595 (2)	H15B…C11 ^{vi}	3.0700
C15…Cl1 ^{vii}	3.5264 (17)	H15B…C12 ^{vi}	3.0300
C2···H10B ^v	2.9400	H15C…N1	2.8100
C3…H5 ^{viii}	2.9800	H15C…N3 ^v	2.8200
C10—O1—C11	117.49 (10)	N3—C13—C12	123.83 (17)
C1—N1—C8	117.26 (11)	N2—C14—N3	128.27 (16)
C11—N2—C14	114.85 (13)	С2—С3—Н3	119.00
C13—N3—C14	114.15 (15)	С9—С3—Н3	119.00
Cl1—C1—N1	116.09 (10)	C5—C4—H4	120.00
Cl1—C1—C2	116.83 (10)	С9—С4—Н4	120.00
N1—C1—C2	127.08 (12)	С4—С5—Н5	120.00
C1—C2—C3	115.39 (12)	С6—С5—Н5	120.00

supplementary materials

C1—C2—C10	120.44 (11)	С5—С6—Н6	119.00
C3—C2—C10	124.17 (12)	С7—С6—Н6	119.00
C2—C3—C9	121.02 (12)	O1-C10-H10A	110.00
C5—C4—C9	119.75 (14)	O1-C10-H10B	110.00
C4—C5—C6	120.81 (14)	C2-C10-H10A	110.00
C5—C6—C7	121.88 (14)	C2-C10-H10B	110.00
C6—C7—C8	118.03 (13)	H10A-C10-H10B	108.00
C6—C7—C15	121.68 (14)	C11—C12—H12	122.00
C8—C7—C15	120.29 (13)	C13—C12—H12	122.00
N1—C8—C7	118.62 (12)	N3—C13—H13	118.00
N1—C8—C9	121.15 (12)	С12—С13—Н13	118.00
С7—С8—С9	120.23 (12)	N2-C14-H14	116.00
C3—C9—C4	122.63 (12)	N3-C14-H14	116.00
C3—C9—C8	118.08 (12)	С7—С15—Н15А	109.00
C4—C9—C8	119.29 (13)	С7—С15—Н15В	109.00
O1—C10—C2	107.52 (10)	С7—С15—Н15С	109.00
O1—C11—N2	119.96 (13)	H15A—C15—H15B	109.00
O1—C11—C12	116.72 (13)	H15A—C15—H15C	109.00
N2-C11-C12	123.31 (14)	H15B—C15—H15C	109.00
C11—C12—C13	115.58 (15)		
C11—O1—C10—C2	-176.75 (11)	C2—C3—C9—C4	-178.71 (13)
C11—O1—C10—C2 C10—O1—C11—N2	-176.75 (11) 2.21 (19)	C2—C3—C9—C4 C2—C3—C9—C8	-178.71 (13) 0.9 (2)
C11—O1—C10—C2 C10—O1—C11—N2 C10—O1—C11—C12	-176.75 (11) 2.21 (19) -178.68 (13)	C2—C3—C9—C4 C2—C3—C9—C8 C9—C4—C5—C6	-178.71 (13) 0.9 (2) 0.2 (2)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C11	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C11 C8-N1-C1-C2	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10) 1.6 (2)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C11 C8-N1-C1-C2 C1-N1-C8-C7	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10) 1.6 (2) 179.47 (12)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8 C4-C5-C6-C7	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10) 1.6 (2) 179.47 (12) -0.69 (19)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8 C4-C5-C6-C7 C5-C6-C7-C8	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C11 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10) 1.6 (2) 179.47 (12) -0.69 (19) 179.03 (13)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8 C4-C5-C6-C7 C5-C6-C7-C8 C5-C6-C7-C15	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-C12	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10) 1.6 (2) 179.47 (12) -0.69 (19) 179.03 (13) 0.0 (2)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8 C4-C5-C6-C7 C5-C6-C7-C8 C5-C6-C7-C15 C6-C7-C8-N1	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-C12 C11-N2-C14-N3	-176.75 (11) 2.21 (19) -178.68 (13) -178.15 (10) 1.6 (2) 179.47 (12) -0.69 (19) 179.03 (13) 0.0 (2) -0.5 (2)	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8 