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Abstract. In this paper, we study a class of skew-cyclic codes using a skew
polynomial ring over R = Z4 + uZ4;u2 = 1, with an automorphism θ and a

derivation δθ. We generalize the notion of cyclic codes to skew-cyclic codes
with derivation, and call such codes as δθ-cyclic codes. Some properties of

skew polynomial ring R[x, θ, δθ] are presented. A δθ-cyclic code is proved to

be a left R[x, θ, δθ]-submodule of
R[x,θ,δθ ]
〈xn−1〉

. The form of a parity-check matrix

of a free δθ-cyclic codes of even length n is presented. These codes are further
generalized to double δθ-cyclic codes over R. We have obtained some new good
codes over Z4 via Gray images and residue codes of these codes. The new codes
obtained have been reported and added to the database of Z4-codes [2].

1. Introduction

Cyclic codes form an important family of algebraic codes among all families of
codes. The structure of cyclic codes is well defined over fields. Due to their rich
algebraic properties these codes are easy to study and implement. Cyclic codes
were introduced by Prange [19] in 1957 and have been studied extensively since
then. The study of these codes over rings was initiated by the works of Blake
[5, 6] and Spiegel [22, 23]. Codes over rings have generated a lot of interest after
a breakthrough paper by Hammons et al. [15] in 1994. Recently, many extension
rings of Z4 have been considered by researchers to construct codes [24, 25]. In most
of these studies, cyclic codes have been studied in commutative settings.

In 2007, Boucher and Ulmer [9] gave a new direction to the study of cyclic
codes by defining a generalization thereof in the non-commutative setting of skew
polynomial rings. These codes are known as skew-cyclic codes. They have been
further generalized in many ways [8, 10, 11]. In recent years many researchers
have shown interest in this direction [4, 21, 16, 14], and many new results on codes
over different rings in the setting of skew polynomial rings have been obtained.
However, almost all this work has been done in the setting of skew-polynomial rings
with automorphism only. In [12], Boucher et al. have studied linear codes using
skew-polynomial rings with automorphism and derivation. In this paper, we have
considered a class of skew-cyclic codes in the setting of the skew polynomial ring
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R[x, θ, δθ], where R = Z4 + uZ4;u
2 = 1, θ is an automorphism of R, and δθ is a

derivation of R.
The paper is organized as follows. In Section 2, some preliminaries and basics

are presented. The structural properties of skew polynomial ring R[x, θ, δθ] are also
discussed in this section. In Section 3, δθ-cyclic codes are studied. Their torsion
codes and residue codes are also studied. We have given a table of some good linear
codes over Z4 obtained from them. In Section 4, the duals of δθ-cyclic codes of even
length over R. In Section 5, we have generalized δθ-cyclic codes to double δθ-cyclic
codes and obtained some good codes over Z4 from this class also.

2. Preliminaries

R

〈2u, 1 + u〉

〈2u〉

〈3 + u〉 〈1 + u〉

〈2 + 2u〉

〈0〉

Figure 1.

In this section, we present some basic definitions and results that are necessary
to understand the further results.

We fix the notation R = Z4+uZ4, u
2 = 1. We note that R ∼=

Z4[u]
〈u2−1〉 . An element

a + ub ∈ R is a unit if and only if exactly one of a and b is a unit. Therefore the
units of R are

1, 3, u, 3u, u+ 2, 2u+ 3, 2u+ 1, 3u+ 2.

In a finite ring, an element is either a unit or a zero divisor, and hence the non-units
of R are

0, 3u+ 3, 2u+ 2, u+ 1, 2, 3u+ 1, 2u, u+ 3.

There are total 7 ideals of R (including the zero ideal), and they form a lattice with
inclusion operation whose lattice diagram is shown in Figure 1.

In Figure 1, we have 〈0〉 = {0}, 〈2u〉 = {0, 2u, 2, 2 + 2u}, 〈1 + u〉 = {0, 1 + u, 2 +
2u, 3 + 3u}, 〈3 + u〉 = {0, u+ 3, 2u+ 2, 3u+ 2}, 〈2 + 2u〉 = {0, 2u+ 2}, 〈2u, 1 + u〉 =
{3u + 3, 0, 2u + 2, u + 1, 2, 3u + 1, 2u, u + 3}, 〈1〉 = R. Thus R is a local-ring with
the unique maximal ideal 〈2u, 1 + u〉. To know more about the ring R, we refer to
[18, 20].

Define a map θ : R → R such that

θ(a+ ub) = a+ (u+ 2)b.

One can easily verify that θ is an automorphism of R. Moreover, since θ2(x) = x
for all x ∈ R, the order of θ is 2.
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Definition 2.1. Let R be a finite ring and Θ be an automorphism of R. Then a
map ∆Θ : R → R is said to be a derivation on R if

∆Θ(x+ y) = ∆Θ(x) + ∆Θ(y)

and

∆Θ(xy) = ∆Θ(x)y +Θ(x)∆Θ(y).

We define a map δθ : R → R such that

δθ(a+ ub) = (1 + u)(θ(a+ ub)− (a+ ub)).

That is, δθ(a+ ub) = (1 + u)(a+ ub+ 2b− a− ub) = 2b+ 2ub.

Theorem 2.2. The map δθ is a derivation on R.

Proof. Let x, y ∈ R. Then by definition,

δθ(x+ y) = (1 + u)(θ(x+ y)− (x+ y))

= (1 + u)(θ(x)− x) + (1 + u)(θ(y)− y)

= δθ(x) + δθ(y).

Also,

δθ(xy) = (1 + u)(θ(xy)− xy)

= (1 + u)θ(x)θ(y)− (1 + u)xy

= (1 + u)θ(x)θ(y)− (1 + u)xy + (1 + u)θ(x)y − (1 + u)θ(x)y

= (1 + u)θ(x)(θ(y)− y)− (1 + u)(x− θ(x))y

= θ(x)(1 + u)(θ(y)− y) + (1 + u)(θ(x)− x)y

= δθ(x)y + θ(x)δθ(y)

Since δθ satisfies the properties of a derivation, δθ is therefore a derivation on R.

The following table gives images of elements of R under δθ.

x 0 1 2 3 u 2u 3u 1 + u
δθ(x) 0 0 0 0 2 + 2u 0 2 + 2u 2 + 2u

x 1 + 2u 1 + 3u 2 + u 2 + 2u 2 + 3u 3 + u 3 + 2u 3 + 3u
δθ(x) 0 2 + 2u 2 + 2u 0 2 + 2u 2 + 2u 0 2 + 2u

Remark 1. We note that for n ≥ 2, we have δθ
n(x) = 0 for all x ∈ R.

