organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-Acetyl-6-chloro-1-ethyl-4-phenylquinolin-2(1H)-one

R. Subashini,^a Venkatesha R. Hathwar,^b T. Maiyalagan,^a G. Ganesh Kumar Reddy^a and F. Nawaz Khan^a*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014. Tamil Nadu, India, and ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India Correspondence e-mail: nawaz_f@yahoo.co.in

Received 25 June 2009; accepted 27 June 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.003 Å; R factor = 0.040; wR factor = 0.106; data-to-parameter ratio = 14.6.

In the title compound, $C_{19}H_{16}CINO_2$, the dihedral angle between the plane of the phenyl substituent and 3-acetylquinoline unit is $75.44 (5)^{\circ}$. The crystal structure is stabilized by intermolecular C-H···O hydrogen bonds

Related literature

For general background to isoquinolines, see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Cobet & Luckner (1971); Kametani (1968); Lamberton & Price (1953); Majumdar & Mukhopadhyay (2003); Nayar et al. (1971); Storer et al. (1973); Yong et al. (2001). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009).

ò

Experimental

Crystal data C19H16CINO2 $M_r = 325.78$

Monoclinic, $P2_1/c$ a = 9.6480 (8) Å

b = 17.5756 (11) A	
c = 9.9694 (7) Å	
$\beta = 103.245 \ (8)^{\circ}$	
V = 1645.5 (2) Å ³	
7 - 4	

Data collection

Oxford Xcalibur Eos(Nova) CCD	
detector diffractometer	
Absorption correction: multi-scan	
(CrysAlisPro RED; Oxford	
Diffraction, 2009)	
$T_{\min} = 0.925, T_{\max} = 0.965$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	210 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 0.95	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
3061 reflections	$\Delta \rho_{\rm min} = -0.27 \text{ e} \text{ Å}^{-3}$

Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$

 $0.21 \times 0.16 \times 0.15 \text{ mm}$

21440 measured reflections 3061 independent reflections

1928 reflections with $I > 2\sigma(I)$

T = 290 K

 $R_{\rm int}=0.052$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C15-H15O1 ⁱ	0.93	2.58	3.341 (2)	139
C7-H7··· $O2$ ⁱⁱ	0.93	2.70	3.340 (2)	126

Symmetry codes: (i) $x, -y + \frac{3}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z.

Data collection: CrysAlisPro CCD (Oxford Diffraction, 2009); cell refinement: CrysAlisPro CCD; data reduction: CrysAlisPro RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the FIST-DST program at SSCU, IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for his help with the data collection. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2983).

References

- Behrens, C. H. (1999). US Patent No. 4 942 163.
- Broadhurst, M. D. (1991). US Patent No. 5 070 097.
- Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.
- Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860-3873.
- Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953-2961.
- Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265-274.
- Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.
- Cobet, M. & Luckner, M. (1971). Phytochemistry, 10, 1031-1036.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.
- Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo: Hirokawa; Amsterdam: Elsevier.
- Lamberton, J. A. & Price, J. R. (1953). Aust. J. Chem. 6, 66-77.
- Majumdar, K. C. & Mukhopadhyay, P. P. (2003). Synthesis, pp. 97-100.

- Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, 0137–0138.
- Nayar, M. N. S., Sutar, C. V. & Bhan, M. K. (1971). *Phytochemistry*, **10**, 2843–2844.
- Oxford Diffraction (2009). CrysAlisPro CCD and CrysAlisPro RED. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Storer, R., Young, D. W., Taylor, D. R. & Warner, J. M. (1973). *Tetrahedron*, 29, 1721–1723.
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.
- Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97-x98.
- Yong, R. L., Hyuk, K., Wha, S. K., Kyung, R. M., Youngsoo, K. & Seung, H. L. (2001). Synthesis, pp. 1851–1855.

supporting information

Acta Cryst. (2009). E65, o1800-o1801 [doi:10.1107/S1600536809024830]

