International Journal of Pure and Applied Mathematics

Volume 114 No. 4 2017, 867-874

ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version)

url: http://www.ijpam.eu **doi:** 10.12732/ijpam.v114i4.16

A COMMON FIXED POINT THEOREM UNDER AN AUXILIARY FUNCTION

T. Phaneendra¹§, Swatmaram²

¹Department of Mathematics
School of Advanced Sciences,
VIT University
Vellore, 632014, Tamil Nadu, INDIA

²Department of Mathematics
Chaitanya Bharati Institute of Technology
Ranga Reddy District-500 075, Telangana, INDIA

Abstract: A generalization of a result of Badshah and Singh [1] was proved in [5] for a pair of compatible maps and dropping the continuity of one of the self-maps. A generalization of the result of [5] is obtained in this paper, by employing an auxiliary function.

AMS Subject Classification: 54H25

Key Words: metric space, auxiliary function, Cauchy sequence, complete metric space, common fixed point

1. Introduction

Badshah and Singh [1] proved the following result for commuting self-maps:

Theorem 1.1. Let f and g be self-maps on a complete metric space X satisfying the inclusion

$$f(X) \subset g(X) \tag{1}$$

and the inequality

Received: February 23, 2017

Revised: March 23, 2017 Published: June 7, 2017 © 2017 Academic Publications, Ltd. url: www.acadpubl.eu

[§]Correspondence author

$$[d(fx, fy)]^{2} \leq \alpha \left[d(fx, gx)d(fy, gy) + d(fy, gx)d(fx, gy)\right] + \beta \left[d(fx, gx)d(fx, gy) + d(fy, gx)d(fy, gy)\right]$$

$$for all \quad x, y \in X,$$

$$(2)$$

where

- (a) α and β are nonnegative constants with $\alpha + 2\beta < 1$,
- (b) (f,g) is a commuting pair,
- (c) f and g are continuous.

Then f and g have a unique common fixed point.

A generalization of Theorem 1.1 was obtained in [5], by dropping the continuity of f and using a compatible pair (f,g) in (b) with the choice:

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0 \tag{3}$$

whenever $\langle x_n \rangle_{n=0}^{\infty}$ is a sequence in X such that

$$\lim_{n \to \infty} f x_n = \lim_{n \to \infty} g x_n = t \tag{4}$$

for some $t \in X$.

It is easy to observe that every commuting pair of self-maps is necessarily compatible. Converse is not true. For instance, see [2], [3] and [4].

The generalization proved in [5] is the following:

Theorem 1.2. Let f and g be self-maps on a complete metric space X satisfying the inclusion (1) and the inequality (2), where α and β are nonnegative constants with $\alpha + 2\beta < 1$. If g is continuous, and (f,g) is a compatible pair, then f and g have a unique common fixed point.

We prove a generalization of Theorem 1.2 by replacing (2) with a general inequality involving an auxiliary function.

 $^{^{1}\}mathrm{Compatible}$ maps was introduced by Gerald Jungck [2] as a generalization of commuting maps

2. Preliminary Notations

Several fixed point theorems in metric space setting have been proved through contraction conditions involving different types of auxiliary functions. Given a positive integer α , a generalized class Φ_{α} of auxiliary functions was introduced in [6] as follows:

$$\Phi_{\alpha} = \{ \phi : [0, \infty) \to [0, \infty) | \phi(0) = 0, \phi(\alpha t) < t \text{ for } t > 0 \}.$$
 (5)

It is obvious that, for $\alpha = 1$, Φ_{α} reduces to the class Ψ of all contractive moduli ψ [7] such that $\psi(0) = 0$ and psi(t) < t for t > 0.

Definition 2.1. A mapping $\phi \in \Phi_{\alpha}$ is said to be upper semicontinuous at $t_0 \geq 0$ if $\limsup_{n \to \infty} \phi(t_n) \leq \phi(t_0)$ whenever $\langle t_n \rangle_{n=1}^{\infty}$ is such that $\lim_{n \to \infty} t_n = t_0$, and ϕ is u.s.c. if it is u.s.c. at every $t \geq 0$.