2.1. Gray map. On Z4, the Lee weight (wL) is defined as wL(0) = 0, wL(1) =
1, wL(2) = 2, wL(3) = 1. The Lee weight wL(u) of a vector u ∈ Z4

2 is then defined
as the rational sum of the Lee weights of its coordinates. Define a map φ : R → Z4

2,
known as Gray map, such that

φ(a+ ub) = (b, a+ b).

For any x ∈ R, we define the Gray weight wG(x) of x as wG(x) = wL(φ(x)). The
Gray weights of the elements of R are as follows:
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x 0 1 2 3 u 2u 3u 1 + u
wG(x) 0 1 2 1 2 4 2 3

x 1 + 2u 1 + 3u 2 + u 2 + 2u 2 + 3u 3 + u 3 + 2u 3 + 3u
wG(x) 3 1 2 2 2 1 3 3

The map φ is extended componentwise to Φ : Rn → Z4
2n, and we define the

Gray weight of x ∈ Rn as the rational sum of Gray weights of its coordinates.
Now onward, we write the parameters of a linear code C over Z4 as (n, 4

k12k2 , dL),
and say that the type of the code is 4k12k2 , where dL denotes the minimum Lee
distance of C.

Theorem 2.3. (Lee Distance Bound [13]) If C is a linear code of length n over Z4

with parameters (n, 4k12k2 , dL), then dL ≤ 2n− 2k1 − k2 + 1.

A linear code over Z4 which satisfies the above bound with equality is called a
Maximum Lee Distance Separable (MLDS) code.

2.2. Skew polynomial ring R[x,Θ,∆Θ]. Let R be a ring with automorphism
Θ and derivation ∆Θ. Then the skew polynomial ring R[x,Θ,∆Θ] is the set of
all polynomials over R with addition as the ordinary addition of polynomials and
multiplication defined by

(1) xa = Θ(a)x+∆Θ(a)

for any a ∈ R, which is then extended to all elements of R[x,Θ,∆Θ] in the usual
manner. The following example illustrates it.

Example 1. Let f = x2 + a0x+ a1 and g = x+ b0 are in R[x, θ, δθ]. Then

f + g = x2 + (a0 + 1)x+ a1 + b0 = g + f.

Also,

fg = (x2 + a0x+ a1)(x+ b0)

= x2(x+ b0) + a0x(x+ b0) + a1(x+ b0)

= x3 + b0x
2 + a0x

2 + a0(θ(b0)x+ δθ(b0)) + a1x+ a1b0

(By Corollary 1 on Page 6)

= x3 + (b0 + a0)x
2 + (a0θ(b0) + a1)x+ a0δθ(b0) + a1b0,

and

gf = (x+ b0)(x
2 + a0x+ a1)

= x(x2 + a0x+ a1) + b0(x
2 + a0x+ a1)

= x3 + (θ(a0)x+ δθ(a0))x+ (θ(a1)x+ δθ(a1)) + b0x
2 + b0a0x+ b0a1

= x3 + (θ(a0) + b0)x
2 + (δθ(a0) + θ(a1) + b0a0)x+ δθ(a1) + b0a1

Therefore fg 6= gf . Thus R[x, θ, δθ] is a non-commutative ring.

Let Rθ = {0, 1, 2, 3, 2u, 1 + 2u, 3 + 2u, 2 + 2u}. Then Rθ is a subring of R fixed,
elementwise, by θ, i.e., θ(a) = a for all a ∈ Rθ. Also δθ(a) = 0 for all a ∈ Rθ.
Therefore we have xa = ax for all a ∈ Rθ.

Since R[x, θ, δθ] is not a unique factorization ring, we often have more factors
of a polynomial in R[x, θ, δθ] than in R[x] (shown in Example 5 below). Therefore
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we have more possibility of finding good codes over R in this setting, and a search
for good codes among these codes looks more promising than a random search for
codes over R.

Definition 2.4. An element f(x) in R[x, θ, δθ] is said to be a central element of
R[x, θ, δθ] if f(x)a(x) = a(x)f(x) for all a(x) ∈ R[x, θ, δθ].

Lemma 2.5. Let a ∈ R. Then θ(a)− a 6= δθ(b) for any b ∈ R unless a, b both are
fixed by θ.

Proof. Let θ(a) − a = δθ(b) for some arbitrary fixed values of a and b. The only
possible values of δθ(b) are 0 and 2u+ 2. If δθ(b) = 0, then a and b both are fixed
by θ and we are done. Suppose δθ(b) = 2u + 2. But θ(a) − a does not contain u,
we get a contradiction. Hence the result.

If we consider the skew polynomial ring over R with automorphism only, i.e.,
R[x, θ], then the center of R[x, θ] is Rθ[x2] [17]. However, in the present case, i.e.,
in R[x, θ, δθ], we have the following result.

Theorem 2.6. A polynomial f(x) ∈ R[x, θ, δθ] is a central element if and only
if f(x) ∈ Rθ[x] such that the coefficients of all odd powers of x belong to the set
S = {0, 2, 2u, 2 + 2u}.

Proof. We prove the result for a polynomial of odd degree. It can be proved similarly
for polynomials of even degree. Let f(x) = f0 + f1x+ · · ·+ fkx

k ∈ R[x, θ, δθ] be a
polynomial of odd degree. Suppose f(x) is a central element. Then

0 = xf(x)− f(x)x

= δθ(f0) +

k−1
∑

i=0

(θ(fi) + δθ(fi+1))x
i+1 + θ(fk)x

k+1 −

k
∑

i=0

fix
i+1.

Equating coefficients of all terms to zero we get

δθ(f0) = 0,(2)

(θ(fi)− fi + δθ(fi+1)) = 0 for i = 0, 1, 2, · · · , k − 1(3)

θ(fk)− fk = 0.(4)

From Equations (3), (4), (5) and Lemma 2.5, we have all fi’s fixed by θ, i =
0, 1, · · · , k.