3-Acetyl-6-chloro-1-ethyl-4-phenylquinolin-2(1H)-one

R. Subashini, Venkatesha R. Hathwar, T. Maiyalagan, G. Ganesh Kumar Reddy and F. Nawaz Khan

S1. Comment

2-quinolinone is an important biosynthetic (Cobet *et al.*, 1971) and synthetic (Majumdar *et al.*, 2003; Yong *et al.*, 2001) precursor of quinoline alkaloids. Methylated compounds like 4-methoxy-1-methyl-2-quinolinone, folimine, 4,6-dimeth-oxy-1-methyl-2-quinolinone and 4,7,8-trimethoxy-1-methyl-2-quinolinone are widely distributed in nature (Nayar *et al.*, 1971; Lamberton *et al.*, 1953; Storer *et al.*, 1973). Due to the importance of these derivatives (Broadhurst *et al.*; 2001; Behrens, 1999; Broadhurst, 1991; Chao *et al.*, 1999; Kametani *et al.*, 1968) and in continuous of our interest in quinolines and isoquinolines (Choudhury & Guru Row 2006; Choudhury *et al.*, 2002; Hathwar *et al.*, 2008; Cho *et al.*, 2002; Manivel *et al.*, 2009) we report here crystal structure of the title compound.

All the bond lengths are within normal ranges in the title compound. The two carbonyl O atoms participate in intermolecular C—H…O hydrogen bonding resulting the close packing of the crystal structure in the unit cell (Figure 2).

S2. Experimental

The solution of 3-acetyl-6-chloro-4-phenylquinolin-2(1H)-one in DMF was treated with ethylbromide and K2CO3 taken in DMF and stirred at RT for 4hr. The reaction contents were poured in crushed ice and solid otanined was filtered, dried. Single-crystals were obtained by recrystallization from petrol ether and ethylacetate solvent mixture.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with bond lengths C—H are 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other carbon bound H atoms.

Figure 1

ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids with atom labelling.

Figure 2

The crystal packing diagram of (I). The dotted lines indicate intermolecular C—H…O hydrogen bonds. All H atoms have been omitted for clarity.

3-Acetyl-6-chloro-1-ethyl-4-phenylquinolin-2(1*H*)-one

Crystal data	
C ₁₉ H ₁₆ CINO ₂	F(000) = 680
$M_r = 325.78$	$D_{\rm x} = 1.315 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1023 reflections
a = 9.6480 (8) Å	$\theta = 1.7 - 20.6^{\circ}$
b = 17.5756 (11) Å	$\mu = 0.24 \text{ mm}^{-1}$
c = 9.9694 (7) Å	T = 290 K
$\beta = 103.245 \ (8)^{\circ}$	Block, colorless
V = 1645.5 (2) Å ³	$0.21 \times 0.16 \times 0.15 \text{ mm}$
Z = 4	

Data collection

Oxford Xcalibur Eos(Nova) CCD detector diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator ω scans Absorption correction: multi-scan (<i>CrysAlis RED</i> ; Oxford Diffraction, 2009) $T_{\min} = 0.925, T_{\max} = 0.965$ Refinement	21440 measured reflections 3061 independent reflections 1928 reflections with $I > 2\sigma(I)$ $R_{int} = 0.052$ $\theta_{max} = 25.5^{\circ}, \ \theta_{min} = 3.1^{\circ}$ $h = -11 \rightarrow 11$ $k = -21 \rightarrow 21$ $l = -12 \rightarrow 12$
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.106$	neighbouring sites
S = 0.95	H-atom parameters constrained
3061 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0592P)^2]$
210 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.16$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.27$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R* factors *R* are based on *F* with *F* set to zero for pagative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	0.51092 (6)	1.05067 (3)	0.20536 (6)	0.0782 (2)	
N1	0.35571 (15)	0.79959 (8)	0.53674 (14)	0.0523 (4)	
01	0.18412 (15)	0.72734 (8)	0.59753 (16)	0.0844 (5)	
O2	-0.11779 (16)	0.83560 (9)	0.49385 (18)	0.0873 (5)	
C1	0.2157 (2)	0.78011 (11)	0.52883 (19)	0.0562 (5)	
C2	0.10651 (18)	0.82606 (9)	0.43889 (18)	0.0488 (4)	
C3	0.13896 (17)	0.88600 (9)	0.36740 (17)	0.0448 (4)	
C4	0.32709 (19)	0.96195 (10)	0.29747 (17)	0.0502 (4)	
H4	0.2572	0.9916	0.2416	0.060*	
C5	0.46684 (19)	0.97641 (10)	0.30238 (18)	0.0527 (5)	
C6	0.5726 (2)	0.93221 (11)	0.38284 (19)	0.0585 (5)	
H6	0.6677	0.9419	0.3845	0.070*	
C7	0.53689 (19)	0.87387 (10)	0.46042 (18)	0.0554 (5)	
H7	0.6083	0.8443	0.5145	0.066*	
C8	0.39405 (18)	0.85855 (9)	0.45869 (17)	0.0467 (4)	
C9	0.28714 (17)	0.90307 (9)	0.37541 (16)	0.0434 (4)	

