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Abstract: Problem statement: Association rule mining with fuzzy logic was explored by research for 

effective datamining and classification. Approach: It was used to find all the rules existing in the 

transactional database that satisfy some minimum support and minimum confidence constraints. Results: 

In this study, we propose new rule mining technique using fuzzy logic for mining medical data in order 

to understand and better serve the needs of Multidimensional Breast cancer Data applications. 

Conclusion: The main objective of multidimensional Medical data mining is to provide the end user with 

more useful and interesting patterns. Therefore, the main contribution of this study is the proposed and 

implementation of fuzzy temporal association rule mining algorithm to classify and detect breast cancer 

from the dataset. 
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INTRODUCTION 
 

 A temporal Association rule is a well established 

data mining technique used to discover co-occurrences 

of items mainly in temporal sequence data where the 

data items in the database are usually recorded as binary 

data (present or not present). Many techniques are 

available in the literature aims to find association rules 

(with strong support and high confidence) in large 

datasets. For example, Classical Association Rule 

Mining (ARM) (Mahafzah  et al., 2009) deals with the 

relationships among the data items present in 

Multidimensional databases.  

 Similarly, there are a few works that focus on 

temporal data mining. Temporal rule mining is 

concerned with data mining of large sequential data sets. 

Sequential data (Vijayalakshmi and Mohan, 2010), 

mining deals with the mining of data that is ordered with 

respect to some index. The scope of temporal data 

mining (Alcalá-Fdez et al., 2009) extends beyond the 

standard forecast or control applications of time series 

analysis. Often temporal data mining methods must be 

capable of analyzing data sets that are prohibitively large 

for conventional time series modeling techniques to 

handle efficiently. 

 

Problem statement: Due to tremendous advances and 

achievement in biomedical, bioinformatics, biological 

and clinical data is being mined at tremendous speed. 

Thus the biological sequence data (Hu et al., 2009) 

stored at data warehouse in the format of ultidimensional 

temporal sequential data can be used for finding 

temporal pattern (Intan and Yenty, 2008). Moreover, due 

to the highly distributed uncontrolled mining and use of 

a wide variety of bio medical data, data collection, data 

analysis and semantic integration of such heterogeneous 

and widely distributed temporal sequence data has 

become an important task for systematic and coordinated 

analysis of medical dataset (Khan et al., 2010). Bio 

medical data analysis and integration becomes very 

difficult due to data complexity, distribution, volume of 

data. Most commercial data mining products provide 

large number of modules and tools for performing 

various data mining tasks but few provide intelligent 

assistance for addressing many important decisions that 

must be considered during the mining process. Multi 

objective association rule mining with minimum support 

and minimum confidence is suitable for datamining 

analysis (Hamid Reza Qodmanan, et al., 2011). 

 Traditional data analysis techniques cannot support 

huge and complex medical data set. New data analysis 

technique such as data mining can be helpful in analysis 

large and complex medical sequence data set. 

Researchers may need data and knowledge which was 

discovered by other researchers for their research that is 

distributes multidimensional sequential data format. New 
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systems are needed to manage, Integrate and analyze 

large &complex medical data from data warehouses. Not 

only the evaluation estimation and analysis of data is 

important but providing the intelligent assistance in 

equally important. Mostly analysis products do not 

provide the intelligent assistant in decision making 

process (Papageorgiou, 2011). Fuzzy association rule will 

be suitable for multidimensional data analysis (Hong et 

al., 2009; Weng and Chen, 2010; Wu et al., 2010). 

 In this study, we propose a fuzzy temporal 

(Ch. S. Reddy and KVSVN Raju, 2009) association rule 

mining algorithm for effective temporal datamining. 

These rules are further used for the classification of 

breast cancer data and it has been found that accurate 

prediction of breast cancer is possible with the proposed 

fuzzy temporal association rule mining algorithm.  

 A Bayesian network consists of a structural model 

and a set of conditional probabilities. The structural 

model is a directed graph in which nodes represent 

attributes and arcs represent attribute dependencies. 

Attribute dependencies are quantified by conditional 

probabilities for each node of given its parents. Bayesian 

networks (Khan et al., 2010) are often used for 

classification problems, in which a learner attempts to 

construct a classifier from a given set of training 

examples with class labels. Assume that A1;A2; . . .An 

are n attributes (corresponding to attribute nodes in a 

Bayesian network). An example E is represented by a 

vector <a1; a2; . . . ; an>, where ai is the value of Ai. Let 

C represent the class variable (corresponding to the class 

node in a Bayesian network). We use c to represent the 

value that C takes and c to denote the class of E. The 

classifier represented by a general Bayesian network is 

defined in (1): 

 

1 2 nc C
c(E) arg max P(c)P(a ,a ,...,a c)

∈
=  

 

 Assume that all attributes are independent given the 

class (conditional independence assumption), the 

resulting classifier is called naive Bayes (Khan et al., 

2010): 

 
n

i
c C

i l

c(E) arg max P(c) P(a c)
∈

=

= ∏  

 

 In naive Bayes, each attribute node has the class 

node as its parent, but does not have any parent from 

attribute nodes. Because the values of p and P can be 

easily estimated from training examples, naive Bayes is 

easy to construct. Naive Bayes is the simplest form of 

Bayesian networks (Khan et al., 2010). It is obvious that  

 

 
 
Fig. 1: Architecture of intelligent data modeling. 