C4-C5-C6-C7 C5-C6-C7-C8 C5-C6-C7-C15 C6-C7-C8-N1 C6-C7-C8-C9	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12) 0.8 (2)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-C12 C11-N2-C14-N3 C14-N3-C13-C12	-176.75 (11) 2.21 (19) $-178.68 (13)$ $-178.15 (10)$ 1.6 (2) 179.47 (12) $-0.69 (19)$ 179.03 (13) 0.0 (2) $-0.5 (2)$ $-0.3 (2)$	C2-C3-C9-C4 C2-C3-C9-C8 C9-C4-C5-C6 C5-C4-C9-C3 C5-C4-C9-C8 C4-C5-C6-C7 C5-C6-C7-C8 C5-C6-C7-C15 C6-C7-C8-N1 C6-C7-C8-N1	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12) 0.8 (2) 0.6 (2)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-C12 C11-N2-C14-N3 C14-N3-C13-C12 C13-N3-C14-N2	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12) 0.8 (2) 0.6 (2) -179.20 (13)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-C12 C11-N2-C14-N3 C14-N3-C13-C12 C13-N3-C14-N2 C11-C1-C2-C3	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12) 0.8 (2) 0.6 (2) -179.20 (13) -0.48 (19)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C7 C14-N2-C11-O1 C14-N2-C11-C12 C11-N2-C14-N3 C14-N3-C13-C12 C13-N3-C14-N2 C11-C1-C2-C3 C11-C1-C2-C10	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \\ -1.18 \ (17) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12) 0.8 (2) 0.6 (2) -179.20 (13) -0.48 (19) 179.12 (12)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-O1 C14-N2-C14-N3 C14-N3-C13-C12 C13-N3-C14-N2 C11-C1-C2-C3 C11-C1-C2-C3	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \\ -1.18 \ (17) \\ -1.2 \ (2) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.71 \ (13) \\ 0.9 \ (2) \\ 0.2 \ (2) \\ -179.87 \ (13) \\ 0.6 \ (2) \\ -0.5 \ (2) \\ 0.0 \ (2) \\ 179.97 \ (14) \\ -179.40 \ (12) \\ 0.8 \ (2) \\ 0.6 \ (2) \\ -179.20 \ (13) \\ -0.48 \ (19) \\ 179.12 \ (12) \\ 179.36 \ (12) \end{array}$
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-C12 C11-N2-C14-N3 C14-N3-C13-C12 C13-N3-C14-N2 C11-C1-C2-C3 C11-C1-C2-C3 N1-C1-C2-C10	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \\ -1.18 \ (17) \\ -1.2 \ (2) \\ 179.08 \ (13) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.71 \ (13) \\ 0.9 \ (2) \\ 0.2 \ (2) \\ -179.87 \ (13) \\ 0.6 \ (2) \\ -0.5 \ (2) \\ 0.0 \ (2) \\ 179.97 \ (14) \\ -179.40 \ (12) \\ 0.8 \ (2) \\ 0.6 \ (2) \\ -179.20 \ (13) \\ -0.48 \ (19) \\ 179.12 \ (12) \\ 179.36 \ (12) \\ -1.0 \ (2) \end{array}$
C11-O1-C10-C2 $C10-O1-C11-N2$ $C10-O1-C11-C12$ $C8-N1-C1-C1$ $C8-N1-C1-C2$ $C1-N1-C8-C7$ $C1-N1-C8-C9$ $C14-N2-C11-O1$ $C14-N2-C11-C12$ $C11-N2-C14-N3$ $C14-N3-C13-C12$ $C13-N3-C14-N2$ $C11-C1-C2-C3$ $C11-C1-C2-C10$ $N1-C1-C2-C10$ $C1-C2-C3-C9$	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \\ -1.18 \ (17) \\ -1.2 \ (2) \\ 179.08 \ (13) \\ -0.14 \ (19) \end{array}$	C2-C3-C9-C4 $C2-C3-C9-C8$ $C9-C4-C5-C6$ $C5-C4-C9-C3$ $C4-C5-C6-C7$ $C5-C6-C7-C8$ $C5-C6-C7-C15$ $C6-C7-C8-N1$ $C6-C7-C8-N1$ $C15-C7-C8-N1$ $C15-C7-C8-N1$ $C15-C7-C8-C9$ $N1-C8-C9-C3$ $N1-C8-C9-C4$ $C7-C8-C9-C4$ $C7-C8-C9-C4$ $C7-C8-C9-C4$ $O1-C11-C12-C13$	-178.71 (13) 0.9 (2) 0.2 (2) -179.87 (13) 0.6 (2) -0.5 (2) 0.0 (2) 179.97 (14) -179.40 (12) 0.8 (2) 0.6 (2) -179.20 (13) -0.48 (19) 179.12 (12) 179.36 (12) -1.0 (2) -178.79 (14)
