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Abstract: Parkinson’s disease (PD) is a devastating neurological disease that cannot be identified with
traditional plasma experiments, necessitating the development of a faster, less expensive diagnostic
instrument. Due to the difficulty of quantifying PD in the past, doctors have tended to focus on
some signs while ignoring others, primarily relying on an intuitive assessment scale because of the
disease’s characteristics, which include loss of motor control and speech that can be utilized to detect
and diagnose this disease. It is an illness that impacts both motion and non-motion functions. It takes
years to develop and has a wide range of clinical symptoms and prognoses. Parkinson’s patients
commonly display non-motor symptoms such as sleep problems, neurocognitive ailments, and
cognitive impairment long before the diagnosis, even though scientists have been working to develop
designs for diagnosing and categorizing the disease, only noticeable defects such as movement
patterns, speech, or writing skills are offered in this paper. This article provides a thorough analysis
of several AI-based ML and DL techniques used to diagnose PD and their influence on developing
additional research directions. It follows the guidelines of Preferred Reporting Items for Systematic
reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). This review also examines
the current state of PD diagnosis and the potential applications of data-driven AI technology. It ends
with a discussion of future developments, which aids in filling critical gaps in the current Parkinson’s
study.

Keywords: Parkinson’s disease; computational intelligence; deep learning; diagnosis; machine
learning; smartphone; augmented reality; virtual reality

1. Introduction

PD is a chronic movement illness that impacts the whole body. Around the world, 7 to
10 million people are suffering from PD [1]. By 2030, there will be 8.7 million to 9.3 million
instances of Parkinson’s disease worldwide, according to the most current forecast from
the European Parkinson’s Disease Association [2]. The impact of PD on voice patterns is a
symptom that has received little attention. In this disease, the range of speech phonation
motions (lips, tongue, and jaw) is limited (hypokinetic), and, as a result, vowels become
centered, i.e., formants with particular rates have lower rates, whereas formants with low
rates have higher frequency ranges [3]. In addition to movement abnormalities, Parkinson’s
is associated with non-motor symptoms, such as restlessness at night, tiredness, and so on.
It was recently discovered that almost all patients have non-motor symptoms in addition
to the traditional motor symptoms, which vary depending on the severity of the disease [4].
Tremor, stiffness, postural instability, and bradykinesia are all motor signs of PD caused by
insufficient dopamine signaling caused by dopamine-producing neurons being destroyed
in the substantia nigra portion of the brain [5].
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There is no solution for the illness, while therapy for its motor symptoms is available.
There are currently just a few diagnostic tests for Parkinson’s. When it comes to treatment
options, the stage and severity of Parkinson’s are critical factors to consider. The topic
of forecasting Parkinson’s symptoms and their severity is also examined. Both of these
responsibilities are intended to aid decision support systems in assessing patients’ health,
reviewing current therapies, and, if necessary, recommending a new therapy plan [6]. This
paper focusses on different indicators of parkinsonism. We have also focused on various
ML and DL techniques applied in various research studies related to this disease . Table 1
presents the list of abbreviations used in this manuscript along with their full form.

Table 1. List of abbreviations used in this manuscript along with their full form.

Acronym Definition

A3C Asynchronous Advantage Actor-Critic

Acc Accuracy

ADAM A Stochastic Optimization Variant

AD Alzheimer’s Disease

AE Auto Encoder

ANN Artificial Neural Network

BFS Base Feature Selection

CNN Convolutional Neural Network

DCNN Deep Convolution Neural Network

DBN Deep Belief Network

DTW Dynamic Time Warping

DNN Deep Neural Network

DRL Deep Reinforcement Learning

EHR Electronic Health Record

ELM Extreme Learning Machine

ELEP English Language Empowerment Programme

FD Future Directions

FNS Fuzzy Neural System

FC-RBF
Fully Complex-Valued Radial Basis Function

Networks

FoG Freezing of Gait

GA Genetic Algorithm

GRU Gated Recurrent Unit

HC Health Control

HD Huntington’s Disease

ICDs Impulse Control Disorders

IH Idiopathic Hyposmia

LR Logistic Regression

LSTM Long Short-Term Memory

LSVM Lagrangian Support Vector Machines
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Table 1. Cont.

Acronym Definition

McFCRBF
Meta-cognitive fully complex-valued RBF

network

MRI Magnetic Resonance Imaging

ML Machine Learning

MSE Mean Square Error

OC Open Challenges

OPF Optimum Path Forest

PD-MCI PD–Mild Cognitive Impairment

PD Parkinson Disease

PET Positron Emission Tomography

PPMI Parkinson’s progression markers initiative

PCA Principal Component Analysis

RBM Restricted Boltzmann Machine

RL Reinforcement Learning

RNN Recurrent Neural Network

RBF Radial Basis Function

SAE Stacked Autoencoder

SVM Super Vector Machine

SVD Singular Value Decomposition

TCN Temporal Convolution Networks

TFR Time-Frequency Representation

VGFR
Spectrogram Detector and Voice Impairment

Classifier (DEEP LEARNING MODEL)

VEGF Vascular Endothelial Growth Factor

VGRF Vertical ground reaction force

1.1. Motivation

The assessment and projection of future research paths in the field of AI-based PD
diagnosis is the main objective of this survey. Recent studies have only focused on machine
learning and deep learning aspects of Parkinson’s disease detection. They have been often
superficial in their methodology, but, in our survey, we compile it in such a way that it
would be useful even for early researchers who are interested in this domain. There is
no single paper that has discussed the combination of ML and DL with mobile-based
technologies. This comprehensive study will provide an in-depth analysis of ML and DL
models for automated Parkinson’s disease identification and to further advocate models as
a possible mobile-based application for medical decision support systems.

1.2. Contribution of This Survey

The following is a brief overview of our contribution:
In this study, we looked into the use of ML and DL in diagnosing Parkinson’s Disease.

We have discussed various datasets related to PD detection and management.

• Review of new techniques such as extreme learning machine, DBN, the deep generative
model, and others, as well as older computational intelligence techniques such as
Random Forest, ANN, DNN, KNN, and others to identify early traces of Parkinson’s
disease.
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• The studies on ML and DL techniques in PD are summarized in a thorough tabular
format. The model, major contributions, and model constraints are all provided in the
summary.

• We have also included the latest mobile technology and applications which can be
used for assessment as well as for identification of PD. This review explicitly dis-
cusses the open challenges and future directions in Parkinson’s diagnosis and disease
management.

Table 2 presents a comparison of the present review with previous surveys or other
similar review articles.

1.3. Survey Methodology

1.3.1. Search Strategy and Literature Sources

This work presents the many research findings and studies on using ML and DL
techniques to detect PD that have been published in significant electronic database search
engines, including IEEE, PubMed Central, Science Direct, etc. Figure 1 illustrates the search
terms used in the database queries. It was observed that the number of studies discussing
PD diagnosis using DL techniques has steadily grown in recent years. We used Prisma
technique for article selection.

ined the researcher’s architectural plans.

’
’

’

–

Figure 1. Search terms used in database queries.

1.3.2. Inclusion Criteria

The articles were chosen for inclusion based on their applicability. Only English
language articles were considered, and inclusion was based on the originality of the
review’s topic and the articles’ suitability for inclusion. All full-length publications that
used ML and DL techniques to treat patients with Parkinson’s and related outbreaks were
seriously considered for inclusion.

1.3.3. Elimination Criteria

The following items were not considered for this review: editorials, letters, practice
guidelines, reports with only abstracts, papers without abstracts, dissertations, theses, short
papers (less than five pages), commentaries, preprints, and articles unrelated to the fields
of machine learning and health care research. Abstract screening was used for the first
phase of exclusion, while full-text and data extraction were used for the second round. The
articles were rejected because they were irrelevant, or poorly written. We included ML and
DL research papers from 1 July 2006 to 15 October 2022.
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Table 2. Comparison with previous surveys/Comparison with other similar review articles (H—High-level discussion, M—Moderate-level discussion, L—Low-level
discussion, N—Not available).

Reference Summary Shortcomings of the Reviews ML DL OC FD

Our paper
This research provides a thorough analysis of methods based on AI for PD

diagnosis. Different computational-based methodologies for PD prediction are
also briefly described.

- H H H H

[7]
The use of smartphones and tablets to track the individual at home appears to
be the most viable path toward understanding PD, according to this report. It

also discusses how e-health research kits are continually being improved.

The majority of works utilize signal or graphics
information, necessitating some type of

AI-supported decision-making system that needs
further improvement.

H N H H

[8]
This study’s main finding was how frequently CNN was used to diagnose

Parkinson’s. On the other hand, DNN is applied more often to identify
neurogenerative illnesses.

High-dimensional CNNs, such as 2D and 3D-CNN,
that would have given reliable findings for big and
multimodal neuroimages, have not been deployed.

N H H H

[9]

The risk factors, pathophysiology, and personality characteristics in patients
with PD with ICD are the main topics of this review. According to the results,
both extrinsic and intrinsic factors play an important role in how behavioral

difficulties arise.

Additional prospective studies with bigger sample
sizes are required to identify the risk factors causing

behavioral alterations in PD patients with ICD.
N N N H

[10]
According to this survey’s findings, 90% of patients with PD have a vocal
impairment. Using speech datasets, several studies can be conducted to

automate the diagnosis of PD.

It does not include extreme machine learning and
genetic algorithms which can be incredibly useful for

PD detection
H N H L

[11]

Information from 91 studies that investigated the use of neural nets, primarily
DL algorithms, for the early identification of Parkinson’s disease was collated
for this review. The information covered voltage sensor data, biological voice

data, and pictures for both PD and HC subjects.

Many different types of disorders can cause PD, each
with its own set of symptoms. Therefore, from a

clinical standpoint, they have overlooked classifying
disorders.

H H M H

[12]

This review’s primary goal was to identify existing ML-based work to
diagnose PD using handwriting patterns, voice characteristics, and gait

datasets. It also sought to identify the most effective method for diagnosing
the disease with a high rate of accuracy.

Existence of a dataset imbalance in the study. H H M L

[13]
They address how ML can help with earlier detection, the interpretation of
medical imaging, the discovery and development of new treatments, and

much more in this review.

Due to data constraints, the majority of ML pipelines
in practice begin with meticulous data curation,
which takes time and professional assistance.

H H H M

[14]

This study aims to investigate some information and the status of sensor-based
methods for the identification of PD. It also addresses ensemble methods for

integrating sensor-based data to create ML models for customized risk
prediction.

They do not discuss dimensionality reduction
algorithms in ensemble techniques, which would

allow the application of several classification models
on data spaces for better disease classification.

H M H M

[15]
They did a thorough analysis of 217 research papers that discussed the use of
different ML techniques and DNN designs to diagnose PD. They also carefully

looked through and examined the researcher’s architectural plans.

The discussion about the recent technology is very
limited.

H H H M
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1.3.4. Results

From Google Scholar, IEEE Xplore, Springer, and other literary sources, a total of 282
distinct articles were obtained; 41 articles were excluded after title and abstract screening.
An additional 62 papers were eliminated after a full-text review of the remaining 241
articles, leaving 179 articles for consideration in the final review [16–190]. The results are
shown in Figure 2. Figure 3 presents the overall structure of this review.

Figure 2. Selection of articles based on PRISMA technique.
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Parkinson’s Disease Diagnosis

’

’

iew of Parkinson’s disease diagnosis.

Figure 3. Structure of this review.

2. Parkinson’s Disease Diagnosis

A thorough history and physical examination should be part of the differential di-
agnosis of Parkinson’s disease (PD). Referring challenging or dubious cases to a mobility
disorder specialist for additional assessment is recommended. Since there are no conclusive
tests to confirm the diagnosis of PD, a clinical diagnosis must be made by a physician
after considering the patient’s past medical history, evaluating their symptoms, and rul-
ing out other conditions, such as multiple-system atrophy, DLB illness, and fundamental
movements. Figure 4 illustrates an overview of Parkinson’s disease diagnosis.

2.1. Motor Symptoms Monitoring

The key motor aspects of Parkinson’s are akinesia (lack of action, trouble beginning
motions) and bradykinesia (slow movements). Rigidity is linked to the patient’s sensation
of stiffness, and clinicians can quantify rigidity by looking at a muscle’s resistance to passive
stretching. The presence of a subset of motor symptoms is required for the clinical diagnosis
of parkinsonism; hence, the diagnostic approach accommodates patients with varying
motor health statuses. An individual with the disease can “freeze up” and would be unable
to walk for a brief amount of time. Furthermore, categorization into the three primary
severity groups (mild, moderate, and severe) was further separated into dichotomous issues,
in which binary classifiers outperform and pick various sets of non-motor indicators [16].
Loss of scent is one of the non-motor indications and symptoms of PD, including anosmia,
nerve damage, urinary incontinence problems, bowel problems, depression and anxiety,
sleep issues (insomnia) leading to daytime sleepiness, cognitive issues, psychotic episodes,
fantasies, and depression. The majority of current therapeutic practice is devoted to the
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pharmacological treatment of motor complaints. It takes years to develop and has a wide
range of clinical symptoms and prognoses.

Parkinson’s disease —

The key motor aspects of Parkinson’s are akinesia (lack of action, trouble beginning 
’

’

“ ”

cognitive symptoms that Parkinson’s

Figure 4. Parkinson’s disease diagnosis—overview.

There is no single scenario or course that can depict the whole range of motor and
cognitive symptoms that Parkinson’s patients encounter. Moderate motor-predominant PD
strikes people while they are young (in their 50 s or 60 s). Even though the signs are more
noticeable than in the light engine version, these people can nevertheless work and live busy
lives. People may have moments when the medicine effectively cures motor symptoms, but
they may have levodopa-induced dyskinesias as the condition worsens. These people can
suffer off time towards the conclusion of the dosage when the motor symptoms reappear.
Patients’ sickness advances over time to a more severe stage, yet they normally survive for
a long period before becoming disabled [17]. No language, on the other hand, can reflect
the severity of movement abnormalities, corroborating previous findings. Fine-grained
speech impairments are independent of coarse-grained motor functioning, according to the
UPDRS-III and other studies [18]. It takes years to develop and has a wide range of clinical
symptoms and prognoses.