 

the conditional independence assumption in naive Bayes 

is rarely true in reality, which would harm its 

performance in the applications with complex attribute 

dependencies. Based on the theory of Bayesian 

networks, Naive Bayes is a simple yet consistently 

performing probabilistic model. Data classification with 

naive Bayes (Khan et al., 2010) is the task of predicting 

the class of an instance from a set of attributes describing 

that instance and assumes that all the attributes are 

conditionally independent given the class. 

 Predicting the class of an instance are done through 

utility independent privacy preserving data mining by 
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vertically partitioned data (Poovammal and 

Ponnavaikko, 2009).  It has been shown that naïve 

Bayesian classifier is extremely effective in practice and 

difficult to improve upon. 

 

System architecture: The complete implementation 

system architecture is given in Fig. 1 which include data 

collection modules, data analysis modules, data 

preprocess modules, data classification module and 

Association rule mining Knowledge discovered data 

output module with all the internal component of 

proposed work in details. The details of all the 

component of the proposed model is given in details The 

proposed algorithm ANOVA T classification and fuzzy 

D discretization is also given in details. 

 

MATERIAL AND METHODS 

 

Data analysis: Considering that an attribute X has a 

large number of values, the probability of the value 

P(X=xi |C=c) from Eq. 2 can be infinitely small. Hence 

the probability density estimation is used assuming that 

X within the class c are drawn from a normal (Gaussian) 

distribution: 

  
2

i c

2

cc

1 (x )
e

22

− μ
σπσ

 

 

Where: 

σc = The standard deviation  

µc = The mean of the attribute values from the training 

set 

 

 The major problem with this approach is that if the 

attribute data does not follow a normal distribution, as 

often is the case with real-world data, the estimation 

could be unreliable. Other methods suggested include the 

kernel density estimation approach. But since this 

approach causes very high computational memory and 

time it does not suit the simplicity of naive Bayes 

classification). When there are no values for a class label 

as well as an attribute value, then the conditional 

probability P(x|c) will be also zero if frequency counts 

are considered. To circumvent this problem, a typical 

approach is to use the Laplace-m estimate. Accordingly: 
 

cn K
P(C c)

N n K

+
= =

+ ×  
 
Where: 

nc = Number of instances satisfying C=c 

N = Number of training instances 

n = Number of classes and k=1(Predefined): 

ci i
i

c

n m P(X x )
P(X x C c)

n m

+ × =
= = =

+
 

 

Where: 

nci = Number of instances satisfying both X=xi 

and C=c m=2 (a constant)  

P(X=xi) = Estimated similarly as P(C=c) given above 
 
Data discretization for preprocessing: Discretization is 

the process of transforming data containing a quantitative 

attribute so that the attribute in question is replaced by a 

qualitative attribute (Pedreschi et al., 2008). Data 

attributes are either numeric or categorical. While 

categorical attributes are discrete, numerical attributes are 

either discrete or continuous. Research study shows that 

naive Bayes classification works best for discretized 

attributes and discretization effectively approximates a 

continuous variable. 

 The Minimum Description Length (MDL) 

discretization is Entropy based heuristic given by Fayyad 

and Irani . The technique evaluates a candidate cut point 

between each successive pair of sorted values. For each 

candidate cut point, the data are discretized into two 

intervals and the class information entropy is calculated. 

The candidate cut point, which provides the minimum 

entropy is chosen as the cut point. The technique is 

applied recursively to the two subintervals until the 

criteria of the Minimum candidate cut point, the data are 

discretized into two intervals and the class information 

entropy is Description Length . For a set of instances S, a 

feature A and a partition boundary T, the class 

information entropy of the partition induced by T is 

given by: 
 

1 2 2S Ent(S1) S Ent(S )
E(A,T,S)

s s
= +  

 
And: 

c

i, i,

i 1

Ent(S) P(C S)log 2(C S)
=

= −∑  

 