Our main result is

Theorem 2.1. Let f and g be self-maps on a complete metric space X satisfying the inclusion (1), and the inequality

$$[d(fx, fy)]^{2} \leq \phi(\max\{d(fx, gx)d(fy, gy) + d(fy, gx)d(fx, gy), d(fx, gx)d(fx, gy) + d(fy, gx)d(fy, gy)\})$$

$$for \ all \quad x, y \in X,$$

$$(6)$$

where $\phi \in \Phi_2$ is nondecreasing and upper semicontinuous. If g is continuous, and (f,g) is a compatible pair, then f and g have a unique common fixed point.

Proof. Let $x_0 \in X$ be arbitrary.

In view of (1), we can choose points $x_1, x_2, \ldots, x_n, \ldots$ in X inductively such that

$$fx_{n-1} = gx_n = y_n \quad \text{forall} \quad n \ge 1. \tag{7}$$

Writing $x = x_{n-1}$ and $y = x_n$ in (6) and using (7), we get

$$[d(y_{n}, y_{n+1})]^{2} = [d(fx_{n-1}, fx_{n})]^{2}$$

$$\leq \phi(\max\{d(fx_{n-1}, gx_{n-1})d(fx_{n}, gx_{n}) + d(fx_{n}, gx_{n-1})d(fx_{n-1}, gx_{n}), d(fx_{n-1}, gx_{n-1})d(fx_{n-1}, gx_{n}) + d(fx_{n}, gx_{n-1})d(fx_{n}, gx_{n})\})$$

$$= \phi(\max\{d(y_{n}, y_{n-1})d(y_{n+1}, y_{n}), d(y_{n+1}, y_{n-1})d(y_{n+1}, y_{n})\})$$

$$\leq \phi(d(y_{n}, y_{n+1})[d(y_{n}, y_{n-1}) + d(y_{n+1}, y_{n})])$$
(8)

We now prove that

$$d(y_n, y_{n-1}) \ge d(y_{n+1}, y_n) \text{ for } n \ge 2.$$
 (9)

If possible, suppose that $d(y_m, y_{m-1}) < d(y_{m+1}, y_m)$ for some $m \ge 2$. Then $d(y_{m+1}, y_m) > 0$. Since ϕ is nondecreasing, from (8) it follows that

$$0 < [d(y_{m+1}, y_m)]^2 \le \phi(2[d(y_m, y_{m+1})]^2) < [d(y_{m+1}, y_m)]^2,$$

which is a contradiction. This proves (9). In other words, $\langle d(y_{n+1}, y_n) \rangle_{n=1}^{\infty}$ is a decreasing sequence of nonnegative real numbers and hence converges to some $t \geq 0$. Now using (9) in (8), we get

$$d(y_{n+1}, y_n) \le \phi(d(y_{n+1}, y_n) + d(y_{n+2}, y_{n+1})) \le \phi(2d(y_{n+1}, y_n))$$
 for $n \ge 1$.

Taking the limit superior as $n \to \infty$ in this and then using the upper semicontinuity of ϕ , we obtain that

$$t \le \phi(2t). \tag{10}$$

If t > 0 in (10), then the choice of ϕ implies that $t \leq \phi(2t) < t$, which is a contradiction. Thus

$$t = \lim_{n \to \infty} d(y_{n+1}, y_n) = \lim_{n \to \infty} d(y_{n+1}, y_n) = 0.$$
 (11)

We now prove that $\langle y_n \rangle_{n=1}^{\infty}$ is a Cauchy sequence in X.

If possible we suppose that $\langle y_n \rangle_{n=1}^{\infty}$ is not Cauchy. Then for some $\epsilon > 0$, we choose sequences $\langle y_{m_k} \rangle_{k=1}^{\infty}$ and $\langle y_{m_k} \rangle_{k=1}^{\infty}$ of positive integers such that $m_k > n_k > k$ and

$$d(y_{m_k}, y_{n_k}) \ge \epsilon \text{ for } k = 1, 2, 3, \dots$$
 (12)