C10	0.02678 (17)	0.93280 (9)	0.27678 (17)	0.0460 (4)
C11	-0.0010 (2)	1.00621 (10)	0.3121 (2)	0.0602 (5)
H11	0.0483	1.0266	0.3956	0.072*
C12	-0.1019 (2)	1.04958 (11)	0.2237 (2)	0.0705 (6)
H12	-0.1209	1.0988	0.2485	0.085*
C13	-0.1740 (2)	1.02063 (13)	0.1000 (2)	0.0743 (6)
H13	-0.2407	1.0503	0.0402	0.089*
C14	-0.1473 (2)	0.94779 (13)	0.0647 (2)	0.0736 (6)
H14	-0.1972	0.9276	-0.0186	0.088*
C15	-0.0470 (2)	0.90426 (11)	0.15166 (19)	0.0607 (5)
H15	-0.0287	0.8551	0.1260	0.073*
C16	-0.0442 (2)	0.80120 (11)	0.4330 (2)	0.0571 (5)
C17	-0.0962 (2)	0.73258 (12)	0.3491 (2)	0.0816 (7)
H17A	-0.1914	0.7210	0.3567	0.122*
H17B	-0.0350	0.6903	0.3820	0.122*
H17C	-0.0960	0.7422	0.2543	0.122*
C18	0.4651 (2)	0.75412 (11)	0.6307 (2)	0.0636 (5)
H18A	0.4254	0.7340	0.7044	0.076*
H18B	0.5445	0.7868	0.6718	0.076*
C19	0.5185 (3)	0.68935 (11)	0.5580 (3)	0.0872 (7)
H19A	0.4404	0.6567	0.5174	0.131*
H19B	0.5880	0.6609	0.6231	0.131*
H19C	0.5613	0.7091	0.4873	0.131*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Cl1	0.0683 (4)	0.0909 (4)	0.0817 (4)	-0.0115 (3)	0.0305 (3)	0.0206 (3)
N1	0.0456 (9)	0.0560 (9)	0.0506 (9)	0.0030 (7)	0.0012 (7)	0.0075 (7)
01	0.0660 (10)	0.0864 (10)	0.0946 (11)	-0.0072 (8)	0.0056 (8)	0.0460 (9)
O2	0.0636 (10)	0.0908 (11)	0.1172 (13)	-0.0045 (8)	0.0406 (10)	-0.0133 (9)
C1	0.0508 (12)	0.0585 (12)	0.0568 (11)	-0.0002 (9)	0.0069 (9)	0.0104 (10)
C2	0.0433 (10)	0.0521 (10)	0.0504 (10)	-0.0007 (8)	0.0093 (8)	0.0018 (9)
C3	0.0434 (10)	0.0505 (10)	0.0398 (9)	0.0019 (8)	0.0081 (8)	0.0000 (8)
C4	0.0457 (11)	0.0591 (11)	0.0457 (10)	0.0028 (9)	0.0105 (8)	0.0031 (9)
C5	0.0511 (12)	0.0613 (11)	0.0480 (10)	-0.0042 (9)	0.0158 (9)	-0.0025 (9)
C6	0.0423 (11)	0.0728 (13)	0.0604 (12)	-0.0048 (10)	0.0115 (9)	-0.0070 (10)
C7	0.0426 (11)	0.0650 (12)	0.0545 (11)	0.0032 (9)	0.0030 (9)	-0.0006 (10)
C8	0.0463 (11)	0.0486 (10)	0.0435 (10)	-0.0001 (8)	0.0070 (8)	-0.0025 (8)
C9	0.0419 (10)	0.0467 (10)	0.0407 (9)	0.0003 (8)	0.0076 (8)	-0.0009 (8)
C10	0.0394 (10)	0.0529 (11)	0.0475 (10)	0.0041 (8)	0.0138 (8)	0.0063 (8)
C11	0.0623 (13)	0.0567 (12)	0.0617 (12)	0.0062 (10)	0.0146 (10)	-0.0015 (10)
C12	0.0735 (15)	0.0572 (12)	0.0872 (16)	0.0202 (11)	0.0316 (13)	0.0094 (12)
C13	0.0627 (14)	0.0896 (16)	0.0722 (15)	0.0289 (12)	0.0186 (12)	0.0254 (13)
C14	0.0675 (14)	0.0857 (15)	0.0602 (13)	0.0178 (12)	-0.0003 (11)	0.0037 (12)
C15	0.0607 (13)	0.0625 (12)	0.0547 (12)	0.0122 (10)	0.0045 (10)	0.0005 (10)
C16	0.0507 (12)	0.0596 (12)	0.0593 (12)	-0.0019 (10)	0.0093 (10)	0.0124 (10)
C17	0.0712 (15)	0.0829 (15)	0.0854 (16)	-0.0190 (12)	0.0067 (12)	-0.0039 (13)