2.1.1. Gait and Posture

With no uniformity in the study or justification for why a trait was included in
the illness assortment, gait features in the literature greatly vary. Previous research has
experienced several problems, such as people who had more serious conditions, a limited
sample size, and a lack of real-world data to identify the ideal gait features. As a result, the
findings are less generalizable, valid, and applicable.
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As a result, substantial trials for Parkinson’s classification in patients with less severe
illness employing a set of clearly interpretable and quantifiable gait features are required.
Step size, speed, breadth, step time, swing time, posture time, and their corresponding vari-
ability and asymmetry are the distinguishing features of gait. Deficiencies are a prevalent
symptom of parkinsonism that develop early and progress over time. The current method
for defining gait impairment is a univariate method, which makes understanding the role
of various gait parameters challenging. Therefore, a top priority to increase the use of gait
traits as a technique to enhance illness diagnosis and management is to identify the best
combination of gait attributes to detect PD more effectively [19]. For research purposes, the
PhysioNet repository provides access to a large database of physiological parameters. In
this deep-learning-based study, by using two separate symptoms linked with PD, gait and
speech loss, a neural network is utilized to identify the disease. Patients with significant
gait problems are at risk of falling and losing their functional independence. Each subject’s
16 recorded sensor readings are turned into a spectrogram picture, which portrays a pattern
by graphing the sensors’ fluctuating signal levels [20]. Ground reaction force is the pressure
that the ground applies to a body that is in contact with it. VGRF is the strongest factor of
the ground reaction force during walking, producing forces that are larger than one body
weight (BW) per step. For gait analysis and characterization, the VGRF signals contain
significant information.

As a result, this method easily might be applied to other gait clinical trials in a clinical
context. Rather than storing discriminative similarities between Parkinson’s and control
gaits, the algorithm in this case might save specific subject gait features. For future research,
going into the DNN layers and analyzing what they have learned might be interesting.
This type of research would help us learn more about PD gait and its characteristics [21]. In
the early phases of the syndrome, gait is characterized by reduced leg speed and amplitude,
as well as reduced arm swing [22]. Patients in the Fox Insight study said that jogging or
mowing the lawn could trigger tremors, and phone analyses of gait metrics generated from
this raw sensor information were also shown to be erroneous for people living in congested
locations. [23,24]. Abdulhay et al. [25] compared various ML methods to investigate gait
and tremors. They used peak detection and pulse length to extract numerous gait data,
and their accuracy for Parkinson’s diagnosis was 92.7%. Other specialists have spoken
about the advantages of utilizing wearable sensors to track gait characteristics, as well as
signal processing and machine learning techniques for extracting useful information from
data. This type of data helps assess the technology’s potential impact on PD research and
practice. We can better understand PD by merging speech and gait analytic data. As a
result of their capacity to automate pattern identification with high precision, ML and AI
technologies are becoming more popular [26]. The purpose of [27] was to pinpoint the
specific gait characteristics that could help distinguish Parkinson’s from other neurological
diseases. According to the results, Levodopa significantly enhanced gait speed and stride
length. Other investigations have looked into the relationship between gait variability
and walking speed. Gait speed does not affect swing time variability. Clinical scaling
systems, such as the UPDRS and others, can be used to quantify these stages. Using a
Parkinson’s patient’s gait data, an attempt can be made to determine this stage. This can be
used not just to determine one’s stage, but also to track the disease’s progression. In this
scenario, using an advanced gait analysis tool could help clinicians diagnose patients more
quickly. This research developed a new intelligent Parkinson’s detection mechanism that
analyses gait data using deep learning algorithms. Because one of the earliest signs of this
condition is a change in stride, physicians would benefit from a sophisticated gait classifier.
In this clinical environment, their study goal was to develop intelligent technology that
could recognize PD indicators, and disease incidence rates were predicted using gait data
(depending on the UPDRS) [28,29].
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2.1.2. Bradykinesia

Bradykinesia is characterized by a loss of conscious motor function, as well as sluggish
or frozen motions. It is most usually a sign of PD or a drug adverse effect. It is one of
the most obvious signs that physicians check for when diagnosing PD [30]. It frequently
develops in the initial stages of the disease [31] and is specific to the disease of the basal
ganglia [32]. Actions may be delayed (bradykinesia), decreased (hypokinesia), or altogether
abolished (akinesia) depending on the degree.

Facial muscular bradykinesia is another kind of dyskinesia that affects the face. During
the assessment phase, while various body segments are at varied levels of repose, the
consistency of rest tremors is assessed using a single score for all tremors [33]. Overall,
medicine improved bradykinesia and tremor measurements, whereas treatment worsened
non-motor indicators. Dopaminergic drugs have many positive benefits, such as reducing
bradykinesia and stiffness, but they also have some bad impacts, such as hypersomnolence
and impulsive control issues [34]. By utilizing bradykinesia and rigidity derived from
recent clinical and pathological studies, the positive predictive value of diagnosis can be
raised to above 95% [34]. The challenge of automated Parkinsonian detection utilizing
a transfer learning process with residual networks was presented by Passos et al. [35].
They studied two different types of drawings, which were fed into an RNN for supervised
classification. The OPF also had the best results, with a 97% accuracy rate.

2.1.3. Freezing of Gait

FOG is a kind of akinesia characterized by the inability to begin or maintain movement.
Motion blockages are a typical sign of Parkinson’s, and they can affect any of the body’s
extremities, as well as the face. According to its definition, it refers to a condition where
there is a brief, episodic disappearance or considerable diminution of forward movement of
the feet. The sensation usually lasts for a few seconds after it arises and then vanishes. It is
a typical reason for people to trip and fall [30]. It is a common gait problem in people with
advanced PD. FoG episodes have been associated with falls, which disrupt daily activities
and reduce the quality of life. For patients with advanced diseases, it is a prevalent gait
condition. Falls have been linked to episodes, which disrupt everyday activities and
lower quality of life. It is usually resistant to pharmacologic therapy, requiring the use of
effective non-pharmacologic treatments. It is the sort of gait impairment that is common in
Parkinson’s patients. It causes patients to feel as if their feet are stuck to the ground and
that they are briefly unable to re-establish gait. These attacks might last for anything from a
few seconds to a minute. It can emerge everywhere, although it is particularly common
during turns, before gait begins, in small spaces such as doors, and in stressful situations.
Mazilu et al. [36] used a three-axis accelerometer to track body acceleration in PD patients
to discover FoG events. Offline, freezing appearances were recognized by comparing
the collected data across freezing and regular gait. In this study, from 11 PD patients,
asynchronous accelerometer data from the left shank were assessed. It was shown that leg
movement during FoG events included high frequency elements in the 3–8 Hz range that
were not present in normal gait or voluntary control sitting. It attained a sensitivity and
consistency of up to 89%.

Another significant challenge is recognizing and analyzing PD-related movement
patterns, such as gait start and gait freezing, which are all typical illness markers. According
to one medical study, 90% of people with the disease exhibit vocal impairment, making it
critical to analyze speech data to distinguish healthy people from those with the disease.
Various symptoms are important in the diagnosis, treatment, and therapy of PD. Three
symptoms are present: difficulty starting or maintaining walking, complete immobility,
and staggering with swift steps [37]. About half of PD patients experience this extremely
debilitating symptom in the latter stages of the illness [38]. Miljkovic et al. [6] devised
a mechanism for FoG identification, employing six wearable accelerometers and two
gyroscopes in their latest study. The approach is created via filtering and feature extraction,
and it is then classified using four ML techniques. The four phases of the method include
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missing data restoration, low pass filtration, feature extraction using a sliding window, and
classification. The study included sixteen people, five of whom had been diagnosed with
PD and had a history of FoG. The suggested method is intriguing, since it can be completely
incorporated into clinical practice and has a classification accuracy of 96.11%.Heremans
et al. [39]used a DNN with three levels: input, hidden, and output on the UCI speech dataset.
The classification accuracy for preparation was 94.4%, whereas for testing it was 62.7%. The
findings of this study show that 15 years after first evaluations, dopamine non-responsive
issues predominate, with frequent falls occurring in 81% of patients. At ten years, 71% of
patients showed substantial PIGD motor deficits, the majority of which were caused by non-
dopamine-responsive characteristics, including gait freezing (FoG) [40]. This study made
considerable use of ML techniques to identify workable models and the most essential
combination of spatial and temporal gait factors for early disease identification. The best
classification models for the dataset were LR, SVM, and RF. The algorithm’s performance
increased by 10% once features had been chosen. RF had the greatest testing classification
accuracy of 97%. These characteristics not only improved results, but also helped physicians
to gain a better understanding of ML. The results are a first step toward demonstrating the
promise of ML as a complement to clinical practice, but additional outside validation is
required to support these results [41]. They assigned the method a poor grade; however, it
removed the incidence of inaccurate FOG forecasts and the statistics only included 46 FOG
events [42]. The current research examined data from additional patients to increase the
viability and robustness of FoG detection using EEG (electroencephalography), yielding a
specificity and sensitivity of 82.7% and 86.6%, respectively [43]. A relationship between
FOUL and FOG appears to exist in some cases of PD [44,45].

2.1.4. Tremor

Tremor is described as a progressive loss of muscle control that causes quivering
(uncontrollable shaking) in numerous body parts [46]. Several characteristics are crucial in
determining the identification, treatment, and therapy of PD. Tremor is a limb twitching that
is involuntary and oscillatory. Rigidity in motion is induced by increased muscular tone.
Loss of balance and unexpected falls are caused by postural instability. Because of these
mobility issues, people with PD show different gait characteristics from healthy people.
One of the most significant components of disease management appears to be tremor
diagnosis and classification. Body posture detection is also essential because automated
systems only based on their base frequency have difficulties distinguishing the two. Motor
assessment of PD is the evaluation of tremors combined with bradykinesia, as well as
evaluations of tremors in the mouth, jaw, bottom lip, arm, or leg [143].

The UPDRS scale is an unreliable method for assessing and discriminating tremor
severity, and clinical examination and tremor incidence determination require the presence
of at least one neurologist. It is critical to create a method or piece of equipment that can
assess the intensity in Parkinson’s patients. Frequency and intensity of tremors are two main
parameters that have been cited in most previous publications for objective categorization of
not only Parkinson’s tremors, but also other forms of tremors [47].Their gait is characterized
by a forward flex posture, quick shuffling, shorter step lengths, and prolonged support
intervals, among other characteristics [48]. Periodicity, irregular cycle, and deterministic
behavior are some of the noteworthy and different aspects of gait pattern, which involves
the succession of periodic and rhythmical patterns of foot motions. Periodicity, irregular
cycles, and predictable behavior are some of the notable and distinct aspects of gait patterns.
Finally, to identify the stages of Parkinson’s, only supervised linear classifiers have been
used. Nonlinear classifiers, on the other hand, can be utilized to generate nonlinear
correlations, especially when tremor data and gait patterns are used [49]. Each stage of the
disease is distinguished by different symptoms of shared motor characteristics. While, in
the off state, people with PD feel sluggish, inflexible, and have more tremors. Symptoms are
much less severe in the on state, and tremors may go away altogether. Dyskinesia manifests
itself as a series of spontaneous motions, some of which include the wrists [50]. Tremor
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and voice loss, on the other hand, can only be noticed when around 70% of susceptible
dopaminergic neurons have perished as a result of PD [51]. A recent study proposed a
two-part model for classic tremors, with the cerebellothalamocortical network acting as the
tremor’s driving power and the basal ganglia as its trigger [144].

2.1.5. Dyskinesia

Dyskinesia is the incapacity of people with PD to control their muscle movements.
Twitches, jerks, twisting, and writhing are examples of such movements. Dyskinesia can
affect the arms, legs, and chest, among other body regions. There are various sorts of
movements, and the timing and frequency with which they emerge vary from person to
person with Parkinson’s disease. Dyskinesia can last for the majority of the day in some
people. Others may only notice it after they have taken their prescription, or right before
their next dose is due. When levodopa levels in the bloodstream are very low and dopamine
levels in the brain are at their peak, people with Parkinson’s disease may suffer this adverse
effect. The neurotransmitter dopamine is created in the brain. PD symptoms appear when
dopamine is very low. Even though the symptoms are more noticeable than in the mild
motor-predominant version, these people can nevertheless work and live busy lives. People
may have moments when the drugs successfully cure motor symptoms (on-time), but they
may have levodopa-induced dyskinesias as the disease progresses [17]. More UPDRS
components will be compiled, and the addition of other four Parkinson’s characteristics,
such as rigidity or dyskinesia, will be explored as enhancements to the current study [47].
A previous study made efforts to tackle the use of wearable sensors to count distinct types
of PD symptoms, only using bimodal distribution or unimodal sensors [52].

Bind et al. [16] created a system for diagnosing and categorizing Parkinson’s patients
categorized on their postural behavior, which they analyzed with a L2 norm metric and
SVM. Twenty-four people were evaluated both before and after treatment. To test their
postural balance, each patient was subjected to the following analytic methods: eyes open
on the force platform (firm surface) first, then on foam placed on the force platform second
(FO). When individuals stood on a solid surface with their full attention, the number of
people with dyskinesia increased from 66% to 77%. This study looked at a variety of
machine-learning-based strategies for predicting PD. Ahlrichs et al. [30] were able to detect
dyskinesia with a 96.8% accuracy rate. A total of thirteen people were recruited for the
research. While executing a set of programed tasks in a controlled setting, each subject gave
around 2.5 h of acceleration data. During the recording process, six tri-axial acceleration
detectors were attached to the subject’s body. Several section sizes were empirically tested.
The fifteen-minute portions provided the most accurate results (i.e., 96.8%). However,
accuracy was reduced to around 80% when one-minute timings were used. DNN has been
utilized by several other writers to better capture time-based characteristics. They have
91% sensitivity and 93% specificity for detecting dyskinesia. The DNN is fed a collection
of features collected from a two-second sliding window. A five-point FIR filter is also
used to filter the outputs of each artificial neuron. Long-term pharmaceutical use has
also been linked to the development of dyskinesia or uncontrollable movements. The
intensity of these variations can be lessened with customized treatment programs. In this
study, they focused on the assessment of the disease state in PD because it is a crucial
aspect of improving the condition’s management in clinical practice. Participants provided
around 4500 hourly labels for a total of approximately 5500 h of accelerometer data (80%
diary compliance). Dyskinesia manifests itself as a series of spontaneous motions that may
include the wrists. Importantly, the recorded data contains realistic physical exercises that
have a major impact on the recorded signal, as well as the manifestation of illness states.
They introduced an upper layer (randomly started, = 0.01) to the generative model during
the fine-tuning phase. This top-layer had four SoftMax units that correlated to four interest
classes: sleeping, off, on, and dyskinetic [50].
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2.2. Speech Monitoring

Dysarthria is a symptom that significantly differs between cohorts. This kind of het-
erogeneity could be attributed to subject-level and task-related cognitive factors. A crucial
classification difficulty is the proper representation of voice and speech data for PD diagno-
sis. To use these resources for PWP (People with Parkinson’s), accurate clinical monitoring
tools must be used. According to research, around 90% of PWP suffer voice impairment and
speaking issues. Loudness, decrease, breathiness, roughness, and increased vocal tremors
are the five major clinical symptoms of dysphonia in humans. Looking at the frequency of
time in speech recordings can provide all of these characteristics [53]. Abayomi et al. [54]
indicated that a quick and easy data augmentation method based on spline and pchip
interpolation has been shown to be successful in the diagnosis of PD, particularly if the
sample is of voice impairment. Dopamine is a neurotransmitter that allows the brain to
effectively communicate when it comes to managing feelings, behaviors, consciousness,
physical movement, and speaking ability. Analyzing and classifying patients’ speech sig-
nals is thought to be a way to diagnose PD early by distinguishing characteristics and
aspects of their voices [55]. The goal of the study was to see if speech difficulties may be
detected in the early stages of PD, before the traditional symptoms appear, and if those
at risk of the condition can be identified from the general population using acoustic and
classification analyses. In it, speech articulator motions (lips, tongue, and jaw) are limited
in range (hypokinetic), and vowels become centralized; i.e., formants with high frequencies
are likely to have a lower frequency, whereas consonants with lower frequencies tend
to have higher frequencies [56]. Speech monitoring and repair assessments significantly
separated the groups and were linked to linguistic performance tests [57]. One typical PD
characteristic is hypokinetic dysarthria, a combination of neuromuscular speech disorders
that impair understanding, self-image, and productivity. There has been no study that has
looked at this idea while controlling both task-related and specific topic cognitive factors,
while avoiding previous flaws. Monolith, monologs, and inappropriate pauses are all
prevalent deficiencies in the prosody area. Disturbances in the basic frequency of vocal-fold
vibration and language latencies cause such changes. Notably, restricted characteristics,
such as the pronunciation of particular vowels against particular consonants, are frequently
used to actualize speech regions [18].

