organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[2-(Hydroxymethyl)phenyl]-1-(1naphthyl)ethanol

F. Nawaz Khan,^a* P. Manivel,^a Venkatesha R. Hathwar,^b V. Krishnakumar^a and Richa Tyagi^c

^aChemistry Division, School of Advanced Science, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and Chemistry Department, Hindu College, Delhi University, Delhi 110 007, India Correspondence e-mail: nawaz_f@yahoo.co.in

Received 17 December 2009; accepted 5 January 2010

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.004 Å; R factor = 0.038; wR factor = 0.085; data-to-parameter ratio = 7.3.

The molecular conformation of the title compound, $C_{19}H_{18}O_2$, is stabilized by an intramolecular O-H-O hydrogen bond. In addition, intermolecular O-H-O interactions link the molecules into zigzag chains running along the c axis.

Related literature

For related structures, see: Gałdecki et al. (1984); Hoyos-Guerrero et al. (1983); Manivel et al. (2009).

Experimental

Crystal data

C19H18O2 $M_r = 278.33$ Monoclinic, Cc a = 16.207 (4) Å b = 12.820 (3) Å c = 7.7888 (18) Å $\beta = 111.172 \ (3)^{\circ}$

V = 1509.2 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 290 K $0.60\,\times\,0.10\,\times\,0.10$ mm

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\min} = 0.943, \ T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of
$wR(F^2) = 0.085$	independent and constrained
S = 1.07	refinement
1447 reflections	$\Delta \rho_{\rm max} = 0.15 \text{ e} \text{ Å}^{-3}$
198 parameters	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$
2 restraints	

Table 1 Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	<i>D</i> -H	Н∙∙∙А	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$D1 - H1O \cdots O2^{i}$	0.87 (4)	1.94 (4)	2.721 (3)	148 (4)
	$D2 - H2O \cdots O1$	0.94 (5)	1.79 (4)	2.721 (3)	169 (4)

5447 measured reflections

 $R_{\rm int} = 0.039$

1447 independent reflections 1216 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $x, -y, z - \frac{1}{2}$.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2009).

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5147).

References

- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gałdecki, Z., Grochulski, P., Luciak, B., Wawrzak, Z. & Duax, W. L. (1984). Acta Cryst C40 1197-1198
- Hoyos-Guerrero, M. A., Martínez-Carrera, S. & García-Blanco, S. (1983). Acta Cryst. C39, 118-119.
- Manivel, P., Hathwar, V. R., Mohanaroopan, S., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, 0406.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.

supporting information

Acta Cryst. (2010). E66, o380 [https://doi.org/10.1107/S1600536810000383]

2-[2-(Hydroxymethyl)phenyl]-1-(1-naphthyl)ethanol

F. Nawaz Khan, P. Manivel, Venkatesha R. Hathwar, V. Krishnakumar and Richa Tyagi

S1. Comment

The molecular conformation of the title compound is stabilized by an intramolecular O—H—O hydrogen bond. In addition, intermolecular O—H—O interactions link the molecules to zigzag chains running along the c axis.

S2. Experimental

3-(naphthalen-1-yl)isocoumarin (1 eq.) was dissolved in 10 volumes of methanol, sodium borohydride (4 eq.) was added to it and stirred at 50° C under nitrogen atmosphere for 4 hrs. Then two more equivalents of NaBH₄ was further added and left overnight at 50° C for completion of the reaction. After TLC analysis, solvent methanol was removed, extracted with ethyl acetate. The ethyl acetate layer was washed with water, dried with anhydrous Na₂SO₄, evaporated to yield the title compound, which was further purified by washing with petroleum ether. Single-crystals for the structure analysis were obtained by slow evaporation of the ethanol solution.

S3. Refinement

In the absence of anomalous scatterers, 1191 Friedel pairs were merged and the absolute configuration was arbitrarily set. All H atoms were located from difference fourier maps Those bonded to C were positioned geometrically and refined using a riding model with C—H bond lengths of 0.93 Å and 0.97 Å for aromatic and for methylene H atoms, respectively, and $U_{iso}(H) = 1.2U_{eq}(C)$. The hydroxyl H atoms were freely refined.

Figure 2

The crystal packing diagram. The dotted lines indicate intermolecular O—H…O hydrogen bonds.