supporting information

C18	0.0598 (13)	0.0666 (13)	0.0579 (12)	0.0084 (10)	0.0002 (10)	0.0159 (10)
C19	0.0915 (17)	0.0672 (14)	0.1005 (18)	0.0208 (12)	0.0172 (14)	0.0104 (13)

Geometric parameters (Å, °)

Cl1—C5	1.7344 (18)	C10—C15	1.381 (2)
N1—C1	1.378 (2)	C11—C12	1.383 (3)
N1—C8	1.396 (2)	C11—H11	0.9300
N1	1.476 (2)	C12—C13	1.368 (3)
O1—C1	1.232 (2)	C12—H12	0.9300
O2—C16	1.198 (2)	C13—C14	1.368 (3)
C1—C2	1.460 (2)	C13—H13	0.9300
C2—C3	1.348 (2)	C14—C15	1.374 (3)
C2—C16	1.507 (2)	C14—H14	0.9300
C3—C9	1.445 (2)	C15—H15	0.9300
C3—C10	1.489 (2)	C16—C17	1.488 (3)
C4—C5	1.362 (2)	C17—H17A	0.9600
C4—C9	1.400 (2)	C17—H17B	0.9600
C4—H4	0.9300	C17—H17C	0.9600
C5—C6	1.383 (3)	C18—C19	1.502 (3)
C6—C7	1.375 (2)	C18—H18A	0.9700
С6—Н6	0.9300	C18—H18B	0.9700
C7—C8	1.400 (2)	C19—H19A	0.9600
С7—Н7	0.9300	C19—H19B	0.9600
C8—C9	1.405 (2)	C19—H19C	0.9600
C10—C11	1.380 (2)		
C1—N1—C8	122.28 (14)	C12—C11—H11	119.9
C1—N1—C18	116.83 (15)	C13—C12—C11	120.54 (19)
C8—N1—C18	120.89 (15)	C13—C12—H12	119.7
O1—C1—N1	121.27 (17)	C11—C12—H12	119.7
O1—C1—C2	121.48 (17)	C12—C13—C14	119.54 (19)
N1—C1—C2	117.22 (16)	C12—C13—H13	120.2
C3—C2—C1	122.30 (16)	C14—C13—H13	120.2
C3—C2—C16	123.02 (16)	C13—C14—C15	120.4 (2)
C1—C2—C16	114.68 (15)	C13—C14—H14	119.8
C2—C3—C9	118.67 (15)	C15—C14—H14	119.8
C2-C3-C10	121.86 (15)	C14—C15—C10	120.67 (18)
C9—C3—C10	119.42 (14)	C14—C15—H15	119.7
C5—C4—C9	120.94 (17)	C10—C15—H15	119.7
С5—С4—Н4	119.5	O2—C16—C17	122.09 (19)
C9—C4—H4	119.5	O2—C16—C2	120.83 (18)
C4—C5—C6	120.58 (17)	C17—C16—C2	117.08 (18)
C4—C5—Cl1	119.19 (15)	C16—C17—H17A	109.5
C6—C5—C11	120.23 (14)	C16—C17—H17B	109.5
C7—C6—C5	119.91 (17)	H17A—C17—H17B	109.5
С7—С6—Н6	120.0	C16—C17—H17C	109.5
С5—С6—Н6	120.0	H17A—C17—H17C	109.5