Speech signals can be used to diagnose the disease. Affected individuals have a lot of
speaking issues. Reduced speech intensity, variation in frequency components, hoarseness
in voice, and inconsistency in speech articulation (hypokinetic dysarthria) were among the
speech impairments. Due to the presence of non-stationary and discontinuity in the speech
signal, extracting and classifying speech features has always been a difficult problem [58].
An important classification difficulty is the appropriate interpretation of voice and speech
data to identify PD. The depletion of neurotransmitters, notably dopamine, results in a
variety of symptoms, including speech, vision, mobility, urine issues, weight loss, sadness,
anxiety, panic attacks, sleep abnormalities, and so on. Dysphonia, hypophonia, monotonic,
and dysarthria are some of the vocal and speech problems that PWP suffer from [59]. The
most common symptoms are dysphonia, which is present in over 90% of patients, and gait
unpredictability, which is a distinguishing criterion for the development of this condition.
As a result, enhanced speech signal processing technology for PD symptoms has sparked a
lot of interest [60].

2.3. Handwriting Analysis

The complicated process of handwriting requires intellectual, visual, and fine motor
skills. Handwriting difficulty is still one of the earliest symptoms that lead individuals to
seek medical attention, despite not being explicitly included in the diagnostic criteria for
PD. The majority of PD sufferers display faulty handwriting. Recent research has revealed
that auditory cueing has a good impact on handwriting proficiency, but visual feedback
has conflicting results. The degree to which a handwriting assignment is beneficial can be
determined by comparing its fluency with and without the provision of feedback. Since the
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development of kinematic analysis via the use of digitized tablets, research on handwriting
in PD has experienced a significant revolution. The traditional PD handwriting anomaly
known as micrographia is now included in the spectrum of “PD dysgraphia”. When a
disease is still in its initial stages, this study may be employed as a clinical marker [23]. In
their study on micrographia [61], McLennan picked patients who had notable, noticeable
micrographia and took handwriting examples from them. The chosen patients were
required to submit samples of their handwriting from both during their advancement of PD.
According to reports, serial signatures from rejected checks were the most prevalent sources.
They commented that the “type of information did not lend itself well to quantification”,
but that this limitation is now addressed. The research by M. Ranzato et al. [62] focused on
the identification of PD using RBMs and features extracted from handwritten pictures. To
satisfy the RBMs, the photographs were digitized and pre-processed. The Fuzzy OPF was
contrasted to the regular OPF, KNN, and SVM classifiers in this context. The “HandPD”1
dataset, which is made up of images from handwritten tests, was used in this study. The
second dataset contained activities from specific tasks collected from healthy people (the
control group) and patients during handwriting assessments. They used data from spirals
and meanders to create 368 photos, 296 of which were from patients and 72 from the control
group. The fundamental idea behind using such photos is that patients often notice varied
levels of tremors, which are frequently connected with illness progression.

2.4. Face Video Analysis

There is a lot of interest in utilizing machine learning to help with disease diagnosis,
and the present results are promising—often, the claimed accuracy percentage only using
speech or accelerometer data is in the mid-90s [63]. However, because the experimental
methodology involves distinguishing between (possibly erroneously) diagnosed PD pa-
tients and healthy controls, these findings should not be taken at face value (HCs). In the
realm of smart recognition, the ability to identify individual attributes is a global security
problem [64]. Ref. [65] suggested an LSTM model that will aid in providing patients with
more thorough care and assisting medical professionals in better comprehending the dy-
namics of the disease in real time. Additionally, it aimed to ease the burden on doctors’
recurrent patient diagnoses and the issue of enrolling patients who have mobility issues.
Various algorithms have been created in recent years to address the security issue, but
there is still a need for quick and efficient biometric recognition. Biometric recognition is
the process of automatically recognizing an individual’s qualities based on anatomical or
behavioral features. Extrinsic biometric features and intrinsic biometric features are the two
types of biometric recognition approaches [30]. When compared to intrinsic traits, extrinsic
features are more visible and have more negative aspects. The retinal surface, for example,
is influenced by the high intensity of light used to extract iris characteristics [31]. Face iden-
tification accuracy is further impacted by brightness differences, facial style, blood vessel
obstruction, and position [32]. Face recognition systems [38], motion detection systems [66],
and other applications are among them. Additionally, it enhances the effectiveness of
DL approaches and the general uniformity of training outcomes. In the so-called “small
data problem” [67], where only a small quantity of information is accessible for ML model
training, the latter is particularly crucial.

2.5. Brain Imaging

Cho et al. [19] used an advanced computer-based method to analyze brain MR imaging
of subject areas with suspicious characteristics of Parkinson’s to contribute to individual
diagnosis, based on the idea that diseases linked with systematic changes in brain MR
scanning are too uncertain to be noticed by visual inspection. This is a very cost-effective
procedure that is supposed to supplement, not substitute, current treatments for obtaining
an early and accurate diagnosis of the disease, because existing MR imaging data is repur-
posed with modern information processing. They presented the study as initial evidence
for the feasibility of performing SVM personalized classification of DTI data of Parkinson’s,
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indicating the need for further prospective and more extensive follow-up studies. Although
brain MR imaging is frequently used in diagnostic procedures, it is mostly used to rule out
other conditions, such as regular hydrocephalus and chronic subdural hemorrhage.

2.6. Using Multimedia Approaches

A lot of studies [68–70] have built PD detection mechanisms using various types of
datasets. The data were evaluated, and information was extracted using feature identifica-
tion techniques (image, text, audio, and video). In many studies, simple body sensing data
(text), speech data (audio), image features (pictures), and motion sensors are all examples
of simple body sensor values. These studies have not focused on building machine learning
and deep learning techniques for managing inter datasets. In the future, this research
could be broadened to include multimedia data processing to create a more successful PD
identification system. In the performance review, the proposed DMVDA algorithms had
the lowest MAE and the best disease identification rate [71].

2.7. Stage-Wise Prediction of Parkinson

In the beginning, the person only experiences minor symptoms that do not affect daily
life. Shen et al. [179] developed a methodology for sparse feature learning in PD early
detection. During stage 1, only one side of the body has tremors and other movement
symptoms [180]. Balance is not harmed in stage 2. Furthermore, the person’s posture may
start to shift, and walking difficulties may start to emerge or worsen [181]. Loss of balance
is the defining characteristic of the middle stage/stage 3. Motor symptoms become worse.
Though physically capable of living independently, the person’s everyday activities are
now restricted in a functional sense. Stage 4 symptoms are completely formed and quite
incapacitating. The person can still stand and walk unaided, but, for safety reasons, they
may need to use a cane or walker [180]. The most advanced stage of Parkinson’s disease is
stage 5. Advanced leg stiffness can also result in freezing when standing, which makes it
impossible to move or stand [181]. Various stages and symptoms of Parkinson’s disease
are presented in Table 3.

Table 3. Various Stages and Symptoms of Parkinson’s Disease.

S. No.
Stages—Parkinson’s

Disease
Symptoms—Parkinson’s Disease Patient’s Appearance Impact on the Patient

1
Stage 1—Only one half
of the patient’s body is

affected

Mild tremor and rigidity, slight
changes in facial expressions, little
challenges in posture, balance, and

walking.

’

’s 

—Parkinson’s —Parkinson’s Patient’s Appearance

—
of the patient’s body is 

 

—Full patient’s 

midline of the patient’s 

—

—

—

Does not affect the
daily activities and life

style of the patient.

2

Stage 2—Full patient’s
body becomes affected;
however, the patient is

still able to balance
himself/herself. Affects

the midline of the
patient’s body; namely,

neck and trunk.

Challenges in walking and
balancing. Pitiable posture,

stiffness, tremors, and trembling
may be more noticeable.

Noticeable changes in facial
expressions and sometimes

difficulties in speaking.

’

’s 

—Parkinson’s —Parkinson’s Patient’s Appearance

—
of the patient’s body is 

—Full patient’s 
d; 

midline of the patient’s 

e 

 

—

—

—

Daily tasks of the
patient become more
challenging and time

consuming.
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Table 3. Cont.

S. No.
Stages—Parkinson’s

Disease
Symptoms—Parkinson’s Disease Patient’s Appearance Impact on the Patient

3
Stage 3—Impaired

balance, but the patient
remains independent

Loss of balance, reduced reflexes,
tremor, rigidity, slowness of

movement, falls, and dizziness.
Freezing and muscle cramps.

’

’s 

—Parkinson’s —Parkinson’s Patient’s Appearance

—
of the patient’s body is 

—Full patient’s 

midline of the patient’s 

—

uced 

 

—

—

a-

Daily tasks of the
patient become

significantly impaired;
however, the patient
completes basic daily

activities at a slow
pace.

4
Stage 4—Walking and
standing with external

assistance

Substantial decrease in the
movement and reaction times of

the patient.

’

’s 

—Parkinson’s —Parkinson’s Patient’s Appearance

—
of the patient’s body is 

—Full patient’s 

midline of the patient’s 

—

—

 

—

a-

Patient requires
external assistance for

daily activities and
independent living is

not possible.

5
Stage 5—Debilitating

stage

Stiffness in the legs, unable to
stand or walk. Freezing upon

standing, confusion, loss of smell,
hallucinations, delusions,

constipation, poor reasoning and
memory. Loss of body weight,

disturbances during sleep,
problems in eyesight

’

’s 

—Parkinson’s —Parkinson’s Patient’s Appearance

—
of the patient’s body is 

—Full patient’s 

midline of the patient’s 

—

—

—

ing, 

 

Patient is bedridden or
confined to a wheel

chair.

In order to create an automatic stage classification of PD, supervised machine learning
techniques can be used to understand the inherent correlations between high-dimensional
spatiotemporal data using a training dataset, and then apply the knowledge acquired dur-
ing training to a fresh dataset [182]. Several scientists have investigated the effectiveness
of ML systems to categorize the phases of PD based on UPDRS using the UCI voice sig-
nals [183]. Non-motor symptoms include things like Rapid Eye Movement (REM), olfactory
loss, and sleep behavior disorder. The development of machine learning models will be
crucial for stage-wise prediction of this disease, and will be very helpful in forecasting it.
Based on stage-wise classification, the proposed method is intended to predict all motor
and non-motor features. Parkinson’s patients were classified using the Random Forest
Classifier, and 96% accuracy was reached using the fewest voice features possible to make
the diagnosis [184].

3. Datasets for Parkinson’s Disease Diagnosis

Another obvious sign of PD is a decline in handwriting skills, which are commonly
observed in most PD patients but are not considered diagnostic criteria for the disease [60].
One of the three widely used PD handwriting datasets, the PaHaW dataset [72], HandPD [7],
or NewHandPD [64], were used in thirteen experiments on deep learning algorithms that
sought to diagnose PD using handwritten drawings. The spiral sketching test is one of the
tests included in all three databases, and is one of the drawing and writing tests present
in all three databases. Dataset can also be created by assessing equal number of people
with PD and HC as done in [154]. For each modality (such as MRI, EEG, voice, etc.), DL
studies may utilize a distinct dataset to develop their models. For instance, instead of using
the public dataset, PPMI, MRI studies may choose to use a private dataset. As a result,
it could be challenging to compare the effectiveness of two DL models that were trained
using different datasets [73]. No restrictions on drop-out (or bias investigation), report
of inclusion/exclusion criteria, or relationships between prodromal markers were found
in [74]. Table 4 shows the list of various Parkinson’s disease diagnosis datasets.
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Table 4. List of Various Parkinson’s Disease Diagnosis Datasets.