2-[2-(Hydroxymethyl)phenyl]-1-(1-naphthyl)ethanol

Crystal data

C₁₉H₁₈O₂ $M_r = 278.33$ Monoclinic, Cc Hall symbol: C -2yc a = 16.207 (4) Å b = 12.820 (3) Å c = 7.7888 (18) Å $\beta = 111.172$ (3)° V = 1509.2 (6) Å³ Z = 4 F(000) = 592 $D_x = 1.225 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2097 reflections $\theta = 2.7-26.3^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 290 KNeedle, colorless $0.60 \times 0.10 \times 0.10 \text{ mm}$ Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{min} = 0.943, T_{max} = 0.992$ <i>Refinement</i>	5447 measured reflections 1447 independent reflections 1216 reflections with $I > 2\sigma(I)$ $R_{int} = 0.039$ $\theta_{max} = 25.7^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -19 \rightarrow 19$ $k = -15 \rightarrow 15$ $l = -9 \rightarrow 9$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.085$ S = 1.07 1447 reflections 198 parameters 2 restraints Primary atom site location: structure-invariant direct methods	Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0524P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.15$ e Å ⁻³ $\Delta\rho_{min} = -0.14$ e Å ⁻³

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.07843 (13)	0.13119 (13)	0.4503 (3)	0.0541 (5)	
H1O	0.074 (2)	0.091 (3)	0.357 (6)	0.100 (13)*	
O2	0.05537 (13)	0.04804 (13)	0.7513 (3)	0.0541 (5)	
H2O	0.068 (3)	0.070 (3)	0.647 (6)	0.112 (14)*	
C1	0.12467 (16)	0.27456 (16)	0.2976 (3)	0.0391 (5)	
C2	0.03809 (18)	0.2984 (2)	0.2052 (4)	0.0513 (6)	
H2	-0.0052	0.2669	0.2399	0.062*	
C3	0.0124 (2)	0.3708 (2)	0.0562 (4)	0.0633 (8)	
H3	-0.0472	0.3859	-0.0056	0.076*	
C4	0.0748 (2)	0.4177 (2)	0.0047 (4)	0.0609 (8)	
H4	0.0575	0.4648	-0.0926	0.073*	
C5	0.2323 (3)	0.4454 (2)	0.0452 (4)	0.0681 (9)	
Н5	0.2157	0.4922	-0.0527	0.082*	
C6	0.3193 (3)	0.4256 (2)	0.1359 (5)	0.0760 (9)	
H6	0.3617	0.4597	0.1020	0.091*	