Again since f(x) is a central element, we have f(x)a = af(x) for all a ∈ R.
Choose a ∈ R, which is not fixed by θ, i.e., θ(a) 6= a. Then

0 = af(x)− f(x)a

=

k
∑

i=0

afix
i −

k−1

2
∑

j=0

(f2ja+ f2j+1δθ(a))x
2j −

k−1

2
∑

l=0

f2l+1θ(a)x
2l+1

=

k−1

2
∑

j=0

(af2j − f2ja− f2j+1δθ(a))x
2j +

k−1

2
∑

j=0

(af2l+1 − f2l+1θ(a))x
2l+1

=

k−1

2
∑

j=0

(f2j+1δθ(a))x
2j −

k−1

2
∑

j=0

f2l+1(a− θ(a))x2l+1.
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This implies that f2l+1(a−θ(a)) = 0 and f2j+1(δθ(a)) = 0 for all j, l = 0, 1, 2, · · · k−1
2 .

Since all fi are fixed, the coefficients f2l+1 which satisfy the above conditions are
precisely the elements of S. Combining both the cases we get the required result.

Conversely, suppose f(x) satisfies the given conditions. Then to show f(x)a(x) =
a(x)f(x) for all a(x) ∈ R[x, θ, δθ], it is sufficient to show that (aix

i)(fjx
j) =

(fjx
j)(aix

i) for 0 ≤ i ≤ deg a(x) and 0 ≤ j ≤ deg f(x). We have

(5) (aix
i)(fjx

j) = aifjx
i+j , as all fi are fixed by θ.

Also,

(6) (fjx
j)(aix

i) =

{

fjaix
i+j , if j is even

fj(θ(ai)x+ δθ(ai))x
i+j−1, if j is odd.

If j is odd and fj ∈ S, then fjδθ(a) = 0 and fjθ(a) = fja for all a ∈ R, and so (6)
gives

(7) (fjx
j)(aix

i) = fj(θ(ai)x+ δθ(ai))x
i+j−1 = fjaix

i+j .

Therefore by (5), (6), (7), we have the required result.

Lemma 2.7. For any element a ∈ R, δθ(θ(a)) + θ(δθ(a)) = 0. Also, x2a =
ax2 ∀ a ∈ R.

Proof. Let a = a′ + ub′ ∈ R. Then δθ(θ(a)) = δθ(a
′ + (u + 2)b′) = 2b′ + 2ub′,

and θ(δθ(a)) = θ(2b′ + 2ub′) = 2b′ + 2ub′ = −(2b′ + 2ub′) = −δθ(θ(a)), which
proves the first part. Further, xa = θ(a)x + δθ(a). Multiplying both sides by
x, we get x2a = xθ(a)x + xδθ(a) = [θ2(a)x + δθ(θ(a)]x + θ(δθ(a))x + δθ

2(a) =
ax2 + [δθ(θ(a)) + θ(δθ(a))]x+ δθ

2(a) = ax2, using the first part of this lemma and
noting that δθ

2(a) = 0 for all a ∈ R.

Corollary 1. For any element a ∈ R,

xna =

{

(θ(a)x+ δθ(a))x
n−1, if n is odd

axn, if n is even.

The ring R[x, θ, δθ] is not a left/right Euclidean ring, so division algorithm does
not hold in it. But we can still apply division algorithm on some particular elements
of R[x, θ, δθ]. This is given by the next result.

Theorem 2.8 (Right division algorithm). Let f(x), g(x) ∈ R[x, θ, δθ] be such that
g(x) has leading coefficient a unit. Then

f(x) = q(x)g(x) + r(x)

for some q(x), r(x) ∈ R[x, θ, δθ], where r(x) = 0 or deg r(x) <deg g(x).

Proof. Let f(x) = f0+f1x+f2x
2+· · ·+frx

r and g(x) = g0+g1x+g2x
2+· · ·+gsx

s,
where gs is a unit. If r < s, then f(x) = 0 · g(x) + f(x) gives the required result.
Suppose r ≥ s. We define a polynomial h(x) = f(x)−A(x)g(x), where

A(x) =

{

frθ(g
−1
s )xr−s, if r − s is odd

frg
−1
s xr−s, if r − s is even

.

Clearly, h(x) is a polynomial of degree one less than the degree of f(x). We prove
the result by implementing induction on deg f(x). Assume that the result is true
for every polynomial having degree less than deg f(x). Obviously result is true for
deg f(x) = 0. So let deg f(x) > 0. Since deg h(x) < deg f(x), there exist q1(x),
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r1(x) such that h(x) = q1(x)g(x) + r1(x), where r1(x) = 0 or deg r1(x) < deg g(x)
and so f(x) = q1(x)g(x)+ r1(x)+A(x)g(x) = (q1(x)+A(x))g(x)+ r1(x). Thus we
obtain f(x) = q(x)g(x) + r(x), where q(x) = q1(x) +A(x) and r(x) = r1(x). Hence
the result.

A left division algorithm can similarly be proved. In this paper, division always
means a right division.

Example 2. Consider the polynomials f(x), g(x) ∈ R[x, θ, δθ] such that f(x) =
(1+u)x2+(2+2u)x+u and g(x) = ux+(1+u). Here r = 2, s = 1, f2 = 1+u, g1 = u.
Let A(x) = f2θ(g

−1
1 )x2−1 = (1 + u)(u+ 2)x = (3u+ 3)x. Then

A(x)g(x) = (3u+ 3)x(ux+ (1 + u))

= (3u+ 3)(θ(u)x+ δθ(u))x+ (3u+ 3)(θ(1 + u)x+ δθ(1 + u))

= (3u+ 3)((u+ 2)x+ 2 + 2u)x+ (3u+ 3)((u+ 3)x+ 2 + 2u)

= (u+ 1)x2 + 0.x+ 0.x+ 0

= (u+ 1)x2.

We define h(x) = f(x) − A(x)g(x) = (2 + 2u)x + u. Now repeating the above
argument on h(x), we get h(x) = (2+2u)g(x)+u, and so f(x) = h(x)+A(x)g(x) =
(2 + 2u)g(x) + u + (3u + 3)xg(x) = ((2 + 2u) + (3u + 3)x)g(x) + u. Therefore we
have f(x) = q(x)g(x) + r(x), where q(x) = (2 + 2u) + (3u+ 3)x and r(x) = u.

3. δθ-cyclic codes over R

In this section, we define a class of skew-cyclic codes over R and call them δθ-
cyclic codes over R.