Reference Number Year Dataset Used Availability Dataset Size Details about the Dataset Data Type

[155] 2009 Track HD Open Dataset 366 individuals
Genetic information and HD

detection were connected

physiological, intellectual,
quantitative motor, oculomotor,
chromosomal, and psychiatric

evaluations

[156] 2011 PPMI Open Dataset
64 early patients,196 HC, and 65

REM patients
PD Biological markers

medical record, biological
material, and pictures of the

brain

[157] 2008 Predict HD Proprietary Database 438 pre-HD patients
Genetic information and HD
identification were connected

MRI, smell recognition, verbal
learning/memory task, tapping

test, genetic information, and
cognitive assessment

[72] 2014 PaHaW Open Dataset 37 PD, 38 HC individuals
Archimedean spirals and

writing for PD

Altitude, x-y dimensions, tilt,
height, and the state of the in-air

and on-air surface

[158] 2019 OASIS Open Dataset 1098 individuals Identification of AD
CT, PET (Positron Emission

Tomography)

[159] 2005
Gait in Parkinson’s

disease
Open Dataset 93 PD and 73 HC patients Step in PD recordings of force sensors

[160] 2017 PDMultiMC Proprietary Database 16 PD and 16 HC individuals
Written words, spoken words,

and eye tracking in PD
Settings for digital tablets and

speech

[161] 2008 ADNI Open Dataset
ADNI-GO: 200 early 400 MCI,

and 200 AD patients

identification of AD and
pre-AD; tracking the condition’s

development

Biomarkers, medical,
chromosomal, MRI, and PET

[162] 2013 AZTIAHO proprietary database 50 HC and 20 AD patients
Biological markers of AD in

voice
Speech Database

[163] 2012 NTUA Open Dataset
There were 78 people, 55 of
whom had PD, and 23 HC

patients
Hand gestures in PD

Testing using MRI and
Dopamine Transporter Scan

scans
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4. Machine Learning and Deep Learning Models for Parkinson’s Disease Diagnosis

4.1. Need for Machine Learning and Deep Learning Models for Parkinson’s Disease Diagnosis

To maximize ML’s generalization capabilities in neuroscience, many sorts of validation
processes will be required. Testing different and new data on the same training model at
the same time is the next step in attaining the best diagnosis accuracy. ML approaches
have been widely utilized to predict PD across a variety of datasets. Furthermore, picking
features for a new training model each time prevents the model from being automated
and put into practice. Finally, ML algorithms that allow for incremental data updates and
re-learning must be researched further. When large-scale labeled datasets are available,
CNNs have already shown tremendous achievements in terms of navigating classification
challenges in recent years [75]. The combination of ML models with feature selection
methods enables the evaluation of the relative value of characteristics in a wide feature
space to choose the most distinguishing ones, which is difficult to manually do [76].

The accuracy rate of deep learning techniques improves as the size of the dataset grows.
However, to reproduce absolute speech data features from raw datasets, appropriate speech-
processing algorithms must be devised. Traditional DL algorithms must also be updated
for changing auditory information [71]. Old PD diagnosis requires a large number of
observations in everyday activities, fine motor skills, and other brain features; however,
this method is inadequate for detecting the disease early. ML and AI approaches have a lot
of potential for categorization, according to previous research, and the classification system
increases the validity and consistency of the diagnosis, as well as minimizing errors and
boosting the efficacy of the process [26]. There is not a certain test for screening Parkinson’s
because the medical approach is dependent on the patient’s signs and symptoms, or,
specifically, because every patient has their own set of symptoms. To do so, we will need
new techniques for permanently recognizing the disease in its early stages, in order to take
advantage of the most effective medical treatment available. For this purpose, automated
analysis using learning classification algorithms is extremely intriguing [77].

4.2. Machine Learning Techniques

4.2.1. Artificial Neural Network

ANNs are often depicted as networks of interconnected “neurons” capable of calcu-
lating values from inputs/outputs and of pattern recognition and machine learning. Bind
et al. [16] suggested using an ANN to diagnose PD in a dataset of ill and healthy patients
using a boosting committee machine. Neural networks with backpropagation filtering tech-
niques employ a majority voting scheme. Indeed, 75.4% of the 195 samples tested positive
for PD, with the rest being healthy. Sachdev and Kim [78] studied the gait characteristics of
93 PD patients and 73 healthy adults. The disease has been discovered to utilize multiple
biomarkers, which have been used in various investigations to identify the onset of the
condition and its associated issues. To diagnose the effects of PD, Pereira et al. [64] used a
Multi-Layer Perceptron ANN. They also contemplated utilizing a feature selection method
based on meta-heuristics to detect such diseases. Despite studies showing the potential for
using SVM to automatically identify PD from vocal factors and provisionally supporting
the use of ANN and SVM together for the rapid recognition of PD, in this research, ANN
was used for FS before classifying speech-related qualities using the augmented LaGrange
synthesis of SVM, which maximizes margin min-maxi. Therefore, the use of internal FS
to enhance early PD diagnosis using speech-related statistics is a vital contributor to the
work [79].

AM García [18] developed the Multi-Layer Perceptron with a back-propagation learn-
ing method and RBF to forecast PDs [80]. The model for this module is based on ANN,
another DL paradigm. It is divided into four layers, each of which has 64, 32, and 16
neurons. The dataset is supplied as a CSV file, from which it learns the non-linear trends
in signal values and teaches itself. Tensor flow and Kera are also used in its development.
When the issue is properly categorized or tiered into hierarchical levels, a tree functions well
in diagnostic testing. Classification results are often good if sufficient data is provided to
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train ANNs. In many physiological settings, this is not the case; hence, they frequently over-
fit the provided data, which decreases generalizability [81]. The researcher’s model [82], on
the other hand, lacks explanations and poorly performs when compared to theirs, due to
the fundamental nature of DL models. Furthermore, the method can determine the severity
of the disease in addition to Parkinson’s diagnosis, which may be more valuable to patients
and physicians. A technique based on SVM and ANN was proposed by Rizvi et al. [83].
The ANN-based approach has a precision of 92.31%. They then discussed the dataset
creation technique they used, as well as the models they chose (classifiers). The adoption of
more resilient designs, such as layering various models to construct an ensemble, might
counterbalance the prejudice of each model and supplement the automated diagnostic, as
evidenced by the 83% diagnostic accuracy gained in this study. It would also be worthwhile
to investigate TCN considering their impressive findings in several sectors of research.
Finally, to increase ML diagnostic performance, more information from patients and healthy
controls is required [84]. In [85], researchers used a variety of speech signal processing
techniques to clinically extract significant characteristics, which were subsequently fed into
several artificial learning systems to generate correct PD classification options.

4.2.2. Naïve Bayes

The NB Classifier is a probabilistic classifier that assumes the presence of one class
characteristic that is unrelated to the presence of other factors [86]. For writing tasks and
spiral drawing, they employ an NB algorithm, with different metrics for each challenge.
With an accuracy of 83.2%, the fourth task has the greatest classification accuracy [46,87]. It
is sometimes referred to as a probabilistic predictor because of the probabilistic relationship
between the category and the attributes. It does not have a deterministic relationship and
is very extensible. The training is carried out in linear time by calculating a closed-form
expression, as opposed to the iterative approximation used by many other classifiers. It
has shown the lowest accuracy (71.79%) in detecting the presence of PD [88]. With more
training data, the classification accuracy of this algorithm will drop. According to the
best training data chosen by the PSO algorithm, the greatest accuracy in the potential
classification for PD diagnosis may be reached with only eight training data. Researchers
have proposed a new PD diagnostic model based on a PSO algorithm, and a combination
of Naive Bayesian Classification and other algorithms. The PSO approach was used to
select the best training data for Naive Bayesian Classification. By picking the best training
data and avoiding those that produce a drop and decline in classification accuracy, the
algorithm achieved a classification accuracy and PD diagnosis of 97.95%. This classification
accuracy demonstrates the proposed method’s advantage over existing disease diagnostic
models. Furthermore, it should be noted that, based on the findings of the paper, it is not
always essential to present a new classification method to improve classification accuracy;
rather, it can be significantly improved by choosing the best training data and eliding the
improper training data [89]. Naive Bayes only takes the total motor score into consideration,
which may not account for patient variability as two individuals with comparable total
motor scores may have completely different symptoms. As a consequence, they used the
aforementioned ML methods to forecast the outcomes of each sub-symptom, then combined
the findings into a single prediction. This strategy is known as symptom aggregation (SA)
prediction [90]. Using a subset of attributes provided by a wrapper of the same learning
method, the top-scoring classifier, NB, achieved scores of 91% accuracy, 88% sensitivity,
95% precision, and a 0.952 AUC value. Although the NB’s algorithm’s assumptions are
contradicted by its data and characteristics, the algorithm’s success is logically justified,
which encourages its use. Researchers have also tried using alternative classifiers, such as
random forests, with comparable or slightly worse outcomes. There were 5875 occurrences
and 26 characteristics in the data. For data visualization, classification (majority, k-nearest
Neighbor, and SVM), evaluation, and unsupervised learning methods, the dataset was
obtained and run using orange software v2.0b (hierarchal clustering). Weka v3.4.10 was
used to accurately classify instances (classification) using Bayes Net and Naive Bayes. It
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had the lowest accuracy (69.23) [91]. Alemami and Almazayedh [92] designed and verified
classification algorithms; their findings revealed that the automated classification method,
NB, and KNN reached a high degree of accuracy of 93.3%. For reliability assessment and
the time it took to complete the set of data, comparative categorization tests on multiple
datasets inside an item were used to discover the optimal classifier model. The Bayesian
theory is a mathematical model based on the arithmetic of levels that forecasts relevant
beliefs. Bayes Net and Naive Bayes are the most active learning techniques, using a
random sequence structure within each class. Network categorization refers to a collection
of algorithm-based categorization methods [93]. Some learning schemes, such as NB,
are extremely effective as classification approaches, but they are challenging to apply as
regression schemes [94].

4.2.3. Decision Tree

There are two research phases in the data mining module. The first involves applying
association rule mining algorithms to analyze the patient’s status using raw patient data,
therapy, patient profiles, and other publicly available data as part of the rule discovery
process. The progress of automated symptom detection based on patient time series is the
second step. This forecast is based on decision trees, and it aims to be more accurate than
the prior study [6].

The fact that decision trees express rules is one of the most appealing features. Humans
can easily grasp rules when they are written down. Nilashi et al. [95] attained the highest
accuracy of 82% utilizing a decision tree on gyroscope data acquired with the Shimmer. To
classify it, they employed the J48 decision tree included with the Weka software. Scholars
from all across the world are interested in how medical datasets might be used. Kim
et al. [96] employed datasets for decision rule discovery by creating decision trees after
using PCA. They employed CART at this stage and applied these strategies to all clusters.
According to clinical practice guidelines, they imposed the first split rules as the primary
source of damage. Following that, the most effective criteria and thresholds for forecasting
future total UPDRS scores were established. To prevent too many finely-grained sickness
conditions with inadequate visits, they guaranteed that the minimum number of trips
residing in the disease condition was not less than 100. Using Enhanced Decision Trees,
they were able to obtain up to 95% reliability on the sample; however, there is still potential
for development. With additional development, the model’s accuracy score might approach
99%. For instance, more data analysis of the features might be required to remove some
of the identical features and only utilize the qualities that are intricately connected to the
description [97].

4.2.4. K-Nearest Neighbor

The patient populations with the smallest sample sizes, which are those with signifi-
cant cognitive deficits, show the lowest classifications. The classification is quite appropriate
for the remaining groups, where a particular diagnosis is needed to make future healthcare
plans. These results imply that the degree of cognitive impairment in PD patients can be
assessed using EEG parameters derived from a daily clinical practice exploratory research
approach [98].For each test sample, K-Nearest Neighbor (KNN) is a fundamental classifica-
tion algorithm that produces the most comparable clusters among the K closest examples
in the training set [99].

Bind et al. [16] developed a classification strategy based on KNN to predict voice
signals to detect Parkinson’s sickness or healthy patients using a Parkinson’s speech dataset
with various audio recordings. It had an accuracy of 80%. To handle the problem of cate-
gorizing Parkinson’s patients’ speech, data mining techniques, including Random Forest,
Ada-Boost, and K-NN, were used by AH Al-Fatlawi et al. [55] With an accuracy rate of
90.26%, the K-NN technique was discovered to be the most effective of the three. These
studies used a variety of speech signal processing techniques to clinically extract significant
characteristics, which were subsequently fed into many AI systems to generate reliable PD
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classification decisions. Because of its simplicity and ease of use, KNN is similarly effective.
The performance of the algorithms mentioned in this paper is inextricably linked to the
quality of the attributes extracted from the data. While manually identifying adequate
features to characterize the intrinsic aspects of speech (audio) data is difficult, utilizing a
DL technique, the latent characteristics of the data can be autonomously discovered. A
method for identifying PD using speech sounds has been proposed by RWR de Souza [100].
The fundamental frequency, jitter, and HNR, as well as additional statistical metrics based
on these properties, were used as inputs to the proposed model. Several selection methods
were used, including correlation rates, Fisher’s Discriminant Ratio, and ROC curves, to ex-
tract important features from the entire feature collection. The KNN classifier outperformed
the other classifiers in terms of accuracy, sensitivity, and specificity (with an accuracy rate of
93.82%) [85], producing the best results. In higher-dimensional layouts, on the other hand,
KNN performs better. When it comes to the training stage, the traditional OPF beats the
KNN, SVM, and Fuzzy OPF in all circumstances. Tiwari [80] suggested a fuzzy k-nearest
neighbor-based technique for PD categorization. They investigated and developed a sup-
port vector machine-based technique for PD diagnosis. Nearest data generates instances
that correlate to locations in an n-dimensional environment using Euclidean distance.

4.2.5. K-Mean Clustering

K-mean is a known approach for separating PD patients into subgroups, such as those
with tremor predominance vs. those with fast motor control loss and cognitive issues. An
overfitted system may have too many customizable variables, causing unpredictability or
other confusion in training examples to be misinterpreted as true disease-related architec-
ture. Because the model’s intricacy may be indefinitely raised to achieve high accuracy,
this is a common challenge in statistical ML. With encouraging findings, some researchers
have used dynamic handwriting analysis to categorize persons with PD. Regardless of the
amount of sickness indicated by the patients, they all focused on the healthy/unhealthy
binary distinction. In other words, the Parkinson’s disease sample is thought of as a distinct
cluster in which every member has the same level of PD severity. The goal of this study is
to determine whether and how dynamic handwriting traits can identify PD sufferers at a
preliminary phase [99].