C7	0.3451 (2)	0.3536 (2)	0.2810 (5)	0.0672 (8)
H7	0.4049	0.3393	0.3419	0.081*
C8	0.28404 (18)	0.30420 (19)	0.3341 (4)	0.0514 (7)
H8	0.3029	0.2566	0.4305	0.062*
C9	0.19190 (16)	0.32361 (16)	0.2457 (3)	0.0405 (5)
C10	0.16515 (18)	0.39629 (17)	0.0958 (3)	0.0476 (6)
C11	0.15080 (17)	0.19895 (15)	0.4609 (3)	0.0414 (5)
H11	0.2007	0.1563	0.4591	0.050*
C12	0.17832 (17)	0.25725 (16)	0.6467 (3)	0.0445 (6)
H12A	0.2115	0.3191	0.6400	0.053*
H12B	0.1254	0.2799	0.6668	0.053*
C13	0.23412 (17)	0.19156 (17)	0.8103 (3)	0.0415 (5)
C14	0.32550 (19)	0.1898 (2)	0.8541 (4)	0.0556 (7)
H14	0.3500	0.2320	0.7877	0.067*
C15	0.3809 (2)	0.1274 (2)	0.9933 (4)	0.0640 (8)
H15	0.4415	0.1270	1.0184	0.077*
C16	0.3454 (2)	0.0655 (2)	1.0947 (4)	0.0625 (8)
H16	0.3818	0.0223	1.1868	0.075*
C17	0.2558 (2)	0.06847 (18)	1.0582 (3)	0.0551 (7)
H17	0.2325	0.0283	1.1292	0.066*
C18	0.19887 (17)	0.13022 (15)	0.9173 (3)	0.0430 (6)
C19	0.1015 (2)	0.1264 (2)	0.8835 (4)	0.0537 (7)
H19A	0.0936	0.1123	0.9990	0.064*
H19B	0.0756	0.1940	0.8399	0.064*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0811 (13)	0.0413 (9)	0.0459 (10)	-0.0112 (9)	0.0300 (9)	-0.0034 (8)
O2	0.0705 (11)	0.0446 (9)	0.0504 (10)	-0.0041 (8)	0.0259 (9)	0.0052 (8)
C1	0.0571 (15)	0.0258 (10)	0.0338 (12)	0.0073 (10)	0.0156 (11)	-0.0023 (10)
C2	0.0587 (17)	0.0462 (14)	0.0491 (15)	0.0068 (12)	0.0194 (13)	-0.0007 (12)
C3	0.0707 (18)	0.0563 (16)	0.0486 (16)	0.0238 (15)	0.0042 (14)	0.0046 (14)
C4	0.093 (2)	0.0376 (13)	0.0428 (15)	0.0156 (15)	0.0134 (15)	0.0089 (12)
C5	0.119 (3)	0.0344 (14)	0.0600 (18)	-0.0026 (16)	0.0431 (19)	0.0079 (13)
C6	0.098 (3)	0.0610 (19)	0.084 (2)	-0.0149 (18)	0.051 (2)	0.0039 (18)
C7	0.0674 (19)	0.0587 (18)	0.081 (2)	-0.0007 (14)	0.0338 (17)	0.0029 (16)
C8	0.0678 (18)	0.0395 (13)	0.0498 (16)	0.0080 (12)	0.0248 (14)	0.0057 (12)
C9	0.0617 (16)	0.0258 (10)	0.0339 (12)	0.0059 (10)	0.0172 (11)	-0.0024 (9)
C10	0.0792 (19)	0.0254 (10)	0.0388 (14)	0.0043 (11)	0.0220 (14)	-0.0010 (10)
C11	0.0572 (14)	0.0286 (10)	0.0410 (13)	0.0049 (11)	0.0210 (11)	0.0027 (10)
C12	0.0638 (17)	0.0292 (11)	0.0421 (13)	-0.0002 (11)	0.0211 (12)	0.0019 (10)
C13	0.0595 (17)	0.0294 (11)	0.0350 (12)	-0.0003 (10)	0.0162 (11)	-0.0034 (9)
C14	0.0640 (19)	0.0554 (16)	0.0471 (15)	-0.0051 (14)	0.0197 (13)	-0.0004 (13)
C15	0.0588 (17)	0.0668 (18)	0.0540 (18)	0.0036 (14)	0.0055 (14)	-0.0052 (15)
C16	0.083 (2)	0.0468 (15)	0.0401 (15)	0.0099 (14)	0.0012 (14)	0.0023 (12)
C17	0.091 (2)	0.0349 (13)	0.0390 (14)	-0.0010 (13)	0.0228 (14)	-0.0008 (11)
C18	0.0658 (17)	0.0276 (10)	0.0372 (13)	0.0008 (10)	0.0205 (12)	-0.0053 (10)

supporting information

<u>C19</u>	0.078 (2)	0.0406 (14)	0.0529 (16)	0.0035 (12)	0.0364 (14)	0.0016 (12)
Geome	tric parameters ((Å, °)				
01-0	211	1.438 (3)		С8—Н8		0.9300
01—H	[10	0.87 (4)		C9—C10		1.433 (3)
O2—C	219	1.439 (3)		C11—C12		1.544 (3)
О2—Н	120	0.94 (5)		C11—H11		0.9800
C1—C	2	1.361 (3)		C12—C13		1.523 (3)
C1—C	9	1.437 (3)		C12—H12A		0.9700
C1—C	11	1.533 (3)		C12—H12B		0.9700
С2—С	3	1.425 (4)		C13—C14		1.395 (4)
С2—Н	[2	0.9300		C13—C18		1.408 (3)
С3—С	4	1.356 (5)		C14—C15		1.386 (4)
С3—Н	[3	0.9300		C14—H14		0.9300
C4—C	10	1.404 (4)		C15—C16		1.382 (4)
С4—Н	[4	0.9300		С15—Н15		0.9300
С5—С	6	1.353 (5)		C16—C17		1.375 (5)
С5—С	10	1.430 (4)		C16—H16		0.9300
С5—Н	5	0.9300		C17—C18		1.397 (3)
С6—С	7	1.402 (5)		С17—Н17		0.9300
С6—Н	6	0.9300		C18—C19		1.504 (4)
С7—С	8	1.358 (4)		C19—H19A		0.9700
С7—Н	[7	0.9300		C19—H19B		0.9700
C8—C	9	1.422 (4)				
C11—	01—H1O	103 (3)		C1—C11—C12		111.80 (16)
C19—	02—H2O	101 (3)		01—C11—H11		108.8
С2—С	1—С9	119.7 (2)		C1-C11-H11		108.8
С2—С	1—C11	120.3 (2)		C12—C11—H11		108.8
С9—С	1—C11	120.0 (2)		C13—C12—C11		113.55 (17)
C1—C	2—С3	121.3 (3)		C13—C12—H12A		108.9
C1—C	2—H2	119.4		C11—C12—H12A		108.9
С3—С	2—H2	119.4		C13—C12—H12B		108.9
C4—C	3—С2	120.0 (3)		C11—C12—H12B		108.9
C4—C	З—НЗ	120.0		H12A—C12—H12E	3	107.7
С2—С	З—НЗ	120.0		C14—C13—C18		117.9 (2)
С3—С	4—C10	121.1 (2)		C14—C13—C12		118.1 (2)
С3—С	4—H4	119.4		C18—C13—C12		124.0 (2)
C10—	С4—Н4	119.4		C15—C14—C13		122.1 (3)
С6—С	5—C10	121.8 (3)		C15—C14—H14		119.0
С6—С	5—H5	119.1		C13—C14—H14		119.0
C10—	С5—Н5	119.1		C16—C15—C14		119.5 (3)
С5—С	6—C7	119.7 (3)		C16—C15—H15		120.2
С5—С	6—H6	120.2		C14—C15—H15		120.2
С7—С	6—H6	120.2		C17—C16—C15		119.5 (3)
С8—С	7—С6	120.9 (3)		C17—C16—H16		120.3
C8—C	7—H7	119.5		C15—C16—H16		120.3