A linear code of length n over R is a submodule of Rn. By identifying Rn

with R[x,θ,δθ]
〈f(x)〉 , where f(x) is an arbitrary polynomial of degree n over R, we can

associate a word a = (a0, a1, . . . , an−1) to the corresponding polynomial a(x) =

a0 + a1x + . . . + an−1x
n−1. Moreover R[x,θ,δθ]

〈f(x)〉 is a left R[x, θ, δθ]-module with

respect to the multiplication r(x)(a(x) + 〈f(x)〉) = r(x)a(x) + 〈f(x)〉.

Definition 3.1. A code C of length n over R is said to be a δθ-linear code if it

is a left R[x, θ, δθ]-submodule of R[x,θ,δθ]
〈f(x)〉 , where f(x) is an arbitrary polynomial of

degree n over R. In addition, if f(x) is a central polynomial in R[x, θ, δθ], we call
C a central δθ-linear code.

Definition 3.2 (δθ-cyclic code). A code C of length n over R is said to be δθ-cyclic
code over R if C is a δθ-linear code and whenever c = (c0, c1, . . . , cn−1) ∈ C, we have
Tδθ (c) = (θ(cn−1)+δθ(c0), θ(c0)+δθ(c1), θ(c1)+δθ(c2), . . . , θ(cn−2)+δθ(cn−1)) ∈ C,
where Tδθ is the δθ-cyclic shift operator.

Lemma 3.3. If v(x) = v0 + v1x + v2x
2 + . . . + vn−1x

n−1 ∈ R[x,θ,δθ]
〈xn−1〉 represents

the word v = (v0, v1, . . . , vn−1) in Rn, then xv(x) represents the word (θ(vn−1) +
δθ(v0), θ(v0) + δθ(v1), θ(v1) + δθ(v2), . . . , θ(vn−2) + δθ(vn−1)) in Rn.

Proof. We have

xv(x) = x

(

n−1
∑

i=0

vix
i

)

=

n−1
∑

i=0

x(vix
i) =

n−1
∑

i=0

(θ(vi)x+ δθ(vi))x
i
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=

n−1
∑

i=0

θ(vi)x
i+1 +

n−1
∑

i=0

δθ(vi)x
i =

n
∑

i=1

θ(vi−1)x
i +

n−1
∑

i=0

δθ(vi)x
i

=

n−1
∑

i=1

θ(vi−1)x
i +

n−1
∑

i=1

δθ(vi)x
i + θ(vn−1)x

n + δθ(v0)x
0

=

n−1
∑

i=1

(θ(vi−1) + δθ(vi))x
i + (θ(vn−1) + δθ(v0)) ( as x

n = 1)

=

n−1
∑

i=0

(θ(vi−1) + δθ(vi))x
i,

where the indices are computed modulo n. Hence the result.

Theorem 3.4. A code C of length n over R is a δθ-cyclic code if and only if C is

an R[x, θ, δθ]-submodule of Rn,δθ = R[x,θ,δθ]
〈xn−1〉 .

Proof. Suppose C is a δθ-cyclic code of length n over R. Then for any c(x) ∈ C, the
δθ-cyclic shift, xc(x) also belongs to C (by Lemma 3.3), and hence all xic(x) ∈ C
for all i ∈ N. It follows that a(x)c(x) ∈ C for all a(x) ∈ R[x, θ, δθ]. Hence the result.
Converse is straightforward.

Corollary 2. If C is a δθ-cyclic code of even length n, then C is an ideal of

Rn,δθ = R[x,θ,δθ]
〈xn−1〉 .

Proof. For even n, the ideal 〈xn − 1〉 is a two sided ideal and so Rn,δθ is a ring.
Hence the result.

Remark 2. A δθ-cyclic code of an even length n over R is a central δθ-linear code.
However, the converse is not true. This is shown by the following example.

Example 3. Let C be a code of length 4 over R generated by the right divisor
g(x) = (1+2u)x2−1 of f(x) = (2u+1)x4+(2u+2)x2+1 = (x2−1)((1+2u)x2−1).
Since f(x) is a central polynomial in R[x, θ, δθ], C is a central δθ-linear code. We
obtain, using MAGMA, that (3u+ 1, 3u+ 2, 3u+ 1, u) ∈ C, but its δθ-cyclic shift,
i.e., (3u, u+ 1, u+ 2, u+ 1) /∈ C. Hence C is not a δθ-cyclic code over R.

Theorem 3.5. Let C be a δθ-cyclic code of length n over R. Then we have the
following results:

1. C is simply a cyclic code of length n over R, if n is odd.
2. C is a quasi-cyclic code of length n and index 2 over R, if n is even.

Proof. 1. Since n is odd, we have (n, 2) = 1. Therefore there exist two integers
a, b such that na+2b = 1 and so 2b = 1−na = 1+nl, where l ≡ −a (mod n).
Let c(x) = c0 + c1x + · · · + cn−1x

n−1 be a codeword. Now by Lemma 2.7,
x2bc(x) = x2b(c0+c1x+· · ·+cn−1x

n−1) = c0x
2b+c1x

2b+1+· · ·+cn−1x
2b+n−1.

Therefore x2bc(x) = c0x
1+nl + c1x

1+nl+1 + · · · + cn−1x
(1+nl)+(n−1) = c0x +

c1x
2 + · · ·+ cn−2x

n−1 + cn−1, which is a cyclic shift of c(x). Hence the result.
2. For any codeword c(x) in C, x2c(x) ∈ C and it represents the cyclic shift of

c by two positions (by Lemma 2.7). Also, in general, C is not cyclic. So 2 is
the smallest integer t such that xtc(x) ∈ C for any c(x) ∈ C. Therefore C is
quasi-cyclic code of index 2.
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Theorem 3.6. Let C be a δθ-cyclic code of length n over R such that C contains
a minimum degree polynomial g(x) with its leading coefficient a unit. Then C =

〈g(x)〉. Moreover g(x) | (xn − 1) and the set {g(x), xg(x), . . . , xn−deg g(x)−1g(x)}
forms a basis for C.

Proof. Since C contains a minimum degree polynomial having its leading coefficient
a unit, the proof follows from similar arguments as in the case of finite fields [21].

The converse of Theorem 3.6 is also true.

Theorem 3.7. Let C be a free δθ-cyclic code of length n over R. Then there exists
a minimum degree polynomial g(x) such that C = 〈g(x)〉 and g(x) | xn − 1.

Proof. Straightforward.

