

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methylquinoline

R. Subashini,^a Venkatesha R. Hathwar,^b P. Nithva,^a K. Prabakaran^a and F. Nawaz Khan^a*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India Correspondence e-mail: nawaz_f@yahoo.co.in

Received 18 December 2008; accepted 24 January 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.129; data-to-parameter ratio = 12.9.

In the title molecule, $C_{13}H_{15}N_3O_2$, the dihedral angle between the mean plane of the 1,3-dioxolane group and the 2-hydrazino-7-methylisoquinoline unit is $85.21(5)^{\circ}$. The conformation of the molecule is influenced by bifurcated $N-H\cdots(O,O)$ and $N-H\cdots N$ intramolecular hydrogen bonds. In the crystal structure, molecules are linked via intermolecular N-H···O hydrogen bonds, forming extended chains along [001].

Related literature

For general background to hydrazine compounds, see: Broadhurst et al. (2001); Behrens (1999); Broadhurst (1991); Chao et al. (1999); Kametani (1968). For related crystal structures, see: Yang et al. (2008); Choudhury & Guru Row (2006); Choudhury et al. (2002); Hathwar et al. (2008); Cho et al. (2002); Manivel et al. (2009), and references therein. For bond-length data, see: Allen et al., 1987)

Experimental

Crystal data	
$C_{13}H_{15}N_3O_2$	a = 13.1909 (17) Å
$M_r = 245.28$	b = 10.1165 (13) Å
Monoclinic, $P2_1/c$	c = 9.7805 (13) Å

 $\beta = 109.956 \ (2)^{\circ}$ V = 1226.8 (3) Å³ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.942, \ T_{\max} = 0.987$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.129$ S = 1.062279 reflections 176 parameters

T = 290 (2) K $0.30 \times 0.21 \times 0.14 \text{ mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

8929 measured reflections 2279 independent reflections 1699 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.018$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H2N···O1	0.843 (19)	2.372 (18)	2.9329 (17)	124.5 (15)
$N2 - H2N \cdots O2$	0.843 (19)	2.653 (18)	3.0968 (19)	114.3 (14)
$N3 - H3NA \cdots N1$	0.94 (2)	2.35 (2)	2.691 (2)	100.9 (15)
$N3-H3NB\cdotsO2^{i}$	0.92 (2)	2.44 (2)	3.207 (2)	141.2 (19)

Symmetry code: (i) $x, -y + \frac{1}{2}, z + \frac{1}{2}$.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2748).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Behrens, C. H. (1999). US Patent No. 4 942 163.
- Broadhurst, M. D. (1991). US Patent No. 5 070 097.
- Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787
- Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem. 2, 3860-3873.
- Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem. 10, 2953-2961.
- Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265-274.
- Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct. 605, 71-77.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295.

Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids. Tokyo, Amsterdam: Hirokawa, Elsevier.

Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, 0137–0138.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.
 Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci. 24, x97–x98.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

supporting information

Acta Cryst. (2009). E65, o407-o408 [doi:10.1107/S1600536809003031]

3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methylquinoline

R. Subashini, Venkatesha R. Hathwar, P. Nithya, K. Prabakaran and F. Nawaz Khan

S1. Comment

The title compound (I), belongs to the quinoline class. Quinolines and quinolinones are an integral part of many naturally occurring fused heterocycles and find application in synthetic and pharmaceutical chemistry (Kametani, 1968). Isoquinolinones and isoquinolineamines have been reported as cancer chemotherapeutic agents (Behrens, 1999) whereas quinolyl and isoquinolyl derivatives have been reported as insecticidal compounds (Broadhurst, 1991). 3-substituted isoquinolines have potent use in medicine (Chao *et al.*, 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst *et al.*, 2001; Choudhury, *et al.*, 2002; Choudhury & Guru Row, 2006; Yang, *et al.*, 2008). Due to the importance of quinoline derivates (Cho *et al.*, 2002) and in continuous of our research on quinolines and isoquinoline derivatives (Hathwar *et al.*, 2008; Manivel *et al.*, 2009) we present here crystal structure of the title compound.

In (I) the dihedral angle between 1,3-dioxolane moiety and 2 hyrazino-7-methyl isoquinoline unit is 85.21 (5)°. All bond lengths (Allen *et al.*, 1987) and angles are within normal ranges. The conformation of the molecule is influenced by N—H…O and N—H…N intramolecular hydrogen bonds whereas the crystal structure is stabilized by intermolecular N—H…O hydrogen bonds forming exteded chains along [001].

