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Abstract: A generalization of a result of Badshah and Singh [1] was proved in [5] for a pair

of compatible maps and dropping the continuity of one of the self-maps. A generalization of

the result of [5] is obtained in this paper, by employing an auxiliary function.
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1. Introduction

Badshah and Singh [1] proved the following result for commuting self-maps:

Theorem 1.1. Let f and g be self-maps on a complete metric space X

satisfying the inclusion

f(X) ⊂ g(X) (1)

and the inequality
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[d(fx, fy)]2 ≤ α [d(fx, gx)d(fy, gy) + d(fy, gx)d(fx, gy)]

+β [d(fx, gx)d(fx, gy) + d(fy, gx)d(fy, gy)]

for all x, y ∈ X, (2)

where

(a) α and β are nonnegative constants with α+ 2β < 1,

(b) (f, g) is a commuting pair,

(c) f and g are continuous.

Then f and g have a unique common fixed point.

A generalization of Theorem 1.1 was obtained in [5], by dropping the con-
tinuity of f and using a compatible pair1 (f, g) in (b) with the choice:

lim
n→∞

d(fgxn, gfxn) = 0 (3)

whenever 〈xn〉
∞
n=0 is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t (4)

for some t ∈ X.

It is easy to observe that every commuting pair of self-maps is necessarily
compatible. Converse is not true. For instance, see [2], [3] and [4].

The generalization proved in [5] is the following:

Theorem 1.2. Let f and g be self-maps on a complete metric space X

satisfying the inclusion (1) and the inequality (2), where α and β are nonneg-

ative constants with α + 2β < 1. If g is continuous, and (f, g) is a compatible

pair, then f and g have a unique common fixed point.

We prove a generalization of Theorem 1.2 by replacing (2) with a general
inequality involving an auxiliary function.

1Compatible maps was introduced by Gerald Jungck [2] as a generalization of commuting
maps
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2. Preliminary Notations

Several fixed point theorems in metric space setting have been proved through
contraction conditions involving different types of auxiliary functions. Given a
positive integer α, a generalized class Φα of auxiliary functions was introduced
in [6] as follows:

Φα = {φ : [0,∞) → [0,∞)|φ(0) = 0, φ(αt) < t for t > 0}. (5)

It is obvious that, for α = 1, Φα reduces to the class Ψ of all contractive moduli
ψ [7] such that ψ(0) = 0 and psi(t) < t for t > 0.

Definition 2.1. A mapping φ ∈ Φα is said to be upper semicontinuous at
t0 ≥ 0 if lim supn→∞ φ(tn) ≤ φ(t0) whenever 〈tn〉

∞
n=1 is such that limn→∞ tn =

t0, and φ is u.s.c if it is u.s.c. at every t ≥ 0.

Our main result is

Theorem 2.1. Let f and g be self-maps on a complete metric space X

satisfying the inclusion (1), and the inequality

[d(fx, fy)]2 ≤ φ(max{d(fx, gx)d(fy, gy) + d(fy, gx)d(fx, gy),

d(fx, gx)d(fx, gy) + d(fy, gx)d(fy, gy)})

for all x, y ∈ X, (6)

where φ ∈ Φ2 is nondecreasing and upper semicontinuous. If g is continuous,

and (f, g) is a compatible pair, then f and g have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary.

In view of (1), we can choose points x1, x2, . . . , xn, . . . inX inductively such that

fxn−1 = gxn = yn forall n ≥ 1. (7)

Writing x = xn−1 and y = xn in (6) and using (7), we get

[d(yn, yn+1)]
2 = [d(fxn−1, fxn)]

2

≤φ(max{d(fxn−1, gxn−1)d(fxn, gxn) + d(fxn, gxn−1)d(fxn−1, gxn),

d(fxn−1, gxn−1)d(fxn−1, gxn) + d(fxn, gxn−1)d(fxn, gxn)})

=φ(max{d(yn, yn−1)d(yn+1, yn), d(yn+1, yn−1)d(yn+1, yn)})

≤φ(d(yn, yn+1)[d(yn, yn−1) + d(yn+1, yn)]) (8)
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We now prove that

d(yn, yn−1) ≥ d(yn+1, yn) for n ≥ 2. (9)

If possible, suppose that d(ym, ym−1) < d(ym+1, ym) for some m ≥ 2. Then
d(ym+1, ym) > 0. Since φ is nondecreasing, from (8) it follows that

0 < [d(ym+1, ym)]2 ≤ φ(2[d(ym, ym+1)]
2) < [d(ym+1, ym)]2,

which is a contradiction. This proves (9). In other words, 〈d(yn+1, yn)〉
∞
n=1 is a

decreasing sequence of nonnegative real numbers and hence converges to some
t ≥ 0. Now using (9) in (8), we get

d(yn+1, yn) ≤ φ
(

d(yn+1, yn) + d(yn+2, yn+1)
)

≤ φ(2d(yn+1, yn)) for n ≥ 1.

Taking the limit superior as n→ ∞ in this and then using the upper semicon-
tinuity of φ, we obtain that

t ≤ φ(2t). (10)

If t > 0 in (10), then the choice of φ implies that t ≤ φ(2t) < t, which is a
contradiction. Thus

t = lim
n→∞

d(yn+1, yn) = lim
n→∞

d(yn+1, yn) = 0. (11)

We now prove that 〈yn〉
∞
n=1 is a Cauchy sequence in X.