4.2.6. Random Forest

Novel PD data with a class-balanced distribution were classified using the RF classifi-
cation and the SMOTE method, modeling the data using the data points using multiple
decision trees. New predictions were created by combining the findings of each decision
tree and giving that category to the data point that was predicted by the majority of the
trees [58]. Medication doses, time variables, and preoperative symptom-specific levodopa
response were all shown to be strongly linked with clinical outcomes [90]. In this study,
researchers computed an important score for the characteristics in a two-class (PD/Normal)
classification framework to determine their value. This technique involves drawing out n
observations with a replacement for each decision tree, omitting 37% of the data on average.
These are the ‘out-of-bag’ statistics, and they can be used to figure out how important
certain qualities are. The RF model, which was used to assess feature importance, had an
accuracy of 99.03%, a sensitivity of 99.51%, and a specificity of 98.1%, indicating that it did
a good job of distinguishing PD from HC. The proportion of PD observations that were
not recognized was exceptionally low (less than 10%, or 0.5%), showing that the machine
learning model was able to identify complex patterns in the data and aid in identification.
In [101], researchers demonstrated that the Synthetic Minority Oversampling Technique
(SMOTE) improves minority class detection in order to address the class imbalance issue
in PD stage-wise segmentation. By measuring the differences between the samples that
were generated and demonstrating the lack of replication or overlapping, the method was
validated.
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4.2.7. Support Vector Machine

Ref. [48] included several statistical features collected from time-series gait data were
examined before being decreased using a correlation matrix. The top seven feature vectors
were then extracted and classified using a kernel-based SVM decoder and a Gaussian
radial basis function. The findings showed that the seven features used for SVM had
a precision of 83.33%, a high PD detection rate of 75%, and a low false positive rate of
16.67%. In an unlimited dimension space, an SVM creates a hyperplane that may be used
for classification or regression. The classifier with the least errors is the one with the biggest
gap between data points. It is used to classify the extracted characteristics. Leave-one-
out cross-validation is used once more for training. Research has been conducted for
resting tremors, but they also looked at postural and mixed tremor performance [102].
An algorithm was developed to categorize feature vectors that included probability, as
well as other data, using other statistics. El Maachi et al. [21] looked at the spatiotemporal
characteristics of patients with neurological illnesses, as well as control participants. They
calculated statistics, such as fuzzy entropy, skewness, and kurtosis, for each time series. RF,
SVM, MLP, and KNN were among the ML classifiers utilized. The best result was produced
with an SVM after optimization with a features selection approach. Their method used
the SVM algorithm to carry out the PD patient assessment to meet the requirements of the
mobile app. In conclusion, the PD speech recognition system uses SVM and SVR for speech
diagnosis and severity evaluation, respectively. Experimental results have shown that SVM
and SVR worked best for recognition and severity rating. The categorization task’s recall
rate was achieved at 97.03%, and the regression task’s mean absolute inaccuracy could
approach 3.7699, which was acceptable given that UPDRS values vary from 0 to 199 [82].

The traditional bootstrapping or leave-one-out validation methods have been devel-
oped for classification with a Support Vector Machine (SVM) for examining the validity
and statistical significance of the PD connections to variables [91]. The topic of forecast-
ing PD symptoms and their intensity was also examined. Both activities were designed
to aid decision support systems in measuring and reviewing the care of individuals [6].
For PD diagnosis, Aich et al. [26] employed a feature selection approach, as well as a
machine-learning-based technique. They observed that by using reciprocal information-
based feature extraction and an SVM as a classification strategy, they were able to achieve
92.75% accuracy. Support Vector Regression was used to forecast the course of PD. They
discovered that the suggested technique aided in enhancing the precision of PD develop-
ment. The gap between the training images and the category border was maximized using
SVM. It created a hyperplane for every data point that was represented by a collection of
feature values and assigned a classifier to it [86]. In this paper, SVM used a linear kernel for
Parkinson’s detection. The examples in the training dataset were utilized to maximize the
gap. The hyperplane was described as a plane that maximized the total lengths between
the margins [60].

4.2.8. Ensemble Models

Ensemble models demonstrated that some of the features employed can detect indica-
tions of PD while being undetectable to human ears. This is a very hopeful discovery for the
field, as it suggests that a large robust model could someday outperform humans. This also
demonstrates the importance of voice phonation. Characteristics could be included in a set
of non-invasive indicators for PD [103]. Dropout achieves the same result as the bagging
ensemble strategy for a large number of DL models while maintaining low computing
costs. The primary idea underlying dropout is that each time a new instance is input to
the model, only a random subset of the network is used; consequently, the only parameter
to tune is the likelihood of deleting a neuron [46]. Using structural MR images, ML was
employed to differentiate PD from progressive supranuclear palsy (PSP), and a method
based on resting-state brain networks was used to tell patients with Parkinson’s disease
and those with very mild cognitive impairment apart. Additionally, studies on whole-brain
functional connectivity have been conducted to learn more about the disorder [63].
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There are different distributions for people who are healthy and those with PD. How-
ever, because these patterns have a lot of volatility and overlap, it is impossible to diagnose
based on just one aspect. For the detection of Parkinson’s illness, Tiwari [80] created an
ensemble technique that combined PCA, rotation forest ensemble with SVMs, and sparse
multivariate regression. They investigated whether ensembles of regression trees may
provide better results for PD prediction than single regression trees, and whether RvC en-
semble approaches can help with this method. To predict motor and total UPDRS, classifier
models with the proposed ensemble technique were used. Even though the theoretical
analysis indicated that the weights should be effective for the proposed ensembles, they
discovered that the technique had significant RMSEs. They investigated the reasons behind
this tendency. They found that, although the prediction error should be zero in theoretical
calculations, in practice, the average classification errors for several datasets ranged from
20% to 40%. This indicated that they might have given inaccurate results a disproportionate
weight. As a result, the weights did not provide the intended benefit [94].

4.2.9. Limitations of the ML Models

Although earlier research has examined the application of machine learning in the
diagnosis and evaluation of Parkinson’s disease (PD), studies have only been able to
analyze data from wearable sensors, kinematics, and motor functions [30,104,105]. The lack
of adequate or accurate descriptions of techniques or findings, as well as some research’s
failure to accurately report the number and kind of subjects utilized or how ML models were
implemented, trained, and assessed, were problems seen in many of the included research.
Rarely did authors cite another publication instead of providing essential information, such
as the number of patients and their medical conditions. Several papers did not provide
this information in the main text, which could make it more challenging to replicate the
findings [106–109].

4.2.10. Inference of ML Models

In summary, the realization of machine-learning-assisted diagnosis of PD yields high
potential for a more systematic clinical decision-making system, while the adaptation of
novel biomarkers may give rise to easier access to PD diagnosis at an earlier stage. Machine
learning approaches, therefore, have the potential to provide clinicians with additional
tools to screen, detect, or diagnose PD. Table 5 presents a summary of studies on machine
learning models for Parkinson’s disease diagnosis. Figure 5 illustrates the machine learning
models for Parkinson’s disease diagnosis used in this review.

Machine Learning Models for Parkinson’s disease Diagnosis used in this 

’
’

Figure 5. Machine Learning Models for Parkinson’s disease Diagnosis used in this review.
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Table 5. A Summary of Studies on Machine Learning Models for Parkinson’s Disease Diagnosis.

Reference

Machine
Learning

Approaches
Used

Dataset
Model is

Pre-
Trained

Feature
Extraction
Approach

Limitations
Performance
Evaluation

Metrics

[164] Neural Network Voice Database Yes
Linear

Discriminant
Analysis

The testing database did not
include any healthy classes,
which shows that the data is

unbalanced. Information
about feature extraction was

lacking.

Acc = 0.95

[165]
K-nearest

neighbor and
Decision Tree

Speech, audio,
and hand PD

database
Yes

Improved
cuttlefish
algorithm

Unable to merge the models
of HandPD and Voice

Datasets.
Acc = 0.92

[72] SVM with RBF
kernel

Handwriting
Dataset for PD No NCP Method

They chose to only
concentrate on PD and the

HC group in this
investigation. Various

illnesses also need to be
examined.

Acc = 0.81
specificity = 0.809
sensitivity = 0.84

[166] Super vector
machines Sound Database Yes

Bacterial
Foraging

Optimization

The surrounding
environment of a bacterium

has a great impact on the
search capabilities of a BFO

algorithm. Additionally,
parallel computing

techniques could increase
computational efficiency

which was not used.

Acc = 0.975

[167] SVM-MLP EEG database No Constant Fourier
Transform

It only offers a solution for
data that is linearly

segregated.
Acc = 0.1

[168] PBL-McRBFN +
RFE

MIR BRAIN
IMAGES Yes Voxel-Based

Morphometry

A decision model’s
performance degrades due
to the high dimensionality

of MRI data and the scarcity
of samples.

Acc = 0.87

[110] Bayesian
approach

Acoustic
characteristics are

taken from
duplicate

recordings

Yes Gibbs sampling
method

The dependency nature of
the data being mostly

ignored, voice recording
replications have not

typically been addressed for
PD discrimination.

Acc = 0.86

[169] PBL-McRBFN ParkDB database. Yes ICA - Acc = 0.95

4.3. Deep Learning Models

4.3.1. Recurrent Neural Networks

To enable the hard customized prediction task, Che et al. [111] presented an RNN
design to calculate the commonalities connecting the health records segments with a DTW-
similar architecture that brings superior alignment for periods with substantial temporal
changes. According to these findings, the RNN representation with the ADAM algorithm
produced the finest classification results on both voice sets. These outcomes demonstrate
the advantages of LSTM and ADAM optimization together. The model was evaluated
using a variety of criteria and was tested on two different speech datasets. The accuracy
was 95.8%, retention was 100%, accuracy was 92.3%, and the F-score was 96% on the first
dataset [46]. RNNs are used to process sequences for text mining because they keep track
of past hidden layer processing memory. Because the training converges more quickly and
recognizes long-term patterns in the data, LSTM is far superior to basic RNN units [112].
DL methods and word embedding models have been explored to interpret and analyze
user perspectives on Parkinson’s illness [113]. Multiple nodes are found in the RNN’s
hidden layer [114].
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4.3.2. Deep Autoencoder

An autoencoder is a program that can be used to learn representations, reduce com-
plexity, and condense data [115]. In unlabeled data learning and voice identification
applications, an autoencoder [116] has been widely used. The input data, dense nodes,
and reconstructed surfaces can all be created as a three-layer neural system [53]. To learn
about patient representations, deep learning techniques were used. To assess EHR in an
unsupervised manner, Si et al. [117] employed a DNN made of using a layer of noise
reduction autoencoders, collected stable structures and common trends in the data, and
produced a medical diagnosis. DNNs have the potential to exist as a better classifier for
PWP speech than traditional approaches. In contrast to traditional methods, DNNs not
only use autoencoders (AEs) to lower the dimension of features, but also use the SoftMax
layer to categorize the samples. AE attempts to maximize its data as the network’s data,
which may result in distinct input representations [27].

4.3.3. Long Short-Term Memory

The rear-diffusion method is used by LSTM for training. In an LSTM network, there
are three valves. The input, forget, and output gates are the three gates. To select whether
input data should be activated and changed in the store, the input gate employs a logistic
function. For both the DNN and LSTM studies, the performance indicators obtained
for each of these systems were utilized to assess statistics quantifiers, such as average,
mean, variance, and so on. The efficiency of the LSTM model was 99.03%, with a standard
deviation of less than 1%, which means that most accuracy measurements were around
97.96%, which is significantly better than the results of the majority of previous research
in this sector. The DNN algorithms showed a range of min and max levels of accuracy of
90 to 97%, which was better than earlier research, but not as good as the LSTM models.
With the greatest accuracy of 97.12% and 99.03%, on the same dataset, the DNN and LSTM-
based prediction models performed better than all other models, indicating that these are
trustworthy models for detecting PD [83].

4.3.4. Deep Neural Network

A DNN is composed of several basic components that are built on top of each other.
Most of these simple structures perform irregular operations, like rescaling information
to depict it in a different dimension, which helps uncover concealed features in the
data [118–120]. The DNN proposed in this research is made up of two basic components
that are coupled together: SAE, as well as a SoftMax predictor. SAE [121] is formed when
the required number of autoencoders is combined. Among the most effective optimization
techniques for instructing the neural network in this study is the Limited Memory BFGS
optimization algorithm. Over OPD and PSD datasets, the suggested DNN is contrasted
with innovative methods, including SVM, NB, and DT classifiers.

The following are some of the benefits of the suggested classifier:

1. The suggested DNN classification model can uncover latent characteristics, signifi-
cantly improving the classifier’s execution.

2. This classification model can be used to remotely diagnose and monitor Parkinson’s
disease. As a result, PWPs only need to visit the clinic once in a while.

3. It could be capable of monitoring and treating PWDs in creating useful biomarkers
for diagnosing PD at a preliminary phase because speech difficulties are one of the
earliest indications of PD.

4. Due to its high selectivity and responsiveness, the DNN model may be employed as a
trustworthy PD sorter [59].

4.3.5. Deep Belief Network

DBNs (Deep Belief Networks) are a form of DNN that models high-level representation
in the database with complicated composition using several computational levels [122].
These processing levels are linked by connection weights, but there are no connections
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between them. As a result, it is a generative graphical model [123] that is made up of
numerous layers of hidden units.

The evident surface is something that will collect the data (pattern characteristics)
and will be altered at many processing levels. The quantity of packages in the viewable
gradient increases to 16 neurons when 16 of the features collected by [124] are taken into
account. Because the algorithm will categorize the waveform into each of the two risks,
normal (0) or sick (1), only one system is necessary for the output layer. According to G.
Hinton [123], the number of training examples, their complexity, and duplication might
impact the number of these components. The DBN technique is a sort of NN approach.
The layers are completely connected; however, there are no connections between the inner
layers. These processing levels are linked together by connection weights, but there is
no connection between them. As a result, it is a visual model made up of many surfaces
of concealed neurons [125]. In this direction, large sets and few parameters are required
for high-redundancy training instances, as more variables could result in overfitting [119].
There is not an ideal value; instead, choices are typically made through trial and error
inside a range. Studies indicate that when estimating the number of concealed units in a
network, the technique should begin with one level, add another, and finish before reaching
the prediction error, while others believe that a system with two [126] or three concealed
surfaces is adequate to handle most challenges.

Supervised learning approaches must be used to adapt them to efficiently handle
the input data. The data were separated into two categories in the sample. The first
category consisted of the training sample, which accounted for 74% of every test. The last
representatives were utilized to test, validate, and assess the correctness of the system.
As a result, the system’s overall accuracy was 94%. This percentage was sufficient to
produce a trustworthy system capable of diagnosing patients. A DBN-based diagnosis
algorithm for Parkinson’s was provided. Early PD could be detected by recognizing the
patient’s voice. DBN improved diagnosis with 94% accuracy, according to the findings.
This result demonstrates that DBN was able to achieve the highest level of accuracy with
that dataset [55].

4.3.6. Deep Convolutional Neural Network

Traditional PD detection approaches are typically handmade and need a high level
of knowledge. The CNN uses an alternating convolution and pooling layer structure
instead of completely linked hidden layers. They have been utilized in speech and audio
processing for a variety of applications, including pathological speech categorization, audio
activity recognition, voice identification, and more. CNNs are meant to handle datasets
from multiple matrices, such as a three-channel color picture (RGB) or two-dimensional
arrays that correlate to the TFR (Time-Frequency Response) of sound transmissions. In the
study by Vásquez-Correa et al. [127], they created a CNN comprised of four convolutional
layers, which offered a comprehensive investigation of PD patients’ motor skills using
architectures established on a combination of CNN and TFR that incorporated data from
language, writing, and pace symptoms. The suggested approach simulated patients’
difficulties in starting and stopping muscular activity in the upper and lower arms, as well
as in speaking. Three main studies were conducted: (1) classifying patients with PD and
HC subjects; (2) classifying patients with PD at various phases of the disease according to
total points; and (3) classifying PD patients at distinct phases of development according to
specific impairments in the bottom and top limbs, as well as speech, using MDS-UPDRS-III
sub-scores.