S2. Experimental

A solution of 2-chloro (3-(1,3-dioxolan-2-yl)-7-methylquinoline in ethanol was treated with hydrazine hydrate and stirred at 323 K for 3hr. The product was filtered. The solid was washed with water and diethyl ether and dried under vacuum. Single crystals were obtained by recrystalization of (I) from DMSO.

S3. Refinement

All H atoms positioned geometrically and refined using a riding model with bond lengths C—H = 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl and $U_{iso}(H) = 1.2U_{eq}(C)$ for all other carbon bound H atoms. H atoms bonded to N atoms were located in difference Fourier maps and refined isotropically.

Figure 1

The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.

Figure 2

Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted.

3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methylquinoline

Crystal data	
$C_{13}H_{15}N_3O_2$	a = 13.1909 (17) Å
$M_r = 245.28$	b = 10.1165 (13) Å
Monoclinic, $P2_1/c$	c = 9.7805 (13) Å
Hall symbol: -P 2ybc	$\beta = 109.956 \ (2)^{\circ}$

V = 1226.8 (3) Å³ Z = 4 F(000) = 520 $D_x = 1.328$ Mg m⁻³ Mo K α radiation, $\lambda = 0.71073$ Å Cell parameters from 948 reflections

Data collection

Bruker SMART CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.942, T_{\max} = 0.987$

Primary atom site location: structure-invariant

Refinement

Refinement on F^2

 $wR(F^2) = 0.129$

2279 reflections

176 parameters

direct methods

0 restraints

S = 1.06

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.044$

 $\theta = 1.8-24.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 290 KBlock, brown $0.30 \times 0.21 \times 0.14 \text{ mm}$

8929 measured reflections 2279 independent reflections 1699 reflections with $I > 2\sigma(I)$ $R_{int} = 0.018$ $\theta_{max} = 25.5^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -15 \rightarrow 15$ $k = -10 \rightarrow 12$ $l = -11 \rightarrow 11$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.072P)^2 + 0.1104P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19$ e Å⁻³ $\Delta\rho_{min} = -0.14$ e Å⁻³

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and	isotropic	or equ	ivalent	isotropic	displ	acement	parameters	$(Å^2$?)
				1			1			1	1 6	/

	X	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.10652 (9)	0.42297 (12)	-0.28334 (11)	0.0621 (4)	
O2	0.09919 (10)	0.22186 (13)	-0.18872 (12)	0.0701 (4)	
N1	0.32415 (10)	0.45872 (13)	0.15262 (13)	0.0524 (4)	
N2	0.14264 (11)	0.45599 (16)	0.02767 (15)	0.0597 (4)	
N3	0.12501 (13)	0.53613 (19)	0.13548 (18)	0.0664 (4)	
C1	0.24495 (12)	0.42351 (15)	0.03448 (15)	0.0464 (4)	
C2	0.26133 (12)	0.35152 (15)	-0.08326 (15)	0.0480 (4)	
C3	0.36404 (13)	0.31857 (15)	-0.06896 (17)	0.0550 (4)	
H3A	0.3772	0.2726	-0.1435	0.066*	
C4	0.56033 (15)	0.32091 (18)	0.0793 (2)	0.0688 (5)	