C6—C7—C8	120.60 (17)	H17B—C17—H17C	109.5
С6—С7—Н7	119.7	N1—C18—C19	112.27 (16)
С8—С7—Н7	119.7	N1—C18—H18A	109.2
N1—C8—C7	121.44 (16)	C19—C18—H18A	109.2
N1—C8—C9	119.38 (15)	N1—C18—H18B	109.2
C7—C8—C9	119.17 (16)	C19—C18—H18B	109.2
C4—C9—C8	118.78 (16)	H18A—C18—H18B	107.9
C4—C9—C3	121.17 (15)	C18—C19—H19A	109.5
C8—C9—C3	120.01 (15)	C18—C19—H19B	109.5
C11—C10—C15	118.71 (16)	H19A—C19—H19B	109.5
C11—C10—C3	121.22 (16)	C18—C19—H19C	109.5
C15—C10—C3	120.00 (15)	H19A—C19—H19C	109.5
C10—C11—C12	120.13 (18)	H19B—C19—H19C	109.5
C10-C11-H11	119.9		
C8—N1—C1—O1	179.22 (17)	C7—C8—C9—C4	-0.6 (2)
C18—N1—C1—O1	0.2 (3)	N1—C8—C9—C3	-2.1 (2)
C8—N1—C1—C2	-2.6 (2)	С7—С8—С9—С3	177.21 (15)
C18—N1—C1—C2	178.42 (15)	C2—C3—C9—C4	176.41 (16)
O1—C1—C2—C3	177.17 (18)	C10—C3—C9—C4	-1.2 (2)
N1—C1—C2—C3	-1.0 (3)	C2—C3—C9—C8	-1.3 (2)
O1—C1—C2—C16	-2.7 (3)	C10—C3—C9—C8	-178.92 (15)
N1-C1-C2-C16	179.10 (16)	C2-C3-C10-C11	109.3 (2)
C1—C2—C3—C9	2.9 (2)	C9—C3—C10—C11	-73.2 (2)
C16—C2—C3—C9	-177.26 (15)	C2—C3—C10—C15	-73.9 (2)
C1—C2—C3—C10	-179.55 (16)	C9—C3—C10—C15	103.69 (19)
C16—C2—C3—C10	0.3 (3)	C15-C10-C11-C12	0.6 (3)
C9—C4—C5—C6	1.2 (3)	C3—C10—C11—C12	177.48 (16)
C9—C4—C5—Cl1	-179.29 (13)	C10-C11-C12-C13	-0.7 (3)
C4—C5—C6—C7	-1.0 (3)	C11—C12—C13—C14	1.0 (3)
Cl1—C5—C6—C7	179.43 (13)	C12-C13-C14-C15	-1.1 (3)
C5—C6—C7—C8	0.1 (3)	C13—C14—C15—C10	1.0 (3)
C1—N1—C8—C7	-175.20 (16)	C11-C10-C15-C14	-0.7 (3)
C18—N1—C8—C7	3.8 (2)	C3—C10—C15—C14	-177.66 (17)
C1—N1—C8—C9	4.1 (2)	C3—C2—C16—O2	-76.4 (2)
C18—N1—C8—C9	-176.91 (16)	C1—C2—C16—O2	103.5 (2)
C6—C7—C8—N1	-179.99 (15)	C3—C2—C16—C17	103.7 (2)
C6—C7—C8—C9	0.7 (3)	C1—C2—C16—C17	-76.4 (2)
C5—C4—C9—C8	-0.4 (2)	C1—N1—C18—C19	93.7 (2)
C5—C4—C9—C3	-178.10 (16)	C8—N1—C18—C19	-85.3 (2)
N1—C8—C9—C4	-179.89 (14)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H… <i>A</i>
C15—H15…O1 ⁱ	0.93	2.58	3.341 (2)	139

			supportin	supporting information		
C7—H7····O2 ⁱⁱ	0.93	2.70	3.340 (2)	126		
Symmetry codes: (i) <i>x</i> , – <i>y</i> +3/2, <i>z</i> –1/2; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> .						