Example 4. Let C be a δθ-cyclic code of length 6 over R generated by the right
divisor g(x) = (u+2)x3 +2x2 +3u of x6 − 1. Then the set {g(x), xg(x), x2g(x)} =
{(u + 2)x3 + 2x2 + 3u, ux4 + 2ux3 + (3u + 2)x + 2u + 2, (u + 2)x5 + 2x4 + 3ux2}
forms a basis for C. Therefore C has cardinality 163.

Now we present a form of the generator matrix of a free δθ-cyclic code of length
n over R.

Let C = 〈g(x)〉 be a δθ-cyclic code of length n over R generated by a right divisor
g(x) of xn − 1. Then the generator matrix of C is an (n− k)× n matrix

G =















g(x)
xg(x)
x2g(x)

...
xn−k−1g(x)















(n−k)×n

,

where g(x) = g0 + g1x + g2x
2 + · · · + gkx

k. More precisely, if n − k is even, then
G =
















g0 g1 g2 · · · gk 0 · · · 0
δθ(g0) θ(g0) + δθ(g1) θ(g1) + δθ(g2) · · · θ(gk−1) + δθ(gk) θ(gk) · · · 0

0 0 g0 · · · gk−3 gk−2 · · · 0

· · · · · · · · ·
.
. . · · ·

.
. .

.
.
. · · ·

0 0 · · · δθ(g0) θ(g0) + δθ(g1) · · · θ(gk−1) + δθ(gk) θ(gk)

















and if n− k is odd, then

G =

















g0 g1 g2 · · · gk 0 · · · 0
δθ(g0) θ(g0) + δθ(g1) θ(g1) + δθ(g2) · · · θ(gk−1) + δθ(gk) θ(gk) · · · 0

0 0 g0 · · · gk−3 gk−2 · · · 0

· · · · · · · · ·
.
. . · · ·

.
. .

.
.
. · · ·

0 0 · · · 0 g0 · · · gk−2 gk−1 gk

















.

For example, for the δθ-cyclic code C given in Example 4, the generator matrix
of C can be given as





3u 0 2 u+ 2 0 0
2u+ 2 3u+ 2 0 2u u 0

0 0 3u 0 2 u+ 2



 .
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3.1. Residue and torsion codes. In this sub-section, we study the residue codes
and torsion codes associated with linear codes over R.

Definition 3.8. Let C be a linear code of length n over R. Then

Res(C) = {x : x+ uy ∈ C for some y ∈ Z4
n}

and
Tor(C) = {x : ux ∈ C}

are called the residue code and the torsion code, respectively, of C.

Res(C), T or(C) are linear codes of length n over Z4.

Theorem 3.9. Let C be a linear code of length n over R.

1. If x + uy ∈ C, then x, y ∈ Res(C), and hence Res(C) = {y | x + uy ∈
C for some x ∈ Z4

n}.
2. Tor(C) ⊆ C, hence min{dL(Tor(C))} ≥ min{dG(C)}.

Proof. For first part, since x + uy ∈ C, we have ux + y ∈ C as u2 = 1. This gives
y ∈ Res(C). Also x+ uy ∈ C implies x ∈ Res(C). The proof of the second part is
straightforward.

Example 5. Let f(x) = x8 − 1. Then two different factorizations of f(x) are as
follows:

x
8
− 1 = (x

2
− 1)(x

6
+ x

4
+ x

2
+ 1)

= ((3u + 2)x
2
+ 2ux + u + 2)((3u + 2)x

6
+ 2ux

5
+ (3u + 2)x

4
+ (3u + 2)x

2
+ 2ux + 3u + 2).

Consider two distinct factors of degree 6 of x8 − 1 as f1 = x6 + x4 + x2 + 1, f2 =
(3u+2)x6 +2ux5 +(3u+2)x4 +(3u+2)x2 +2ux+3u+2. Then we have δθ-cyclic
codes C1 = 〈f1〉 and C2 = 〈f2〉 of length 8 over R. Also the spanning set for Ci

is {fi, xfi} for i = 1, 2. Moreover, C2 exists due to the factors f2, which exists in
R[x, θ, δθ] only. Now Φ(C1) and Φ(C2) are linear codes of length 16 over Z4 having
parameters (16, 44, 4), (16, 44, 8), respectively. Also Res(C1) has the parameters
(8, 42, 4) and Res(C2) has the parameters (8, 42, 8)∗, which is a good linear code
over Z4 [2].

Example 6. Let C be a δθ-cyclic code of length 9 over R generated by g(x) =
3x8+2ux7+(u+1)x6+(2u+2)x5+2ux4+(u+2)x3+2x2+(u+2)x+u+2. Consider a
subcode C1 of C having spanning set {g(x), xg(x), x2g(x), x3g(x), x4g(x)}. Now the
parameters of Φ(C1) are (18, 4

10, 4) and the parameters of Res(C1) are (9,4
821,2).

Res(C1) is a new good linear code over Z4 and has twice as many codewords as in
the existing best known code with comparable parameters [2]. A generator matrix
of Res(C1) over Z4 is given by





























1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 1
0 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 2





























.

Further, let C2 = {(u | u + v) | u, v ∈ Res(C1)}. Then the parameters C2 are
(18,41622,2), which is a new good linear code over Z4 and improves minimum
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Lee distance of code by 1 when compared to existing best code with comparable
parameters [2].

Example 7. Let C be a δθ-cyclic code of length 4 over R with generator matrix




1 + u u 1 0
2 + 2u 1 + 3u 2 + u 1

1 0 1 + u u



 .

Then Φ(C) has parameters (8, 46, 2), which is a best known linear code over Z4.
Also Res(C) has a generator matrix









1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 2









.

The parameters for Res(C) are (4, 4321, 2), which is a best known good code over
Z4. Moreover Res(C) satisfies the bound given in Theorem 2.3, and is therefore an
MLDS code. Now let C1 = {(u | u+v) | u, v ∈ Res(C)}. Then C1 is an (8,4622,2)
code over Z4, which is a new good linear code over Z4 and improves the minimum
Lee distance of code by 1 when compared to existing best code with comparable
parameters [2].