H4A	0.5778	0.2750	0.0080	0.083*
C5	0.64009 (14)	0.35734 (19)	0.2051 (2)	0.0732 (6)
H5A	0.7111	0.3344	0.2186	0.088*
C6	0.61719 (14)	0.4286 (2)	0.3145 (2)	0.0662 (5)
C7	0.51244 (13)	0.46184 (19)	0.29207 (17)	0.0615 (5)
H7A	0.4966	0.5107	0.3628	0.074*
C8	0.42773 (12)	0.42464 (15)	0.16556 (16)	0.0496 (4)
C9	0.45173 (12)	0.35270 (15)	0.05728 (17)	0.0533 (4)
C10	0.70689 (16)	0.4661 (3)	0.4525 (2)	0.0949 (8)
H10A	0.6767	0.4936	0.5244	0.142*
H10B	0.7481	0.5372	0.4329	0.142*
H10C	0.7530	0.3911	0.4882	0.142*
C11	0.17109 (13)	0.31376 (16)	-0.21833 (17)	0.0540 (4)
H11A	0.2010	0.2745	-0.2879	0.065*
C12	-0.00343 (14)	0.2421 (2)	-0.2979 (2)	0.0782 (6)
H12A	-0.0588	0.2540	-0.2544	0.094*
H12B	-0.0228	0.1675	-0.3640	0.094*
C13	0.00918 (15)	0.3653 (2)	-0.37670 (19)	0.0764 (6)
H13A	0.0146	0.3440	-0.4706	0.092*
H13B	-0.0513	0.4247	-0.3910	0.092*
H2N	0.0904 (15)	0.4447 (17)	-0.050 (2)	0.064 (5)*
H3NB	0.1453 (18)	0.484 (2)	0.218 (2)	0.095 (7)*
H3NA	0.1821 (17)	0.597 (2)	0.158 (2)	0.078 (6)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0577 (7)	0.0724 (8)	0.0494 (6)	0.0026 (6)	0.0095 (5)	0.0034 (5)
O2	0.0667 (8)	0.0722 (8)	0.0642 (7)	-0.0201 (6)	0.0130 (6)	-0.0040 (6)
N1	0.0475 (8)	0.0647 (9)	0.0438 (7)	-0.0047 (6)	0.0141 (6)	-0.0015 (6)
N2	0.0476 (8)	0.0838 (11)	0.0443 (7)	0.0051 (7)	0.0114 (6)	-0.0113 (7)
N3	0.0626 (10)	0.0782 (11)	0.0586 (9)	0.0087 (9)	0.0211 (7)	-0.0131 (9)
C1	0.0467 (8)	0.0495 (9)	0.0426 (8)	0.0001 (7)	0.0145 (7)	0.0037 (6)
C2	0.0497 (9)	0.0465 (8)	0.0470 (8)	0.0006 (7)	0.0153 (7)	0.0012 (6)
C3	0.0580 (10)	0.0492 (9)	0.0589 (9)	0.0019 (7)	0.0214 (8)	-0.0077 (7)
C4	0.0566 (10)	0.0607 (11)	0.0890 (13)	0.0055 (8)	0.0245 (9)	-0.0053 (10)
C5	0.0424 (9)	0.0707 (12)	0.0974 (14)	0.0022 (8)	0.0122 (9)	0.0105 (11)
C6	0.0518 (10)	0.0774 (13)	0.0628 (11)	-0.0136 (9)	0.0108 (8)	0.0122 (9)
C7	0.0526 (10)	0.0785 (12)	0.0512 (9)	-0.0134 (8)	0.0148 (8)	0.0024 (8)
C8	0.0480 (9)	0.0526 (9)	0.0470 (8)	-0.0057 (7)	0.0147 (7)	0.0065 (7)
C9	0.0474 (9)	0.0470 (9)	0.0629 (10)	0.0001 (7)	0.0156 (7)	0.0035 (7)
C10	0.0550(11)	0.138 (2)	0.0771 (13)	-0.0265 (12)	0.0040 (10)	0.0078 (13)
C11	0.0531 (9)	0.0597 (10)	0.0492 (9)	-0.0007 (7)	0.0175 (7)	-0.0083 (7)
C12	0.0554 (11)	0.0901 (15)	0.0852 (13)	-0.0112 (10)	0.0188 (10)	-0.0274 (12)
C13	0.0565 (11)	0.1135 (17)	0.0500 (9)	0.0012 (11)	0.0065 (8)	-0.0119 (11)

Geometric parameters (Å, °)