The hidden projections of the neural network may be interpreted using the extracted
features discovered by the CNN trained on multimodal input. The CNN’s initial con-
volutional layers, which were trained with speech TFRs, exhibit substantial disparities
between PD sufferers and HC. The last layer of the CNN is trained using handwriting,
producing similar results. It appears to be a good fit for modeling PD patients’ difficulty in
starting and stopping distinct limb motions, allowing for the reliable categorization of PD
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patients and HC controls. Furthermore, the proposed designs appear to have the potential
to classify various phases of the illness. Their suggested CNN directly and automatically
creates feature representations using parallel convolution layers matching each feature set.
This was the first research to use a CNN with comparable surfaces to identify PD. The use
of parallel convolution layers allows feature representations to be extracted from a variety
of data. Multiple kinds of data can be sent into the system as inputs at the same time using
parallel convolution layers. This allows us to use multi-modal data in the categorization of
PD [85]. Abayomi-Alli et al. [54]’s investigation of the effects of feature extraction and data
processing techniques examined the CNN LSTM and the SVM-based classification strategy.

Scholars have proposed utilizing a wrist-mounted accelerometer and gyroscope to
collect tremor data, with CNN networks used to classify the data. The approach was tested
on 92 patients and was found to be 85% accurate. The learned features are obtained by
convolving the input data with a variety of filters during the training process [102,128,129].
They used a CNN to analyze spiral and meandering hand sketching characteristics in
PD patients and found that the accuracy for 128 × 128 meander pictures was 87.14% and
77.92% for 128 × 128 spiral images [64]. Ref. [130] suggested a data augmentation method
using a combination of GANs and Alex-Net that will successfully produce high-quality
MR images and increase the performance of the classification model. A useful reference
is provided by this work in medical image evaluation using DL. Srivastava [4] created a
hybrid CNN-LSTM model in which the CNN learns well from spatial features from stride
data and the LSTM trains well from the sufferer’s time factors to forecast the intensity
of the condition. When compared to base models for classification, this spatiotemporal
model provided better results. By calculating an anemic person’s blood count test results
using optimal CNN and SAE with GA, they divided anemia patients into three groups. It
demonstrated that their model was 98% more accurate than baseline models [131]. They
demonstrated that CNNs can learn useful information and beat raw data outcomes. This
initiative also aims to create a public dataset that could be accessed by scholars all over the
globe to promote PD-related research. They suggested acquiring pen-based features using
CNN, which can examine data using a succession of levels, each of which is responsible for
learning a distinct and finer depiction. Furthermore, this paper did not include any work
that dealt with automated PD diagnosis using deep learning techniques, which proved
to be the case for vital contributors of this study. The significant addition to this research
was the availability of a dataset containing signals gathered from sick and healthy persons
using a smart pen. In another paper [64], they used a CNN-based technique to classify
meanders and spirals created by control and PD sufferers. In addition, they ran a separate
experiment on the original data that should be used as a reference point. They used the
OPF classifier, which is a quick and parameter-free supervised ML algorithm. Varied CNN
models, and also pictures with various qualities and training data set sizes, were used in
the experimental portion. The results of CNN were compared to the uncategorized raw
data classified by the OPF, and they were found to be very encouraging, as CNNs were able
to learn essential characteristics to distinguish patients from healthy people, producing
excellent results throughout the databases.

DCNN has considerably increased picture categorization and detection performance.
Deep learning algorithms for segmentation, tumor identification, and disease classification
have recently been applied to medical pictures. Scientists have used TFR and CNN to
describe PD patients’ articulation deficits. J.C. Vasquez-Correa et al. [132] identified PD and
HC participants using voice recordings in three languages: Spanish, German, and Czech,
with a degree of precision ranging from 70% to 85% based on the language, suggesting that
learning techniques have the potential for analyzing the speech of patients. The proposed
CNN model can be utilized to discriminate between HC’s and Parkinson’s patients with
minimal or no signs. This work demonstrates the diagnostic use of speech in Parkinson’s
disease (PD) and raises the possibility that speech may provide a comprehensive picture
of the disease, enabling tailored medicine by improving the efficiency, dependability,
availability, and cost of PD care. The findings showed that the suggested deep CNN model,
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which would be built on domain adaptation and uses a fine-tuning method, can diagnose
PD with a precision of 91.17%. One of the most crucial elements of the research is that it may
diagnose PD illness over a broad range by merely studying the vocal qualities of patients
at various stages of the disease. ImageNet and LeNet are two alternative CNN designs.
Scientists found that ImageNet had the highest accuracy for meanders and OPF had the best
accuracy for spirals, both at 83.77%. A reduction in the levels of fluid dopamine produced
by brain cells called neurons is another sign of PD. It can be discovered using dopamine
transporter imaging techniques, such as FP-CIT SPECT. A deep CNN model was created
for the automatic classification of cardiac and ocular artifacts in magnetoencephalography
(MEG) data. Based on CWT images, CNN classified MER segments into artifacts and
clean signals using its deep transfer learning model, which had been trained on millions of
images. Their work was the most accurately completed (ACC = 88.1%) [133].

4.3.7. Deep Generative Models

Deep Generative Model (DGM) designs are challenging to implement due to their
tremendous mathematical complexity. Several organizations have been working on systems
that incorporate the core architectures of deep learning, making learning, configuration,
and other uses of these tools in massive amounts of data easier [134]. Addressing these
obstacles through analytical means would have a substantial impact on the treatment of PD
and other neurodegenerative disorders, where evaluation faces similar issues. In ubiquitous
computing, their system includes a standard analytic pipeline for activity recognition. The
collected data is first segmented using a sliding window process, followed by the extraction
of a hand-crafted collection of characteristics from each frame. These characteristics are then
utilized to train a succession of RBMs in cross-validation trials. To improve classification
performance, a SoftMax top layer is added to the learned generative model, which is then
finetuned using conjugate gradients. Importantly, this first stage of training is exclusively
driven by the goal of learning a predictive model of the training examples and does not
rely on any input data labels. Advances that address the particular constraints of this issue
setting would have a substantial social impact, since realistic evaluation tools will assist not
just people with PD but also those with a variety of other degenerative diseases. Aside from
the potential effect, naturalistic environments present a distinct machine-learning problem
that might serve as a new testbed for the development and assessment of unattended and
semi-supervised learning algorithms [50].

4.3.8. Deep Boltzmann Machine

Passos et al. [135] addressed the topic of a fine-tuning DBM to reconstruct binary
pictures using meta-heuristic-driven optimization strategies. When compared to a random
search, the experimental findings from three public databases demonstrated the validity of
applying such strategies to optimize DBMS. They also demonstrated that when two out
of three datasets were used, DBMs might develop better accurate estimates than DBNs.
Wilcoxon signed-rank analysis was also employed to look at the similarities between each
optimization approach, as well as the exchange between the computational burden imposed
by each heuristic algorithm and its efficacy. Several sets of qualities with multiple variables
were gathered from two datasets of hand-written artworks created by both PD patients
and healthy persons using the RBM, a power probabilistic heuristic net. These qualities
were subsequently included in the OPF method, which offered sample classification and
performed better than the outcomes of previous methods [136].

The Continuous RBM successfully learns a deep cortical signal representation. For
some patients, the CRBM model detects HVS (High-Voltage Spindles) before the ground
truth; the lower the specificity, the sooner the HVS is detected. Because of the signal-to-
noise ratio per channel or the existence of HVS, data quality can greatly vary from one
rat to the next. The continuous RBM’s properties offer a variety of benefits, and there
are currently several ways to improve it. It is an unsupervised generative model that
may be used as a predictor and can learn ideal frequencies to detect. It can extract quasi-
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components, but the data must be separable. To assist hidden units in extracting different
components, a knowledge of the model’s architecture is required. Directly working on
the Diffusion Network to eliminate the time lag produced by the usage of an observation
window is another viable improvement option. Refs. [137,138] looked at two different
types of drawings with two different resolutions, that were subsequently fed into RBM
algorithms for supervised categorization. It addressed the topic of automated PD detection
using characteristics learned by RBMs. It was discovered that RBMs with more hidden
layers allowed for faster learning convergence, although this does not always indicate
better performance on the test set. In addition to Discriminative RBMs, studies intend to
use DBNs and DBMs for categorization in the future.

4.3.9. Deep Reinforcement Learning

Reinforcement Learning (RL) discipline optimizes subsequent choice tasks based on
predetermined outcomes. It is one of the three branches of machine learning (along with
supervised and unsupervised training). Researchers have discovered that the RL method
generates a pharmaceutical schedule that is equivalent to that of physicians. They used
a multivariate regression model to establish that health assessment ratings and medica-
tions had a significant enough level in forecasting future UPDRS III. Then, utilizing the
statistically relevant factors and decision tree regressor, they created 28 distinct illness
conditions that correlated to another overall UPDRS III score. RL can help PD patients
improve their pharmaceutical strategy by suggesting treatments that are both efficient and
effective. When general neurologists and primary care physicians deal with difficult cases
where the appropriate drug combination is in dispute, this model will be tremendously
useful. This effort marks the start of the creation of an AI-physician ecosystem that is collab-
orative [128]. They use deep RL to resolve the resultant model (DRL). The ideal treatment
strategy that minimizes the patient’s symptoms is determined by the recommended policy.
Their findings reveal that the prototype strategy beats the static a priori therapy plan as
part of alleviating patient symptoms, demonstrating that DRL may be used to supplement
medical decision-making for chronic illness treatment decisions.

A3C is a DRL method that employs an actor to interact with the surroundings and a
critic to learn about function and policy. The A3C approach makes use of numerous con-
current agent threads engaging with environment replicas, each of which asynchronously
updates a world net [139]. In medicine, they have demonstrated stronger learning from
positive reinforcement and poorer learning from negative reinforcement, whereas individ-
uals who were not on medication showed the reverse trend. Patients who were not on
medication performed much better at negative reinforcement than normal age controls
(HC), implying that PD enhanced some components of RL. Dopamine may alter learning
expression, according to a recent update to typical RL models. The active and passive
routes, which learn from positive and negative reinforcement, have independent learning
rates and factors that can influence the OpAL model. Enabling dopamine to influence the
decision parameter can lead to a bias toward picking stimuli primarily learned through the
direct or indirect pathways, giving greater weight to the rewards or punishments acquired.
Dopamine and PD had no impact on the presentation of positive or negative reinforcement
when immediately tested after learning or 24 h later. Over 24 h, dopamine during learning
boosted the consolidation of RL memories. The initial PST had a low level of accuracy, and
the changes made to it had a significant impact, improving learning and novel pair preci-
sion, as well as the number of avoid-B decisions made by participants. This emphasizes
the impact that tiny adjustments to these sorts of jobs may have. The previously observed
effects of dopamine and PD on RL were not replicated in this paper, suggesting that the
impact is modest [140].

4.3.10. Extreme Learning Machine

An ELM has a very quick learning rate. The input weights are chosen at random using
SLFNs, and the output weight is analytically calculated. Not only are the hidden node
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parameters free of the training examples, but they are also independent of one another. It
may be possible to generate the concealed node without considering the training data. All
nonlinear piece—wise constant functions are compatible with ELM. PD has been predicted
using the newly developed Meta-cognitive Fully Complex-valued Radial Basis Function
(McFCRBF) network. When contrasted with a real-valued ELM and the FC-RBF network,
the effectiveness of the Mc-FCRBF used to predict PD demonstrates that it predicts the
illness better. The meta-cognitive product’s self-regulatory learning process is credited
with enhanced quality [141]. Nagasubramanian and Sankayya [71] tested ELM algorithms
for PD categorization. The sigmoid function was used in the extreme training algorithm,
and it was quick to operate. In an ELM system, the real-valued inputs and objectives were
applied to the network. Regarding precision, the Mc-FCRBF network performed better than
the ELM and FC-RBF networks. Consequently, BCGA-ELM could effectively distinguish
between troublesome and ideal solutions. The results of the experiments clearly showed
that the suggested technique could provide a similar solution for the PD classification issue
for various random initializations. They intend to conduct a medical investigation of the 19
genes they chose in their upcoming research [78].

4.3.11. Limitations of the DL Models

To assist physicians in their choices, this in-depth analysis highlights the information
on diagnosing Parkinson’s disease (PD). It is acknowledged that gathering real-world data
from patients is the most difficult endeavor in the healthcare sector compared to other
study sectors. The medical datasets collected for any neurodegenerative condition are
typically unbalanced.

• Given that the imbalanced dataset today influences the results, handling it is quite
difficult.

• In addition, due to advancements in deep learning techniques combined with nature-
inspired methodologies, there is a latent potential to leverage multimodal datasets to
enhance PD’s prediction accuracy.

• Although using the right criteria to assess ML models’ performance in PD classification
is important, there is still room for improvement.

4.3.12. Inferences of DL Models

A variety of studies have been conducted to determine the viability of various machine
learning methods. Cross-validation methods were used to choose the most crucially
dependable models. Most of the designs followed non-motor features, but some models
employed motor aspects that were more enhancing than others. Using these kinds of
models to detect diseases has many advantages. In other cases, PD was detected by
analyzing the affected people’s handwriting. The other means of identifying the same is
through missing data. Therefore, each of these approaches deals with a separate set of
conclusions and seeks to provide a thorough examination of this specific subject in a variety
of ways. This study evaluated several papers on methods based on deep learning and
machine learning for the diagnosis of Parkinson’s disease (PD). To identify Parkinson’s
disease and increase the model’s accuracy, a lot of research has been done on speech signals
using machine learning approaches. However, there may be a need to investigate additional
modalities, such as speech signals, for the diagnosis of PD. It has been determined from
this survey that several ML and DL algorithms can be improved and that there is a need
for additional research to increase accuracy and facilitate fast decisions.

By combining deep learning-based algorithms with experienced doctors, the rate of
PD early detection can be raised. In the field of health care today, these deep learning
models have a positive influence. To achieve high accuracy in the diagnosis of PD, deep
learning models need to be enhanced. Finally, we think that parameters besides specificity
and sensitivity might be used to provide even better guidelines for PD diagnosis specialists.
The issues with improving the classification of Parkinson’s disease may be resolved by
these suggestions. Table 6 shows a summary of studies on deep learning techniques for
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Parkinson’s disease diagnosis. Figure 6 depicts the deep learning models for Parkinson’s
disease diagnosis used in this review.

earning models for Parkinson’s disease 

•

Figure 6. Deep learning models for Parkinson’s disease diagnosis used in this review.
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Table 6. A Summary of Studies on Deep Learning Techniques for Parkinson’s Disease Diagnosis.