Suppose that m_k is the smallest integer exceeding n_k which satisfies (12). That is

$$d(y_{m_{\mathsf{k}}-1}, y_{n_{\mathsf{k}}}) < \epsilon. \tag{13}$$

Now by triangle inequality of d, we see that

$$\epsilon \le d(y_{m_{k}}, y_{n_{k}}) \le d(y_{m_{k}}, y_{m_{k}-1}) + d(y_{m_{k}-1}, y_{n_{k}})$$

$$< d(y_{m_{k}}, y_{m_{k}-1}) + \epsilon$$
(14)

and from (11), we see that

$$\lim_{k \to \infty} d(y_{m_{k}-1}, y_{m_{k}}) = 0 \tag{15}$$

and

$$\lim_{k \to \infty} d(y_{n_{k}-1}, y_{n_{k}}) = 0 \tag{16}$$

Using (15) in (14), we get

$$\lim_{k \to \infty} d(y_{m_k}, y_{n_k}) = \epsilon. \tag{17}$$

Again, by the triangle inequality of d, we get

$$d(y_{n_k-1}, y_{m_k}) \le d(y_{n_k-1}, y_{n_k}) + d(y_{n_k}, y_{m_k}).$$

As $k \to \infty$ this in view of (16) and (17), gives

$$\lim_{k \to \infty} d(y_{n_k - 1}, y_{m_k}) = \epsilon. \tag{18}$$

On the other hand, writing $x = x_{m_k-1}$, $y = x_{n_k-1}$ in (6), we have

$$\begin{split} \left[d(fx_{m_{\mathsf{k}}-1},fx_{n_{\mathsf{k}}-1})\right]^2 & \leq \phi(\max\{d(fx_{m_{\mathsf{k}}-1},gx_{m_{\mathsf{k}}-1})d(fx_{n_{\mathsf{k}}-1},gx_{n_{\mathsf{k}}-1})\\ & + d(fx_{n_{\mathsf{k}}-1},gx_{m_{\mathsf{k}}-1})d(fx_{m_{\mathsf{k}}-1},gx_{n_{\mathsf{k}}-1}),\\ & d(fx_{m_{\mathsf{k}}-1},gx_{m_{\mathsf{k}}-1})d(fx_{m_{\mathsf{k}}-1},gx_{n_{\mathsf{k}}-1})\\ & + d(fx_{n_{\mathsf{k}}-1},gx_{m_{\mathsf{k}}-1})d(fx_{n_{\mathsf{k}}-1},gx_{n_{\mathsf{k}}-1})\}) \end{split}$$

or

$$\epsilon^{2} \leq [d(y_{m_{k}}, y_{n_{k}})]^{2}
\leq \phi(\max\{d(y_{m_{k}}, y_{m_{k}-1}))d(y_{n_{k}}, y_{n_{k}-1}) + d(y_{n_{k}}, y_{m_{k}-1})d(y_{m_{k}}, y_{n_{k}-1}),
d(y_{m_{k}}, y_{m_{k}-1})d(y_{m_{k}}, y_{n_{k}-1}) + d(y_{n_{k}}, y_{m_{k}-1})d(y_{n_{k}}, y_{n_{k}-1})\})$$
(19)

Since ϕ is nondecreasing, proceeding the limit as $n \to \infty$ in this, and then using upper semicontinuity of ϕ , (13), (15), (16),(17) and (18) we get

$$0 < \epsilon^2 \le \phi(\max\{0 + \epsilon^2, 0\}) = \phi(\epsilon^2) \le \phi(2\epsilon^2) < \epsilon^2$$

which is a contradiction. Hence $\langle y_n \rangle_{n=1}^{\infty}$ must be a G-Cauchy sequence in X.