С6—С7—Н7	119.5	C16—C17—C18	121.8 (2)
С7—С8—С9	121.6 (2)	C16—C17—H17	119.1
С7—С8—Н8	119.2	C18—C17—H17	119.1
С9—С8—Н8	119.2	C17—C18—C13	119.2 (2)
C8—C9—C10	117.6 (2)	C17—C18—C19	118.2 (2)
C8—C9—C1	123.9 (2)	C13—C18—C19	122.6 (2)
C10—C9—C1	118.5 (2)	O2—C19—C18	112.9 (2)
C4—C10—C5	122.2 (2)	O2—C19—H19A	109.0
C4—C10—C9	119.5 (2)	C18—C19—H19A	109.0
C5-C10-C9	118.3 (3)	O2-C19-H19B	109.0
01—C11—C1	111.1 (2)	C18—C19—H19B	109.0
O1—C11—C12	107.45 (19)	H19A—C19—H19B	107.8
C9—C1—C2—C3	0.5 (3)	C2-C1-C11-O1	23.3 (3)
C11—C1—C2—C3	178.2 (2)	C9—C1—C11—O1	-159.00 (19)
C1—C2—C3—C4	-0.3 (4)	C2-C1-C11-C12	-96.7 (3)
C2-C3-C4-C10	0.0 (4)	C9—C1—C11—C12	81.0 (2)
C10—C5—C6—C7	1.4 (5)	O1—C11—C12—C13	78.1 (2)
С5—С6—С7—С8	-1.0 (5)	C1-C11-C12-C13	-159.79 (19)
C6—C7—C8—C9	-0.2 (4)	C11—C12—C13—C14	86.8 (3)
C7—C8—C9—C10	0.9 (3)	C11—C12—C13—C18	-91.5 (3)
C7—C8—C9—C1	-179.2 (3)	C18—C13—C14—C15	2.4 (3)
C2-C1-C9-C8	179.7 (2)	C12-C13-C14-C15	-176.0 (2)
C11—C1—C9—C8	2.1 (3)	C13-C14-C15-C16	-0.9 (4)
C2-C1-C9-C10	-0.4 (3)	C14—C15—C16—C17	-1.2 (4)
C11—C1—C9—C10	-178.10 (18)	C15-C16-C17-C18	1.9 (4)
C3—C4—C10—C5	-179.4 (3)	C16—C17—C18—C13	-0.3 (3)
C3—C4—C10—C9	0.1 (4)	C16—C17—C18—C19	178.3 (2)
C6—C5—C10—C4	178.8 (3)	C14—C13—C18—C17	-1.8 (3)
C6-C5-C10-C9	-0.7 (4)	C12-C13-C18-C17	176.5 (2)
C8—C9—C10—C4	180.0 (2)	C14-C13-C18-C19	179.7 (2)
C1—C9—C10—C4	0.2 (3)	C12-C13-C18-C19	-2.0 (3)
C8—C9—C10—C5	-0.5 (3)	C17—C18—C19—O2	-90.6 (3)
C1—C9—C10—C5	179.7 (2)	C13—C18—C19—O2	88.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
01—H1 <i>O</i> ···O2 ⁱ	0.87 (4)	1.94 (4)	2.721 (3)	148 (4)
O2—H2 <i>O</i> ⋯O1	0.94 (5)	1.79 (4)	2.721 (3)	169 (4)

Symmetry code: (i) x, -y, z-1/2.