Reference Learning Model Dataset
Selected
Features

Main Contributions Limitations
Performance Evaluation

Metrics

[170] Convolutional Neural network PaHaW dataset, HandPD
dataset Handwriting images

Presented an effective method for identifying
handwriting degradation brought using static

photographs of handwriting samples. With the
NewHandPD dataset, this accuracy is the

greatest ever obtained.

To validate this method, additional
datasets and various network designs

must be examined.
Acc = 0.94

[171] Radial Basis Function
Networks 93 PD; 73 HC Gait features

GRF, a kinetic gait feature, can be used to
distinguish between individuals with PD and

HCs. As sensing devices and gait data analysis
methods progress, the proposed method, which
used GRF sensors, can be easily utilized in the

clinical prediction of PD.

The test of the suggested approach’s
generalizability is constrained by the
limited size of the current database.

Acc = 0.96

[172] Convolutional Neural network 20 PD; 20HC Ground reaction force

The LRP research reveals that bodily balance,
where increasing degrees of the disease hinder
patients’ ability to walk without being at risk of
falling, is a significant factor in diagnosing PD.

Lack of a plan for individualized
longitudinal tracking to find the

intensity of PD progression.
Acc = 0.83

[173] Convolutional Neural network NewHandPD dataset CNN-Based Features

Using an end-to-end deep transfer learning
technique, they were able to transfer already

acquired knowledge onto the realm of
handwriting samples with positive results.

There was an absence of a dataset of
difficult tasks with other clinical
factors that will help in not just

identifying PD early but also figuring
out how severe it is and how levodopa

and other medications affect it.

Acc = 0.99

[174] complex-valued artificial
neural network 23 PD; 8 HC (Little, 2007) (mRMR) attribute selection

algorithm

The primary innovation in the research design
is the implementation of a hybrid method,

mRMR + CVANN, which combined a powerful
classifier with an efficient feature selection

method.

The program’s data rate must be
decreased and its efficiency must be

raised to increase usability.
Acc = 0.98

[175] Extreme learning machine 23 PD; 8 HC (Little, 2007), 22 biomedical voice
measurements

The recommended GA-WK-ELM PD diagnosis
process has several benefits including the ability
to generalize, the ability to find the best wavelet

kernel with the ideal w, x, and y parameter
combinations, and the direct use of feature

vectors.

- Acc = 0.97

[176] Artificial Neural network 93 PD; 73 HC (public) Statistical features

In this study, the suggested strategy restricts the
number of alternative symbols per data point so
that the frame of encoding is fairly close to the

center pixel.

The NR-LBP method approaches the
candidate codes as numeric values,

taking their maximum, median,
average, or other quantitative metrics.

Acc = 0.98

[177]
Enhanced probabilistic neural

network (EPNN) back
propagation

189 PD; 415 HC (PPMI) motor, non-motor, and
neuroimaging features

This study shows how combining motor and
non-motor information might enhance

multiclass classification.
- Acc = 0.98

[178] 13-layer 1D-CNN 20 PD; 20 HC (private) end-to-end EEG signals

This study is the first to identify PD using EEG
data using a thirteen-layer CNN architecture

Despite the small number of participants, they
were able to achieve high accuracy.

The created model should be tested in
the future on a sizable subject

population to detect PD in its initial
stages.

Acc = 0.88

[179] Deep Belief Network 125 PD; 225 HC (private) laconic representation of PET
images

The GLS-DBN model accurately classifies
patients into diagnostic groups and provides a
measurable biomarker that can spot early PD

with minimum image analysis.

The learning rate was calculated by
trial and error, and the network

structure’s parameter values were
refined by numerous tests, increasing
the algorithm’s temporal complexity

Acc = 0.90



Electronics 2023, 12, 783 33 of 50

5. Open Challenges

5.1. Challenges in Computational ML Models

We should look into the challenges associated with training ML models using unclean
data collected from the public as well as the area of sound signal processing. We must
also prove that the experimental method of classifying healthy and diagnosed individuals
differs from how a neurologist makes a diagnosis. We must provide insights into the
behavior of these models, not only present data as a performance metric, and show that
machine learning can outperform physicians in precise phonation analysis, potentially
uncovering novel indicators for PD.

5.2. Challenges in Computational DL Models

• A DL model is a closed system that trains from data that can be used to imitate
the dataset acquisition. As a result, explanations are frequently insufficient to fully
comprehend its mechanism. Images from different datasets have diverse appearances
due to non-standardized reference sources. This is a significant difficulty when using
DL to analyze brain imaging.

• The use of large training datasets is critical for generating better results with DL
approaches, and the lack of them is among the major hurdles in the application
process. It is used in neural mapping to protect patients’ confidentiality. At the same
time, labeling those data is a major challenge that requires professional guidance.

5.3. Challenges in Integrating Parkinson’s Disease Diagnosis Data

• Medical data consists of patient longitudinal records that span from a few months
to years during their regular visits. Dealing with conflicting patient records is one of
the most difficult aspects of working with longitudinal data. Because many patients
leave out or fail to show up for evaluations, there is a discrepancy in data, causing
statistics to be skewed. Another issue is that patient data is missing for a few medical
practitioner assessment exams that are not provided at the time. Lipton et al. [142]
also employed forward and backward filling within a one-hour window for each visit
to resample all missing values. When the whole variable record was lacking, they
substituted a clinically normal value as determined by specialists.

• Realigning and combining complex multi-source and multi-site PD databases is also
a challenge. In Parkinson’s, collecting such data is difficult since there is such a
scarcity of cohorts having extensive, well-curated information. As a result, one major
requirement is the growth or duplication of projects like PPMI or PDBP, ideally with
a model that provides an unrestricted approach to the underlying information; the
expense of this data type gathering is high, but it is an essential resource in their
attempts to understand PD.

5.4. Challenges in Merging Omics Data with Various other Sources of Information, Such as
Electronic Health Records and Wearable Sensors Data

• The evolution of wearable devices to monitor people with PD has largely emphasized
the motor elements of the condition, which are also assessed by clinical scales, but
with less sensitivity and specificity. Even though there have been recent improvements
in quantifying motor symptoms like tremors, these outcomes frequently only show
limited quantitative consistency with evaluations of life quality.

• Non-motor impairments are frequently sources of disability and patient priorities
(e.g., depression, anxiety). The majority of health data are now kept on paper and are
controlled by medical centers, many of which have poor communication capabilities.
Some health files have already transitioned from paper charts to electronic health
records, but these EHRs are primarily digital copies of their paper-based forebears
and do not include all of the technical alternatives that are presently available to
help clinical decision-making. Strong and comprehensive data protection laws and
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regulations are also expected to lower the danger of data leakage to a minimum and
raise the user acceptability of EHRs.

5.5. Challenges in Precision Medicine and Identification of Personalized Treatment

While the impact of ML is tied to the advised transfer learning model, the choice
of research is based on the doctor’s capacity to employ the established technique during
health examinations. Additionally, the success of the suggested technique would indicate
an improvement in healthcare outcomes, as well as reduced costs for the national health
system. Developing and disseminating expert systems for these tasks is undeniably a
technological and scientific problem. Due to the increasing growth in patients every year
and the complexity connected with this brain condition, PD demands specific consideration
when it comes to constructing automated diagnostic systems. The programed DL classifier
can help in the official diagnosis of a patient’s PD severity, allowing practitioners or
neurologists to provide further treatment options and consultation.

5.6. Data Isolation Challenges

It is critical to use ML and DL approaches to separate Parkinson’s symptoms from
other things. The dataset employed in these procedures, in particular, must be well
evaluated. Nagasubramanian et al. [71] looked at a variety of Parkinson’s datasets. They
were mostly concerned with picture datasets. For the development of their research, they
employed DNN and believer networks. The majority of studies present in this survey
employed speech characteristics or picture databases to identify PD indications. Motor
dysfunction research continues to present the scientific community with a variety of clinical
concerns [75].

5.7. Data Management Challenges

• The BEAT-PD data challenge was created to test innovative strategies for predicting
PD development. Its goal was to see if illness intensity and development could be
determined using passive sensor data collected in everyday life. Participants had
access to raw sensor time-series data that might be utilized to forecast individual
medication status and symptom intensity. Cleaning and curating data is difficult, but
discovering patterns from it is much more difficult. Quoc V [120] outlined the problems
of big data, as well as the importance of big data technologies in the biomedical field.
It is challenging to create a stereotype MRI database because it is a remnant of a
training method that might end in a statistical product. The issue can be alleviated
by introducing a large dataset into the system, assessing the relationship between
retrieved characteristics, and fine-tuning the system’s variables. It is still a work in
progress to predict NLD in actual time from visual observation.

• Stream processing, on the other hand, is a parallel computer approach for processing
substantial amounts of data. When we use ML techniques to gain value from large data,
maintaining data quality is a major difficulty. According to researchers, unbalanced
data is a prevalent difficulty in categorization. The most difficult task is the cleaning
and curating of the data. Each file must be separately examined, and any duplicate
or administrative data not necessary for the research should be eliminated. When we
combine all of these broad properties, we obtain a massive sparse matrix. The goal of
the research should be to uncover and display the connections between different traits.

• Because it is time series data, the complication is raised even further. Compiling
and layering data are difficult tasks. The information is skewed, unbalanced, and
contradictory. There are many missing values when data is pooled. Only 30% of the
data is accessible. Databases from healthcare research and behavioral investigations of
PD are now quickly developing, with little awareness or integration of the qualities
obtained. Recognizing the significance of each characteristic collected through PD
identification and therapy is critical, and the research serves to emphasize the data’s
reliability difficulties and ways to address them. We can expand their study in the
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future by allowing them to add more qualities and identify their involvement in
PD [143].

5.8. Data Sparseness Challenges

• The major goal of [8] was to enhance the reliability of the current state-of-the-art in-
patient diagnosis and avoid patient misinterpretation, and the experimental findings
showed that the goal was met. However, because the diagnosis may be conducted
in a variety of ways, there is still a lot of room for advancement in technology. The
findings of this study advised against using less accurate approaches for diagnosing
Parkinson’s and the usefulness of telemonitoring apps.

• The PPMI is a pioneering prospective in clinical research that examines PD cohorts
using a variety of data sources, including sophisticated imaging, biologic samples, and
clinical and behavioral evaluations, to determine the circumstances of PD development
in individuals. The data is scarce, inconsistent, and continuous, with a lot of temporal
facts encoded in a clinical situation that supports the lengthy progress route of PD,
making learning even more challenging.

• Che et al.[111] dealt with data anomalies and imputed the bulk of incomplete data.
For the bulk of the missing data, they used the latest occurrence carry forward method.
They substituted the patient’s first observed record if the patient’s initial record was
missing. Table 7 presents the open challenges for Parkinson’s disease diagnosis.
Figure 7 depicts the open challenges for Parkinson’s disease diagnosis.

Table 7. Open Challenges for Parkinson’s Disease Diagnosis.

References

Challenges in
Computa-
tional ML

Models

Challenges in
Computa-
tional DL
Models

Challenges in
Integrating

PD Diagnosis
Data

Challenges in
Precision

Medicine and
Identification of

Personalized
Treatment

Data
Isolation

Challenges

Data
Management
Challenges

Data
Sparseness
Challenges

[50] × ✔ ✔ ✔ × ✔ ✔

[145] ✔ × ✔ ✔ ✔ ✔ ✔

[95] ✔ × ✔ ✔ ✔ ✔ ✔

[146] × ✔ × × × ✔ ✔

[8] × ✔ ✔ ✔ ✔ ✔ ✔

[64] × ✔ ✔ ✔ × ✔ ×

[4] × ✔ ✔ ✔ ✔ ✔ ✔

[147] × × ✔ ✔ × ✔ ×

[148] ✔ ✔ × ✔ × ✔ ✔

[7] ✔ × × ✔ × × ×
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Figure 7. Open challenges for Parkinson’s disease diagnosis.

6. Parkinson’s Disease Diagnosis using Sensors, Smartphone Devices, and Web
Applications

According to Mazilu et al. [36], novel sensor modalities might be used to continually
monitor FoG episodes in PD, which could be anticipated using biomedical signals, such as
electrocardiography and skin-conductance measurements. Before, during, and immediately
after FoG events, they examined the alterations of several specific features retrieved from
both ECG and SC. These characteristics were then put up against conventional walking
habits. Additionally, the scientists applied an anomaly-based method for anticipating
gait-freeze episodes using SC features and multivariate Gaussians. With an average of
4.2 s before the event, they were able to foresee 71.3% of FoG incidents. An overview of
various well-known wearable Internet of Things applications for PD was presented by
Pasluosta et al. [149]. They discussed wearable technology, its fundamental concepts, and
its applications, as well as the most recent advancements in ML and AI, particularly as
they relate to diagnosis and treatment. Mobile devices make use of personal computer
characteristics that can be expanded to accommodate varying user profiles. Additionally,
mobile-focused applications can leverage a variety of sensors included in tablets and
smartphones, which can track motions like hand tremors. To enable comparisons with
the stepping-in-place condition, the VR environment must be paired with a cognitive,
visual two-stimulus-oddball reaction task that should be repeated while seated. The setting
was demonstrated to be a highly effective and dependable strategy for inducing FoG-like
symptoms in PD individuals with FoG in a controlled manner, offering a platform for
more research on the pathology of FOG. Table 8 presents the smart phone applications in
Parkinson’s disease management.



Electronics 2023, 12, 783 37 of 50

Table 8. Smart Phone Applications in Parkinson’s Disease Management.

S. No.
Name of the
Smart Phone
Application

Mobile
Operating System

Free/Paid
App Description and

Features
Users Utility

1 Neurology Now Android Free
Official publication of

the American Academy
of Neurology

Health care
specialists ideal for PD.