If possible we suppose that 〈yn〉
∞
n=1 is not Cauchy. Then for some ǫ > 0, we

choose sequences 〈ymk
〉∞
k=1 and 〈ymk

〉∞
k=1 of positive integers such that mk >

nk > k and

d(ymk
, ynk

) ≥ ǫ for k = 1, 2, 3, .... (12)

Suppose that mk is the smallest integer exceeding nk which satisfies (12). That
is

d(ymk −1, ynk
) < ǫ. (13)

Now by triangle inequality of d, we see that

ǫ ≤ d(ymk
, ynk

) ≤ d(ymk
, ymk −1) + d(ymk −1, ynk

)

< d(ymk
, ymk −1) + ǫ (14)
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and from (11), we see that

lim
k→∞

d(ymk −1, ymk
) = 0 (15)

and

lim
k→∞

d(ynk −1, ynk
) = 0 (16)

Using (15) in (14), we get

lim
k→∞

d(ymk
, ynk

) = ǫ. (17)

Again, by the triaangle inequality of d, we get

d(ynk −1, ymk
) ≤ d(ynk −1, ynk

) + d(ynk
, ymk

).

As k → ∞ this in view of (16) and (17), gives

lim
k→∞

d(ynk −1, ymk
) = ǫ. (18)

On the other hand, writing x = xmk −1, y = xnk −1 in (6), we have

[d(fxmk −1, fxnk −1)]
2 ≤ φ(max{d(fxmk −1, gxmk −1)d(fxnk −1, gxnk −1)

+ d(fxnk −1, gxmk −1)d(fxmk −1, gxnk −1),

d(fxmk −1, gxmk −1)d(fxmk −1, gxnk −1)

+ d(fxnk −1, gxmk −1)d(fxnk −1, gxnk −1)})

or

ǫ2 ≤ [d(ymk
, ynk

)]2

≤ φ(max{d(ymk
, ymk −1))d(ynk

, ynk −1) + d(ynk
, ymk −1)d(ymk

, ynk −1),

d(ymk
, ymk −1)d(ymk

, ynk −1) + d(ynk
, ymk −1)d(ynk

, ynk −1)}) (19)

Since φ is nondecreasing, proceeding the limit as n→ ∞ in this, and then using
upper semicontinuity of φ, (13), (15), (16),(17) and (18) we get

0 < ǫ2 ≤ φ
(

max{0 + ǫ2, 0}) = φ(ǫ2) ≤ φ(2ǫ2) < ǫ2,

which is a contradiction. Hence 〈yn〉
∞
n=1 must be a G-Cauchy sequence in X.
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Since (X,G) is G-Complete, there exists a point p ∈ X such that 〈yn〉
∞
n=1

is G-convergent to p. That is

lim
n→∞

yn−1 = lim
n→∞

yn = p. (20)

Now the compatibility of f and g, and (20) imply that

lim
n→∞

d(fgxn, gfxn) = 0, (21)

while the sequential property of the continuiy of g and (20) give

lim
n→∞

gfxn = lim
n→∞

g2xn = gz. (22)

Hence it follows from (21) and (22), that

lim
n→∞

d(fgxn, gz) = 0 or lim
n→∞

fgxn = gz. (23)

But the use of (6) yields

[d(fgxn, fz)]
2 ≤ φ(max{d(fgxn, g

2xn)d(fz, gz) + d(fz, g2xn)d(fgxn, gz),

d(fgxn, g
2xn)d(fgxn, gz) + d(fz, g2xn)d(fz, gz)}).

Applying the limit as n→ ∞ in this, and using (22) and (23), we obtain that

[d(gz, fz)]2 ≤ φ(max{d(gz, gz)d(fz, gz) + d(fz, gz)d(gz, gz),

d(gz, gz)d(gz, gz) + d(fz, gz)d(fz, gz)}).

or

[d(gz, fz)]2 ≤ φ([d(fz, gz)]2).

If fz 6= gz, then the nondecreasing nature of φ would lead to a contradiction
that

0 < [d(gz, fz)]2 ≤ φ([d(fz, gz)]2) ≤ φ(2 [d(fz, gz)]2) < [d(fz, gz)]2 .

Hence we must have
gz = fz. (24)

Finally from (6), we see that

[d(fxn, fz)]
2 ≤ φ(max{d(fxn, gxn)d(fz, gz) + d(fz, gxn)d(fxn, gz),
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d(fxn, gxn)d(fxn, gz) + d(fz, gxn)d(fz, gz).

The limiting case of this as n→ ∞, (20), and (22) would imply that

[d(z, fz)]2 ≤ φ([d(fz, z)]2),

which with a similar argument as above yields that d(z, fz) = 0 or fz = z.
Thus z is a common fixed point of f and g.

The uniqueness of the common fixed point follows easily from (6).

Remark 2.1. Theorem 2.1 does not require the continuity of f .

Since every commuting pair is compatible, writing φ(t) = qt for all t ≥ 0,
where q < 1/2, we obtain

Corollary 2.1. Let f and g be self-maps on a complete metric space X

satisfying the inclusion (1), and the inequality

[d(fx, fy)]2 ≤ qmax{d(fx, gx)d(fy, gy) + d(fy, gx)d(fx, gy),

d(fx, gx)d(fx, gy) + d(fy, gx)d(fy, gy)}

for all x, y ∈ X, (25)

If g is continuous, and (f, g) is a commuting, then f and g have a unique

common fixed point.

Choosing α and β such that α + 2β < 1/2, then it is easily seen that the
right hand side of (2) is less than or equal to the right hand side of (25), where
r = α+ 2β. Thus Theorem 1.2 will become a particular case of Corollary 2.1.
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