C Φ(C) Res(C) C∗

Set of generators Code (n, 4k12k2 , dL) (n, 4k12k2 , dL) (n, 4k12k2 , dL)

{g1(x), xg1(x), x
2g1(x)} C1 (10, 46, 2) (5, 4421, 2)∗ (10,48

2
2,2)

∗∗

{g2(x), xg2(x), x
2g2(x)} C2 (20, 46, 8) (10, 46, 4)∗ (20, 412, 4)∗

{g3(x), xg3(x), x
2g3(x)} C3 (20, 46, 6) (10, 45, 6)∗ (20, 410, 6)

{g4(x), xg4(x), x
2g4(x), x

3g4(x)} C4 (24, 48, 6) (12, 48, 4)∗ (24, 416, 4)∗

{g5(x), xg5(x), x
2g5(x), x

3g5(x)} C5 (28, 48, 6) (14, 48, 5)∗ (28, 416, 5)∗

{g6(x), xg6(x), x
2g6(x), x

3g6(x)} C6 (30, 48, 6) (15, 48, 6)∗ (30, 416, 6)

{g7(x), xg7(x), x
2g7(x), x

3g7(x)} C7 (36, 48, 8) (18, 48, 8)∗ (36, 416, 8)∗

Table 1. *:= Existing good code [2, 1], **:=New good code

Table 1 shows some good linear codes over Z4 we have obtained via the Gray
images and residue codes of skew-linear codes with derivation (not necessarily δθ-
cyclic codes) over R. In table 1, we have

C∗ = {(u | u+ v) : u, v ∈ Res(C)},
g1(x) = 2ux4 + x3 + (u+ 2)x2 + 2ux+ (u+ 1)

g2(x) = ux9 + (u+ 1)x8 + 2ux7 + (u+ 2)x6 + 2x5 + (u+ 1)x4 + x2 + ux+ (u+ 1)
g3(x) = ux9+(u+1)x8+(3u+3)x7+(2u+2)x6+(3u+2)x5+2x4+x2+ux+u+1
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g4(x) = 2x11 + ux10 + 2x9 + (u+ 1)x8 + 2ux7 + (u+ 1)x6 + 2x5 + 2ux4 + (3u+
3)x3 + (2u+ 3)x2 + (u+ 2)x+ 2

g5(x) = 2ux13 + (u+ 1)x12 + ux11 + (u+ 2)x10 + 2x9 + (u+ 1)x8 + 2ux7 + (u+
1)x6 + 2x5 + ux4 + (u+ 3)x3 + 2x2 + 2x+ 2

g6(x) = (u+ 1)x14 + 2x13 + (u+ 1)x12 + 2x11 + ux10 + 2x9 + (u+ 1)x8 + 2ux7 +
(u+ 1)x6 + 2x5 + (2u+ 3)x4 + 3x3 + (u+ 2)x2 + 2x+ 2

g7(x) = 2x17 +2x16 +2x15 +(3u+3)x14 +(2u+2)x13 +(u+1)x12 +2x11 +ux10 +
2x9 + (u+ 1)x8 + 2x7 + (u+ 1)x6 + 2x5 + 2ux4 + (u+ 2)x3 + ux2 + (u+ 2)x+ 2

4. Duals of δθ-cyclic codes over R

In this section, we find the structure of the dual of a free δθ-cyclic code of even
length n over R.

Definition 4.1. Let C be a δθ-cyclic code of length n over R. Then its dual is
defined as

C⊥ = {x | x · y = 0 for all y ∈ C},

where x ·y denotes the usual inner product of x and y, where x = (x0, x1, · · · , xn−1)
and y = (y0, y1, · · · , yn−1) belong to Rn.

To determine a generator matrix of the dual of a free δθ-cyclic code C, we need
to find the parity-check matrix of C. For this, we first require some lemmas.

Lemma 4.2. For even n, xn − 1 is a central element of R[x, θ, δθ], and hence
xn − 1 = h(x)g(x) = g(x)h(x) for some g(x), h(x) ∈ R[x, θ, δθ].

Proof. The proof is similar to the proof of Lemma 7 [8].

Remark 3. If C is a δθ-cyclic code generated by a minimum degree polynomial
g(x) with its leading coefficient a unit, then there exists a minimum degree monic
polynomial g′(x) in C such that C = 〈g′(x)〉.

Lemma 4.3. Let C be a δθ-cyclic code of even length n over R generated by a monic
right divisor g(x) of xn − 1. Then v(x) ∈ Rn,δθ is in C if and only if v(x)h(x) = 0
in Rn,δθ , where xn − 1 = h(x)g(x).

Proof. Suppose v(x) ∈ C. Then v(x) = a(x)g(x) for some a(x) ∈ Rn,δθ . So
v(x)h(x) = a(x)g(x)h(x) = a(x)h(x)g(x) = 0 in Rn,δθ (by Lemma 4.2). Conversely,
suppose v(x)h(x) = 0 in Rn,δθ for some v(x) ∈ Rn,δθ . Then there exists q(x) ∈
R[x, θ, δθ] such that v(x)h(x) = q(x)(xn−1) = q(x)h(x)g(x) = q(x)g(x)h(x). Since
h(x) is regular, v(x) = q(x)g(x). Hence the result.

Lemma 4.4. Let a ∈ R be a unit in R. Then θ(a) + δθ(b) is a unit for all b ∈ R.

Proof. Let d = θ(a)+δθ(b), where a, b ∈ R such that a is a unit. Let θ(a) = α+uβ.
Then α + uβ is a unit, and hence either α or β is a unit but not both. We know
δθ(b) is either 0 or 2u + 2 for all b ∈ R. If δθ(b) = 0, then we are done. Otherwise
d = (α + 2) + u(β + 2). Also, any c ∈ Z4 is a unit if and only if c + 2 is a unit.
Hence d is a unit.

Theorem 4.5. Let C = 〈g(x)〉 be a principally generated δθ-cyclic code of even
length n over R such that xn − 1 = h(x)g(x) for some h(x) = h0 + h1x + h2x

2 +
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· · ·+ hkx
k ∈ R[x, θ, δθ], where k is odd. Then the matrix H =







hk θ(hk−1) + δθ(hk) hk−2 · · · θ(h0) + δθ(h1) · · · 0 0
0 θ(hk) hk−1 · · · h0 δθ(h0) · · · 0
0 0 hk hk−2 θ(hk−3) + δθ(hk−2) · · · · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · hk θ(hk−1) + δθ(hk) · · · h1 θ(h0) + δθ(h1)







is a parity-check matrix for C.