2 Speech Too iOS Free Voice volume training Patients ideal for PD.

3 Parkinson’s
Disease Android Free PD details Health care

specialists Details about PD

4 Parkinson’s
Toolkit iOS/Android Free

Clinical practice
recommendations for

treating PD

Health care
specialists Details about PD

5 PD Headline
News iOS Free Literature on PD

Health care
specialists +

patients
Details about PD

6 MDS UPDRS iOS 5.99 MSD-UPDRS scale Health care
specialists Evaluation

7 Fox Insight App Android Free Movement, tremor, and
sleep tracking Patients Evaluation t+

diagnosis

8 Prognosis Windows Phone Free
tests to evaluate one’s
speech, upper limbs,

rest, and gait

Health care
specialists Evaluation

9 ListenMee App Android 121 Using cues to enhance
gait Patients diagnosis

10 Parkinson
Exercises

iOS/Android/Windows
Phone 4.22 Videos of exercises for

PD patients Patients diagnosis

7. Future Research Directions

• Even if rather high accuracies have previously been achieved, the reported results
indicate that there is still room for development. For identifying the presence of PD
movement disorders in time series data, scientists have suggested using an uncommon
combination of algorithms, including the log algorithm. The main goal is to see if these
methods can match, if not exceed, the mentioned papers in terms of accuracy. MOSIS,
a relevant framework for assessing various techniques, is currently being developed.
Future research should focus on this topic, particularly using longitudinal approaches.
Dopamine bioavailability, on the other hand, can influence speech results and other
communicating abilities. It should also incorporate new processes or at-risk carrier
states to see if central mediators can anticipate symptomology more closely linked to
PD risks, such as olfaction and sleep disruption, which did not develop much in the
established PD cohort.

• There is a need to develop better robust models which will improve PD identification
while maintaining the accuracy of the results and developing models’ impartial be-
havior. Feature selection approaches and DL models can be combined to achieve this.
A bigger database is needed, and the algorithm will be tweaked and refined for other
classification tasks important to PD monitoring (e.g., dyskinesia, tremor). Finally, data
collected in the home and community can be used to test these strategies.

7.1. Explainable AI

Assuring that any detection and predicting model concentrates on improving system
performance as well as AI ease of understanding, including natural language descriptions
to help physicians to comprehend the projections, is a critical potential roadblock [150].
Researchers have suggested a ML-based solution approach to web design for developing a
comfortable and practical PD diagnosis service through smartphones. In low-dimensional
space, the suggested approach can remap temporal frequency characteristics. A testing
mechanism is also being created for testing; telediagnosis of PD using a smartphone is
expected to be possible in the future. Che et al. [111] also created a new deep model for
learning patient similarities in their study. They built a customized prediction framework
based on the learned similarity that is flexible enough to permit different classifiers in
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the prediction phase. This research has the potential to be expanded in both directions:
similarity learning and tailored prediction. A more comprehensive provision for multitarget
prediction should be developed.

7.2. Generative AI

• It is recommended that, in the future, more data augmentation techniques based
on various AI paradigms and architectural frameworks be investigated to create a
smart model for voice recognition with sparse data. Ref. [151] provided a unique
technique for selecting the most exclusionary feature for differential diagnosis of PD
and SWEDD, utilizing machine learning methods such as KSOM, LSSVM, and WAT
as statistical measurements in the study. Clinically significant ROIs were discovered to
be identified by employing MRIs and KSOM-based feature extraction. This technology
might be utilized not only to diagnose PD early on, but also for exploratory study into
brain regions. This paradigm might hasten the emergence of evidence-based prognosis
in this environment. The limited size of the group under research is, of course, the
study’s fundamental part, making the findings less generalizable. Regrettably, there
is currently a void in the scientific community working on this issue in terms of the
accessibility of a large benchmark dataset.

• Impedovo et al. [99] findings suggested that a diagnostic assessment based on such
technology might appropriately exclude illness in healthy individuals’ communities,
making it helpful for ruling in disease when a satisfactory reaction is obtained. Even
though usage of DL frameworks is on the rise, there are no articles relating to DL in
the large and diverse scientific databases. The exploration of this specific field, PD,
in conjunction with a well-known, optimized, and robust DL architecture, like Caffe,
might be fruitful. In the future, research on new databases only focusing on the DL
and DP might be carried out for the recipient to comprehend this difference and, as a
result, other research possibilities in the field [134].

7.3. Internet of Everything

The Internet of Things (IoT) has provided a clever method for detecting PD and
providing appropriate medicine by evaluating speech samples in this paper. Instead of
depending on the IoT’s limited storage and processing capabilities, fog computing is
being used in intelligent systems to effectively monitor and identify Parkinson’s illness.
The secure storage of voice records necessitates a huge storage capacity, which the cloud
server may supply. Mobility and location awareness are also provided by fog computing.
A shortage of dopamine affects bodily equilibrium, motor characteristics, and speech.
Medication and therapy are unable to entirely cure it, and it has life-threatening negative
impacts. As a result, limiting the disorder’s growth early on can be a viable option. The
research should be expanded to include the creation of a reliable decision-making system
for diagnosis and treatment suggestions. Researchers have also planned to employ expert
knowledge to create a rule framework for the better care of Parkinson patients [146].

7.4. Big Data and Augmented Analytics

The feature patterns in the datasets from Michigan and Tel-Aviv noticeably differed. It
is unknown whether biological, clinical, physiological, or technical variables contributed
to the observed variance. All big data analytic studies that incorporate multisource het-
erogeneous data have encountered this issue. Features that were completely incompatible
between the two data archives were not included in the consolidated database and further
analysis. Due to a shortage of data in either data archive, neither the frequency nor the
severity of falls were investigated. However, both the incidence and severity of falls need
to be investigated further [152]. When just a small quantity of data is available for training,
their suggested model, based on data augmentation approaches, demonstrated a consider-
able improvement in accuracy. It is worth noting that they generated a tiny dataset with
a 90% holdout for training data, which has not been utilized before by other scholars. In
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future years, the main goal must be to construct an intelligent model for voice recognition
that includes limited datasets to investigate additional data augmentation approaches
based on other AI methodologies and architectural frameworks [54].

7.5. Cloud, Edge, and Fog Computing

Fog computing is a novel technique to increase the performance of older patients’
health conditions while reducing healthcare funds and expenses. Researcher have aimed
to discover PD at an early stage so that appropriate drugs might be administered to
mitigate the devastating consequences. Although there has been much research on the early
diagnosis of PD using speech samples, or dysphonia, the method is effective for patients
using a desktop fog workstation. The suggested intelligent systems effectively monitor and
recognize Parkinson’s disease using fog computing. A cloud server may be able to provide
the large storage capacity needed for secure voice record retention. Devarajan et al. [146],
incorporated cloud and fog computing for local and central storage, data analysis, market
research, privacy, alert methods, and ideal patient-professional communication.

7.6. Robots and Machine Co-Creativity

By using prior knowledge, Ref.[153] was the first comprehensive assessment to assess
the possibility of using AI-based technologies and robotic systems to manage the advanced
stages of Parkinson’s. When considering the work described in the suggested technique, it
is noticeable that everything relevant to speech and activity analysis was discussed. The
future breadth of this implementation is determined by the types of items used to classify
patients with PD. We can use the person’s eating habits as a primary criterion, and whether
or not the patient has had any accidents in the past is also essential in determining whether
or not the patient will develop PD in the future. However, for the time being, the suggested
technique recognized PD in fold 3 of 5 folds.

7.7. Quantum Computing

The outcome of the neural network employing quantum computing will provide a
process for determining the requirements for implementing cutting-edge technologies in
medical care. The fold value will be managed by the network created using quantum
computing [118]. Researchers have looked at a person’s eating habits as a key factor, and
whether or not the patient has a history of accidents is also crucial in determining whether
the patient would get PD in the future.

7.8. Transfer Learning

Transfer learning, which also provided a latent space that is more strongly related to
clinical indices, produced excellent classification performance. According to the research
of [185], a heatmap-integrated image classifier combined with transfer learning may provide
a way to classify small sample datasets. The effectiveness of the classifier and research
methodology will be further improved. Future suggestions for novel models that make use
of transfer learning have a lot of potential. It is also possible to enhance datasets with a
variety of qualities that may be important in identifying the condition. In order to analyze
the handwriting movement and the number of frames required to complete one set of
hand drawings, the long-term objective of this research is to collect a dynamic dataset
utilizing samples from an electronic pen-pad. Patients’ writing becomes less flowing as
their PD deteriorates. Furthermore, this will increase the accuracy and effectiveness of the
PD prediction [186]. Future research will assess the [187] model on additional PD databases
(PaHaW, HandPD) in order to further validate the findings. We should also look into how
PD can be identified through speech and handwriting.

7.9. Federated Learning

The main focus of [188] was the potential of federated transfer learning in healthcare
using activity recognition and auxiliary PD diagnosis. FedHealth can be used in more
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real-world scenarios for healthcare applications, including elder care, fall identification,
cognitive disease diagnosis, etc. The privacy-sensitive issue of patient data must also be
addressed by federated learning. As a result, FT-IoMT Health is implemented in hospitals
to aid in the diagnosis and treatment of PD [189]. The patient downloads the user model to
the biosensor after training it on the user side, then connects to the network to update it
before the subsequent access. In order to determine the status of an illness more readily,
this enables people to independently detect and receive real-time feedback. The alternative
approach in [190] is the challenge of recognizing PD, which allows the findings obtained to
use federated learning methodologies, which can be applied to a wide range of real-world
circumstances. This study demonstrated how accurate the network designs utilized for
federated learning are. These results are not a goal in and of themselves, because while
federated learning is significantly more secure than traditional machine learning in terms
of protecting privacy, it is not always guaranteed to be so secure. Therefore, a blockchain
must be added to address Federated Learning’s security concerns.

7.10. Augmented Reality (AR) and Virtual Reality (VR)

7.10.1. Augmented Reality

According to findings, People with Parkinson’s and FOG have trouble splitting their
focus between physiological and cognitive activities, as well as separating task elements.
While choosing a VR model, clinicians must thoroughly weigh the benefits and drawbacks
to attain the best training effectiveness. When compared to typical queuing tactics, the
HMD that gave visually enhanced signals during locomotion did not lessen the intensity
of FOG. Geerse et al. [154] examined the ongoing voice task using data obtained using
an internet data collecting system that can be accessible anywhere in the world and only
needs a web device with an inbuilt recording device. Furthermore, because the moving
language task does not require special directions and is much more akin to the typical
discussion, the model might be enhanced to predict PD from a legitimate discussion, which
could be a meaningful change in PD diagnosis. In the future, user-approved plug-ins for
applications like Alexa, Google Home, and Zoom, which transfer audio between people,
could be created.

7.10.2. Virtual Reality

• Virtual reality has been developed as a feasible method for investigating and treating
people with PD who have complex deficiencies. In a regulated laboratory or clinical
setting, the goal of using VR in stroke recovery is to evoke and/or prepare neurobio-
logical responses that are analogous to the few that happen in real life. The extent to
which a user is completely absorbed in a digital environment is known as immersion,
which is a major feature of VR.

• Scientists are encouraged to build interactive virtual applications with combined
evaluation and training programs that are tailored to the needs of persons with PD and
healthcare professionals to maximize the potential of VR rehabilitation and improve
rehabilitation results. By immersing persons with PD in an enhanced and highly
tailored environment that resembles real-world events, while avoiding risk, VR offers
the potential to improve knowledge and treatment of complicated PD impairments.
However, its full potential for PD rehabilitation has yet to be realized. When provided
in a fully supervised format, both are preferable to no treatment, although there is
no indication that VR treatment is better than non-VR therapy in terms of gait and
balanced outcomes. Virtual reality enables the secure detection of a person’s particular
FOG triggers and equilibrium deficits, resulting in specific training targets [147].
Figure 8 illustrates the future research directions for Parkinson’s disease diagnosis.
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8. Conclusions

As we previously described, the number of Parkinson’s patients is increasing at an
alarming rate [2]. Therefore, there is a need for increased focus on the diagnosis of this dis-
ease. The diagnosis of PD is non-directed, which means that the disease cannot be detected
with the currently used test methods, such as a blood test or an ECG. Before performing a
comprehensive neurological examination, clinicians typically review the patient’s medical
records. They determine which subjects exhibit at least two cardinal symptoms before
predicting whether they have PD. There is a considerable risk of misinterpretation because
there is no reliable test for this, so, in this scenario, an ML model could assist the doctor in
reaching an accurate diagnosis. Based on these relevant traits, prediction models are created
using ML methods, such as boosted LR, classification trees, Bayes Net, and multilayer
perceptron. In the current scenario, the prediction quality of models has been improved.
Algorithms, such as Boosted LR, have been shown to generate superior outcomes. These
findings motivate us to experiment with additional ensemble learning strategies. Finally,
these models can provide nuclear/medical professionals with support in making better and
more accurate decisions and clinical diagnoses. The improvement of high-speed computer
tools, as well as the creation of advanced DL-based algorithms and models, has created
a different opportunity to predict and manage a variety of neurological disorders, such
as dementia, PD, and schizophrenia. While there is no treatment for PD, there are some
treatments to help a sufferer to live a good and healthy life. Depending on the level and
intensity of this disease, many therapies are available. All the strategies utilized in this
study might be used for similar disease categorization challenges, requiring databases like
the one used in this study. However, considerable work must be done in clustering, noise
reduction, and fuzzy rule-based disease diagnostic techniques to fully realize their potential
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and value. In the future, more focus should be placed on databases for illness categorization
and prognosis using incremental ML techniques. Future studies must look at how the
suggested technique may be customized to interact with multiple kinds of medical records.
Private sector investment is uncertain to be lucrative in the long term, since this disease
evaluation requires a narrow technical usage. Finally, research demands data sharing since
it requires ongoing repetition and the verification of new findings. By exchanging datasets,
we may improve algorithms and provide more broad and rigorous clinometric verifica-
tion data, and hence, we will have a better understanding of Parkinson’s disease. The
development of a practical PD identification app with high precision and specificity is now
underway. The problem with identifying Parkinson’s is that there is no one quasi-clinical
diagnostic test that may identify the disease early on. In certain PD instances, however, it is
hard for specialists to conduct a physical evaluation of a patient’s language, so they are
unable to recognize or misinterpret the symptoms. Moreover, innovative technology that
supports the doctor in healing and stopping the illness from propagating to other brain
cells is critical. Considering this, the study used a simple-to-use, accurate, and effective
deep network system based on domain adaptation for disease diagnosis. It investigated
how transfer learning methods with fine-tuning procedures may enhance the detection of
PD using a voice sample from a large database. Moreover, by putting the recommended
transferable training algorithm into a smart electrical appliance for personal use, future
research will be able to consistently and rapidly detect PD without disturbing the client.

Moreover, activities should be available in a range of intensities and durations to
assess patient reactions in a variety of fatigue scenarios. Future research should examine
the effectiveness of the characteristics used to describe writing motions. On the other
hand, these designs should be leveraged to create distinctive and more efficient capabilities.
When using restricted datasets to enhance PD identification, the necessity of expanding
available data for categorization cannot be stressed. This study was able to successfully
handle the problem of class imbalance by using the interpolated approach to augment the
original data sample.
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