C11-O1-C10-C2 C10-O1-C11-N2 C10-O1-C11-C12 C8-N1-C1-C1 C8-N1-C1-C2 C1-N1-C8-C7 C1-N1-C8-C9 C14-N2-C11-O1 C14-N2-C11-O1 C14-N2-C14-N3 C14-N3-C13-C12 C13-N3-C14-N2 C11-C1-C2-C3 C11-C1-C2-C3 N1-C1-C2-C3 N1-C1-C2-C3-C9 C10-C2-C3-C9	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \\ -1.18 \ (17) \\ -1.2 \ (2) \\ 179.08 \ (13) \\ -0.14 \ (19) \\ 179.58 \ (12) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -178.71 \ (13) \\ 0.9 \ (2) \\ 0.2 \ (2) \\ -179.87 \ (13) \\ 0.6 \ (2) \\ -0.5 \ (2) \\ 0.0 \ (2) \\ 179.97 \ (14) \\ -179.40 \ (12) \\ 0.8 \ (2) \\ 0.6 \ (2) \\ -179.20 \ (13) \\ -0.48 \ (19) \\ 179.12 \ (12) \\ 179.36 \ (12) \\ -1.0 \ (2) \\ -178.79 \ (14) \\ 0.3 \ (2) \end{array}$
C11-O1-C10-C2 $C10-O1-C11-N2$ $C10-O1-C11-C12$ $C8-N1-C1-C1$ $C8-N1-C1-C2$ $C1-N1-C8-C7$ $C1-N1-C8-C9$ $C14-N2-C11-O1$ $C14-N2-C11-C12$ $C11-N2-C14-N3$ $C14-N3-C13-C12$ $C13-N3-C14-N2$ $C11-C1-C2-C3$ $C11-C1-C2-C3$ $C11-C1-C2-C3$ $N1-C1-C2-C3$ $N1-C1-C2-C3$ $N1-C1-C2-C3$ $C10-C2-C3-C9$ $C10-C2-C3-C9$ $C1-C2-C10-O1$	$\begin{array}{c} -176.75 \ (11) \\ 2.21 \ (19) \\ -178.68 \ (13) \\ -178.15 \ (10) \\ 1.6 \ (2) \\ 179.47 \ (12) \\ -0.69 \ (19) \\ 179.03 \ (13) \\ 0.0 \ (2) \\ -0.5 \ (2) \\ -0.3 \ (2) \\ 0.6 \ (3) \\ 178.55 \ (10) \\ -1.18 \ (17) \\ -1.2 \ (2) \\ 179.08 \ (13) \\ -0.14 \ (19) \\ 179.58 \ (12) \\ 178.90 \ (11) \end{array}$	C2-C3-C9-C4 $C2-C3-C9-C8$ $C9-C4-C5-C6$ $C5-C4-C9-C3$ $C5-C4-C9-C8$ $C4-C5-C6-C7$ $C5-C6-C7-C15$ $C6-C7-C8-N1$ $C6-C7-C8-N1$ $C15-C7-C8-N1$ $C15-C7-C8-C9$ $N1-C8-C9-C3$ $N1-C8-C9-C4$ $C7-C8-C9-C4$ $O1-C11-C12-C13$ $N2-C11-C12-C13$ $C13-C12-C13-N3$	$\begin{array}{c} -178.71 \ (13) \\ 0.9 \ (2) \\ 0.2 \ (2) \\ -179.87 \ (13) \\ 0.6 \ (2) \\ -0.5 \ (2) \\ 0.0 \ (2) \\ 179.97 \ (14) \\ -179.40 \ (12) \\ 0.8 \ (2) \\ 0.6 \ (2) \\ -179.20 \ (13) \\ -0.48 \ (19) \\ 179.12 \ (12) \\ 179.36 \ (12) \\ -1.0 \ (2) \\ -178.79 \ (14) \\ 0.3 \ (2) \\ -0.1 \ (3) \end{array}$

Symmetry codes: (i) -x+3/2, y-1/2, -z-1/2; (ii) -x+1/2, y+1/2, -z-1/2; (iii) x-1/2, -y+1/2, z-1/2; (iv) x-1, y-1, z; (v) -x+1, -y, -z; (vi) -x+1, -y+1, -z; (vii) -x+3/2, y+1/2, -z-1/2; (viii) -x+3/2, y-1/2, -z+1/2; (ix) x+1/2, -y+1/2, z+1/2; (x) -x+3/2, y+1/2, -z+1/2; (xi) -x+1/2, y-1/2, -z-1/2; (xii) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C4–C9 ring.						
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A		
С3—Н3…О1	0.93	2.36	2.7056 (17)	102		

C10—H10A····Cg3 ^{vi}	0.97	2.72	3.5132 (15)	140
Symmetry codes: (vi) $-x+1$, $-y+1$, $-z$.				

Fig. 2

Copyright of Acta Crystallographica: Section E (International Union of Crystallography - IUCr) is the property of International Union of Crystallography - IUCr and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.