Proof. Let c(x) ∈ C. Then by Lemma 4.3, we have c(x)h(x) = 0 in Rn,δθ . There-
fore the coefficients of xk, xk+1, · · · , xn−1 in [c0 + c1x + c2x

2 + · · · + cn−2x
n−2 +

cn−1x
n−1][h0 + h1x+ h2x

2 + · · ·+ hk−1x
k−1 + hkx

k] are all zero. So we have

c0hk + c1(θ(hk−1) + δθ(hk)) + c2hk−2 + · · ·+ ck(θ(h0) + δθ(h1)) = 0

c1(θ(hk)) + c2hk−1 + c3(θ(hk−2) + δθ(hk−1)) + · · ·+ ck+1h0 + ck+2δθ(h0) = 0

c2hk + c3(θ(hk−1) + δθ(hk)) + c4hk−2 + · · ·+ ck+1h1 + ck+2(θ(h0) + δθ(h1)) = 0

...

cn−k−1hk + cn−k(θ(hk−1) + δθ(hk)) + · · ·+ cn−2h1 + cn−1(θ(h0) + δθ(h1)) = 0.

From these equations, it is clear that for any c ∈ C, cHT = 0, and hence GHT = 0.
Now each row of H is orthogonal to each c ∈ C, so span(H) ⊆ C⊥. Moreover,
H contains a square sub-matrix of order n − k (by taking first n − k coordinates
of each row) with non-zero determinant, as it is a lower triangular matrix with all
diagonal entries units (by Lemma 4.4). This implies that all rows of H are linearly
independent. Therefore |Span(H)| = |R|n−k. Also |C||C⊥| = |R|n and |C| = |R|k

give |C⊥| = |R|n−k. Hence Span(H) = C⊥, and so H is a parity check matrix of
C.

The above result can similarly be proved for the case when k is even. In this
case, matrix H is given as:







hk θ(hk−1) + δθ(hk) hk−2 · · · h0 δθ(h0) · · · 0
0 θ(hk) hk−1 · · · h1 θ(h0) + δθ(h1) · · · 0
0 0 hk · · · h2 θ(h1) + δθ(h2) · · · 0

.

.

.

.

.

.
. .
.

. .
.

. .
.

. .
.

.

.

.
0 0 · · · θ(hk) hk−1 · · · h1 θ(h0) + δθ(h1)






.

Example 8. Let C be a δθ-cyclic code of length 6 generated by the polynomial
g(x) = (u+2)x3+2x2+3u such that x6−1 = (ux3+2ux2+u)((u+2)x3+2x2+3u).
Let h(x) = ux3 + 2ux2 + u. Then a parity check matrix of C (by Theorem 4.5) is
given by

H =





u 2 0 u+ 2 0 0
0 u+ 2 2u 0 u 2 + 2u
0 0 u 2 0 u+ 2



 .

One may verify that GHT = 0 and the rows of H are linearly independent. There-
fore H forms a parity check matrix for C.

5. Double δθ-cyclic codes over R

In this section, we study double δθ-cyclic codes over R.
A code C of length n is said to be a double δθ-linear code if the coordinates of the

codewords are partitioned in two blocks of lengths α and β such that the set of the
first blocks of α symbols and the set of second blocks of β symbols form δθ-linear
codes of lengths α and β, respectively, over R.
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For any d ∈ R and v = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) ∈ Rα+β , we define

dv = (da0, da1, · · · , daα−1, db0, db1, · · · , dbβ−1).

With this multiplication, Rα+β is an R-module.

Definition 5.1. For an element v = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1) ∈ Rα+β , the
δθ(α, β)-cyclic shift of v, denoted by αβTδθ (v), is defined as αβTδθ (v) = (θ(aα−1) +

δθ(a0), θ(a0) + δθ(a1), θ(a1) + δθ(a2), · · · , θ(aα−2) + δθ(aα−1),

θ(bβ−1) + δθ(b0), θ(b0) + δθ(b1), θ(b1) + δθ(b2), · · · , θ(bβ−2) + δθ(bβ−1)).

A double δθ-linear code is an R-submodule of Rα+β .

Definition 5.2. A double δθ-linear code C is called double δθ-cyclic code if C is
invariant under the δθ(α, β)-cyclic shift αβTδθ .

In polynomial representation, an element c = (a0, a1, · · · , aα−1, b0, b1, · · · , bβ−1)
in C can be identified with c(x) = (c1(x), c2(x)), where c1(x) = a0 + a1x + · · · +

aα−1x
α−1 ∈ R[x,θ,δθ]

〈xα−1〉 and c2(x) = b0 + b1x · · · + bβ−1x
β−1 ∈ R[x,θ,δθ]

〈xβ−1〉
. This iden-

tification gives a one-to-one correspondence between Rα+β and Rα,β = R[x,θ,δθ]
〈xα−1〉 ×

R[x,θ,δθ]
〈xβ−1〉

. For convenience, we denote (c1(x), c2(x)) by (c1(x) | c2(x)). We define the

multiplication of any r(x) ∈ R[x, θ, δθ] and (g1(x) | g2(x)) ∈
R[x,θ,δθ]
〈xα−1〉 × R[x,θ,δθ]

〈xβ−1〉
as

r(x)(g1(x) | g2(x)) = (r(x)g1(x) | r(x)g2(x)),

where r(x)g1(x) and r(x)g2(x) are the multiplication of polynomials in R[x,θ,δθ]
〈xα−1〉 and

R[x,θ,δθ]
〈xβ−1〉

, respectively. With this multiplication, Rα,β is a left R[x, θ, δθ] -module.

It can easily be seen that if c(x) = (c1(x) | c2(x)) represents the codeword c,
then xc(x) represents the δθ(α, β)-cyclic shift of c.

Theorem 5.3. Let C be a δθ-linear code of length n = α+ β over R. Then C is a
double δθ-cyclic code if and only if it is a left R[x, θ, δθ]-submodule of the left-module
R[x, θ, δθ]/〈x

α − 1〉 ×R[x, θ, δθ]/〈x
β − 1〉.

Proof. Suppose C is a double δθ-cyclic code. Let c ∈ C, and let the associated
polynomial of c be c(x). As xc(x) is a δθ(α, β)-cyclic shift of c, so xc(x) ∈ C.
By linearity of C, r(x)c(x) ∈ C for any r(x) ∈ R[x, θ, δθ]. So C is left R[x, θ, δθ]-
submodule of Rα,β . Converse is straightforward.

Theorem 5.4. A double δθ-cyclic code of length n = α+ β is a double cyclic code
if α and β both are odd integers.