1.4074 (19)	C4—H4A	0.9300
1.422 (2)	C5—C6	1.406 (3)
1.424 (2)	С5—Н5А	0.9300
1.427 (2)	C6—C7	1.365 (3)
1.3151 (18)	C6—C10	1.509 (2)
1.372 (2)	С7—С8	1.406 (2)
1.3683 (19)	С7—Н7А	0.9300
1.411 (2)	C8—C9	1.407 (2)
0.843 (19)	C10—H10A	0.9600
0.92 (2)	C10—H10B	0.9600
0.94 (2)	C10—H10C	0.9600
1.440 (2)	C11—H11A	0.9800
1.355 (2)	C12—C13	1.504 (3)
1.495 (2)	C12—H12A	0.9700
1.417 (2)	C12—H12B	0.9700
0.9300	C13—H13A	0.9700
1.368 (3)	C13—H13B	0.9700
1.411 (2)		
()		
104.05 (14)	N1—C8—C7	118.75 (15)
106.35 (14)	N1—C8—C9	122.22 (14)
118.70 (13)	C7—C8—C9	119.03 (15)
120.87 (13)	C8—C9—C4	118.70 (15)
120.1 (12)	C8—C9—C3	117.09 (14)
117.4 (12)	C4—C9—C3	124.20 (16)
104.8 (14)	C6-C10-H10A	109.5
102.9 (12)	C6-C10-H10B	109.5
101.6 (18)	H10A-C10-H10B	109.5
116.89 (14)	C6—C10—H10C	109.5
123.28 (14)	H10A—C10—H10C	109.5
119.82 (13)	H10B-C10-H10C	109.5
117.35 (13)	O1—C11—O2	105.16 (13)
119.66 (14)	O1—C11—C2	112.04 (13)
122.99 (13)	O2—C11—C2	111.79 (13)
121.34 (15)	O1—C11—H11A	109.2
119.3	O2—C11—H11A	109.2
119.3	C2—C11—H11A	109.2
120.33 (18)	O2—C12—C13	105.10 (14)
119.8	O2—C12—H12A	110.7
119.8	C13—C12—H12A	110.7
121.55 (17)	O2—C12—H12B	110.7
119.2	C13—C12—H12B	110.7
119.2	H12A—C12—H12B	108.8
118.21 (16)	O1—C13—C12	104.14 (14)
121.57 (19)	O1—C13—H13A	110.9
120.22 (17)	C12—C13—H13A	110.9
	$\begin{array}{c} 1.4074 (19) \\ 1.422 (2) \\ 1.422 (2) \\ 1.427 (2) \\ 1.3151 (18) \\ 1.372 (2) \\ 1.3683 (19) \\ 1.411 (2) \\ 0.843 (19) \\ 0.92 (2) \\ 0.94 (2) \\ 1.440 (2) \\ 1.355 (2) \\ 1.495 (2) \\ 1.447 (2) \\ 0.9300 \\ 1.368 (3) \\ 1.411 (2) \\ \end{array}$ $\begin{array}{c} 104.05 (14) \\ 106.35 (14) \\ 106.35 (14) \\ 118.70 (13) \\ 120.87 (13) \\ 120.87 (13) \\ 120.1 (12) \\ 117.4 (12) \\ 104.8 (14) \\ 102.9 (12) \\ 101.6 (18) \\ 116.89 (14) \\ 123.28 (14) \\ 119.82 (13) \\ 117.35 (13) \\ 119.66 (14) \\ 122.99 (13) \\ 121.34 (15) \\ 119.3 \\ 119.3 \\ 120.33 (18) \\ 119.8 \\ 119.8 \\ 121.55 (17) \\ 119.2 \\ 118.21 (16) \\ 121.57 (19) \\ 120.22 (17) \\ \end{array}$	1.4074 (19) $C4-H4A$ $1.422 (2)$ $C5-C6$ $1.424 (2)$ $C5-H5A$ $1.427 (2)$ $C6-C7$ $1.3151 (18)$ $C6-C10$ $1.372 (2)$ $C7-C8$ $1.3683 (19)$ $C7-H7A$ $1.411 (2)$ $C8-C9$ $0.843 (19)$ $C10-H10A$ $0.92 (2)$ $C10-H10B$ $0.94 (2)$ $C10-H10C$ $1.440 (2)$ $C12-C13$ $1.440 (2)$ $C12-H12A$ $1.477 (2)$ $C12-H12A$ $1.495 (2)$ $C12-H12B$ 0.9300 $C13-H13A$ $1.368 (3)$ $C13-H13B$ $1.411 (2)$ $C8-C9$ $104.05 (14)$ $N1-C8-C7$ $106.35 (14)$ $N1-C8-C9$ $118.70 (13)$ $C7-C8-C9$ $120.87 (13)$ $C8-C9-C3$ $104.8 (14)$ $C6-C10-H10A$ $102.9 (12)$ $C6-C10-H10B$ $101.6 (18)$ $H10A-C10-H10C$ $123.28 (14)$ $H10A-C10-H10C$ $123.28 (14)$ $H10B-C10-H10C$ $117.35 (13)$ $O1-C11-C2$

supporting information

С6—С7—С8	122.15 (17)	O1—C13—H13B	110.9
С6—С7—Н7А	118.9	C12—C13—H13B	110.9
С8—С7—Н7А	118.9	H13A—C13—H13B	108.9

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H…A
N2—H2 <i>N</i> …O1	0.843 (19)	2.372 (18)	2.9329 (17)	124.5 (15)
N2—H2 <i>N</i> ···O2	0.843 (19)	2.653 (18)	3.0968 (19)	114.3 (14)
N3—H3 <i>NA</i> ···N1	0.94 (2)	2.35 (2)	2.691 (2)	100.9 (15)
N3—H3 <i>NB</i> ···O2 ⁱ	0.92 (2)	2.44 (2)	3.207 (2)	141.2 (19)

Symmetry code: (i) x, -y+1/2, z+1/2.