Since (X,G) is G-Complete, there exists a point $p \in X$ such that $\langle y_n \rangle_{n=1}^{\infty}$ is G-convergent to p. That is

$$\lim_{n \to \infty} y_{n-1} = \lim_{n \to \infty} y_n = p. \tag{20}$$

Now the compatibility of f and g, and (20) imply that

$$\lim_{n \to \infty} d(fgx_n, gfx_n) = 0, \tag{21}$$

while the sequential property of the continuity of g and (20) give

$$\lim_{n \to \infty} gfx_n = \lim_{n \to \infty} g^2 x_n = gz. \tag{22}$$

Hence it follows from (21) and (22), that

$$\lim_{n \to \infty} d(fgx_n, gz) = 0 \quad \text{or} \quad \lim_{n \to \infty} fgx_n = gz.$$
 (23)

But the use of (6) yields

$$[d(fgx_n, fz)]^2 \leq \phi(\max\{d(fgx_n, g^2x_n)d(fz, gz) + d(fz, g^2x_n)d(fgx_n, gz), d(fgx_n, g^2x_n)d(fgx_n, gz) + d(fz, g^2x_n)d(fz, gz)\}).$$

Applying the limit as $n \to \infty$ in this, and using (22) and (23), we obtain that

$$[d(gz, fz)]^2 \leq \phi(\max\{d(gz, gz)d(fz, gz) + d(fz, gz)d(gz, gz), d(gz, gz)d(gz, gz) + d(fz, gz)d(fz, gz)\}).$$

or

$$[d(gz, fz)]^2 \le \phi([d(fz, gz)]^2).$$

If $fz \neq gz$, then the nondecreasing nature of ϕ would lead to a contradiction that

$$0 < [d(gz, fz)]^{2} \le \phi([d(fz, gz)]^{2}) \le \phi(2[d(fz, gz)]^{2}) < [d(fz, gz)]^{2}.$$

Hence we must have

$$gz = fz. (24)$$

Finally from (6), we see that

$$[d(fx_n, fz)]^2 \le \phi(\max\{d(fx_n, gx_n)d(fz, gz) + d(fz, gx_n)d(fx_n, gz),$$

$$d(fx_n, gx_n)d(fx_n, gz) + d(fz, gx_n)d(fz, gz).$$

The limiting case of this as $n \to \infty$, (20), and (22) would imply that

$$[d(z, fz)]^2 \le \phi([d(fz, z)]^2),$$

which with a similar argument as above yields that d(z, fz) = 0 or fz = z. Thus z is a common fixed point of f and g.

The uniqueness of the common fixed point follows easily from (6).

Remark 2.1. Theorem 2.1 does not require the continuity of f.

Since every commuting pair is compatible, writing $\phi(t) = qt$ for all $t \ge 0$, where q < 1/2, we obtain

Corollary 2.1. Let f and g be self-maps on a complete metric space X satisfying the inclusion (1), and the inequality

$$[d(fx, fy)]^{2} \leq q \max\{d(fx, gx)d(fy, gy) + d(fy, gx)d(fx, gy),$$

$$d(fx, gx)d(fx, gy) + d(fy, gx)d(fy, gy)\}$$

$$for all \quad x, y \in X,$$

$$(25)$$

If g is continuous, and (f,g) is a commuting, then f and g have a unique common fixed point.

Choosing α and β such that $\alpha + 2\beta < 1/2$, then it is easily seen that the right hand side of (2) is less than or equal to the right hand side of (25), where $r = \alpha + 2\beta$. Thus Theorem 1.2 will become a particular case of Corollary 2.1.

References

- [1] V.H. Badshah, Singh Bijendra, On common fixed points of commuting mappings, *Vikram Mathematical Journal*, **5** (1984), 13-16.
- [2] Gerald Jungck, Compatible maps and common fixed points, Int. J. Math. & Math. Sci., 9, No. 4 (1986), 771-779.
- [3] H.K. Pathak, M.S. Khan, A comparision of various types of compatible maps and common fixed points, *Indian. J. pure appl. Math.*, 28, No. 4 (1997), 477-485.
- [4] T. Phaneendra, Certain Fixed Point Theorems for Self-Maps of Metric Spaces, Thesis (1998).
- [5] R.P. Phaneendra, M. Chandrashekhar, A generalization of Badshah and Singh's result through compatibility, Gen. Math. Notes, 6, No. 2 (2011), 19-23.

- [6] T. Phaneendra, S. Saravanan, The class Φ_{α} of auxiliary functions and fixed point in G-metric space, Accepted in: Adv. Fixed Point Theory.
- [7] Solmon Leader, Fixed points for a general contraction in metric space, *Math. Japonica.*, **24**, No. 1 (1979), 17-24.