Proof. Let C be a double δθ-cyclic code. Let γ = lcm(α, β). Then γ is odd, and
so gcd(γ, 2) = 1. Therefore there exist two integers a, b such that γa + 2b = 1
and so 2b = 1 − γa = 1 + γl for some l > 0, where l = −a (mod γ). Let c(x) =
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(a(x) | b(x)) ∈ C, where a(x) =
∑α−1

i=0 aix
i and b(x) =

∑β−1
i=0 bix

i. Then

x2bc(x) = x2b

(

α−1
∑

i=0

aix
i |

β−1
∑

i=0

bix
i

)

=

(

α−1
∑

i=0

aix
i+2b |

β−1
∑

i=0

bix
i+2b

)

=

(

α−1
∑

i=0

aix
i+1+γl |

β−1
∑

i=0

bix
i+1+γl

)

=

(

α−2
∑

i=0

aix
i+1+γl + aα−1x

α+γl |

α−2
∑

i=0

aix
i+1+γl + aβ−1x

β+γl

)

=

(

α−2
∑

i=0

aix
i+1 + aα−1 |

β−2
∑

i=0

aix
i+1 + aβ−1

)

, (since xα = xβ = xγ = 1).

Thus x2bc(x) = (a′(x) | b′(x)), where a′(x), b′(x) are cyclic shifts of a(x) and b(x),
respectively. Hence C is a double cyclic code.

Theorem 5.5. Let C1 and C2 be two free δθ-cyclic codes of lengths n1 and n2

over R having monic generator polynomials g1(x) and g2(x), respectively, such that
g1(x)|x

n1 − 1 and g2(x)|x
n2 − 1. Then a code C generated by g(x) = (g1(x) | g2(x))

is a double δθ-cyclic code and A = {g(x), xg(x), · · · , xl−1g(x)} is a spanning set
of C, where l = deg h(x) and h(x) is the least left common multiple of h1(x) and
h2(x).

Proof. Let xn1 − 1 = h1(x)g1(x) and xn2 − 1 = h2(x)g2(x) for some monic poly-
nomials h1(x), h2(x) ∈ R[x, θ, δθ]. Then h(x)g(x) = h(x)(g1(x)|g2(x)) = 0, as
h(x)gi(x) = h′(x)hi(x)gi(x) = 0 for i = 1, 2. Now let v(x) ∈ C be any non-zero
codeword in C. Then v(x) = a(x)g(x) for some a(x) ∈ R[x, θ, δθ]. By the division
algorithm, we have a(x) = q(x)h(x) + r(x), where r(x) = 0 or deg r(x) < deg h(x).
Then v(x) = a(x)g(x) = r(x)g(x) = 0. Since r(x) = 0 or deg r(x) < deg h(x), the
result follows.

Example 9. Let C be a double δθ-cyclic code of length n = 10(= 6 + 4) over R,
which is principally generated by g(x) = (g1(x)|g2(x)), where g1(x) = ux3+2ux2+u
and g2(x) = x2 + 2ux+ 1 such that g1(x)|x

6 − 1 and g2(x)|x
4 − 1. Now let h(x) be

the least left common multiple of h1(x) and h2(x). Then deg h(x) = 5. Therefore
the set {g(x), xg(x), x2g(x), x3g(x), x4g(x)} forms a spanning set for C. Hence a
generator matrix of C is













u 0 2u u 0 0 1 2u 1 0
2u+ 2 u+ 2 0 2 u+ 2 0 0 1 2u 1

0 0 u 0 2u u 1 0 1 2u
u+ 2 0 2u+ 2 u+ 2 0 2 2u 1 0 1
2u u 0 0 u 0 1 2u 1 0













.

The parameters for Φ(C) are [20, 49, 4]. Moreover, Res(C) and Tor(C) have the
parameters [10, 4521, 2] and [10, 4321, 4], respectively.

In Table 2, we present some good linear codes over Z4 as Gray images and residue
codes of double skew-linear codes with derivation (not necessarily δθ-cyclic codes)
over R.

In Table 2, we have C∗ = {(u | u+ v) : u, v ∈ Res(C)}

h0(x) = ((2 + 3u) + (1 + 2u)x+ ux2 | 2u+ (2 + 2u)x),
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C Φ(C) Res(C) C∗

Set of generators Name (n,M, dL) (n, 4k12k2 , dL) (n, 4k12k2 , dL)

{h0(x), xh1(x)} A1 (10, 128, 2) (5, 4321, 2)∗ (10, 4622, 2)

{h1(x), xh1(x), x
2h1(x)} A2 (12, 4096, 2) (6, 4521, 2)∗ (12,410

2
2,2)

∗∗

{h2(x), xh2(x), x
2h2(x), x

3h2(x)} A3 (14, 65536, 2) (7, 4621, 2)∗ (14, 41222, 2)

{h3(x), xh3(x), x
3h2(x), x

3h3(x)} A3 (16, 65536, 4) (8,47,2)∗∗ (16,414,2)
∗∗

Table 2. ∗:= Existing good code [2, 1], ∗∗:=New good code;

h1(x) = ((3u+ 2) + (1 + 2u)x+ ux2 | 2 + (1 + 2u)x+ 2ux2),

h2(x) = ((1 + u) + (1 + 2u)x+ (2 + u)x2 + ux3 | 1 + 2ux+ (u+ 1)x2),

h3(x) = ((1 + u) + (1 + 2u)x+ (2 + u)x2 + ux3 | 1 + 2ux+ (u+ 1)x2 + 2ux3).

Remark 4. The codes whose parameters are written in bold letters in Table 1
and Table 2 have improved the parameters of the existing codes having comparable
parameters. These codes have been reported and added to the Database of Z4-codes
[2].

6. Conclusion

This paper studies a class of skew-cyclic codes over R = Z4+uZ4 with derivation.
We have studied these codes as left R[x, θ, δθ]-submodules. A Gray map is defined
on R, and some good linear codes over Z4 via Gray images, residue codes of these
codes have been obtained. The generator matrix of dual code of a free δθ-cyclic
code of even length over R is obtained. These codes are generalized to double skew-
cyclic codes with derivation. All new linear codes over Z4, obtained in this paper,
have been reported and added to the database of Z4-codes. It will be interesting to
obtain criteria under which the dual of a free δθ-cyclic code of even length over R
is a δθ-cyclic code of same length.

All the computations to find codes were done with Magma computational algebra
system [7].
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