 For the given feature the boundary Tmin that 

minimizes the class information entropy over the 

possible partitions is selected as the binary discretization 

boundary. The method is then applied recursively to both 

partitions induced by Tmin until the stopping criteria 

known as the Minimum Description Length (MDL) is 

met. The MDL principle ascertains that for accepting a 

partition T, the cost of encoding the partition and classes 

of the instances in the intervals induced by T should be 

less than the cost of encoding the instances before the 

splitting. The partition is accepted only when: 
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2log (N 1) (A,T,S)
Gain(A,T,S)

N N

− Δ
> +  

 

Where: 
 

c

2 1 1 2 2(A,T,S) log (3 2) cEnt(S) c Ent(S ) c Ent(S )Δ = − − − −  
 

And: 

 

Gain(A,T,S) Ent(S) E(A,T,S)= −  
 

 N = number of instances, c,c1,c2 are number of 

distinct classes present in S, S1 and S2 respectively. 

MDL discretized datasets show good classification 

accuracy performance with naive Bayes. 

 

Classification on ANOVA-T data selection: The 

proposed ANOVA-T statistical algorithm is used for 

Classification. Feature selection is often an essential data 

preprocessing step prior to applying a classification 

algorithm such as variance ANOVA-T. 

 

ij i ijY M a e= + +   

 

 Here the M= Mean of Variables, a- standard 

deviation, e- Residual respectively. 

 

Standard deviation: 
 
a (b a)(b c)

d

= − −
 

 
where d = control group. 
 The term feature: Selection is taken to refer to 
algorithms that output a subset of the input feature set. 
One factor that plagues classification algorithms is the 
quality of the data. If information is irrelevant or 
redundant or the data is noisy and unreliable then 
knowledge discovery during training is more difficult 
.Regardless of whether a learner attempts to select 
features itself or ignores the issue, feature selection prior 
to learning can be beneficial. Reducing the 
dimensionality of the data reduces the size of the data 
information set and more effectively. In some cases 
accuracy on classification can be improved. As a 
learning scheme naive Bayes is simple, very robust with 
noisy data and easily implementable.  
 After the proposed statistical analysis with 

ANOVA-T classification, attribute value represent Fig. 2 

has some irrelevant data to be removed.  

 

Fuzzy-d discretization: Fuzzy-D discretization is 

another proposed method. By using the Fuzzy-D 

discretization methods, we reduce the classification error 

as shown in Fig. 2, the estimation of p (ai < Xi · bij | C = 

c) is obtained. Because space limits, we present here 

only the version that according to our experiments, best 

to reduce the classification error. Fuzzy-D initially forms 

k equal-width intervals (ai; bi) (1 · i · k) using EWD 

(equal width). Then FD estimates p (ai < Xi · bi jC = c) 

from all training instances rather than from instances that 

have value of Xi in (ai; bi). The influence of a training 

instance with value v of Xi on (ai; bi) is assumed to be 

normal.  
 
Pseudo code for fuzzy-d discretization:  
 
• Training instance value v of x; on (a1i,bi) 

• Normal distributed mean value equal to V∝ to P(u, 

σ, i): 
 

1
22

bi x v
( )

ai

1
P(u, ,i) e dx

2

− −
σσ =

σ π∫  

 
Here,  

σ -> parameter 
 

• Equal width discrete divides number of line Vmin, 

Vmax  into k -> intervals , w -> width 
 

max minW (V V ) K= − =   

• Cut points are: 
 

min min minV W,V 2W..........V (K 1)W+ + + −  

 

Here, 

k = 10 ie user defined parameter 

• Equal width interval: 

 

i i c j,(a ,b )( j 1,........,n )P(V ,i)= σ  
 

Here, 

nc-> training instances with known value for X; 

class c,  

• Fuzzy-D Probability estimation  

i i iP(a x b C c)< ≤ = to be obtained  by evaluation of: 

cni i i i

j 1

(a x b ^ C c) P(V , ,i) / n
P

P(C c) P(C c)=

< ≤ = σ
≈

= =∑
 

 
 Distributed with the mean value equal to v and is 

proportional to: 

2
i

i

1 x v
( )b

2

a

1
P( , ,i) e d

2

−
−

συ σ = χ
σ π∫  
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σ is a parameter to the algorithm and is used to control 

the ‘fuzziness’ of the interval bounds. Hence the Equal  

 Width Discretization (EWD) (Yang and Webb, 2002) 

divides the number line between Vmin and Vmax into k 

intervals of equal width. Thus the intervals have width: 

 

w (V max V min) k= − =  
 

and the cut points are at: 

 

V min w,V min 2w....v min (k 1)w+ + + −  
 
Here the k is a user predefined parameter and is set as 10 

in our experiments. 

 Suppose there are nc training instances with known 

value for Xi and with class c, each with: 

 
jP( , ,i)υ σ   

Influence on: 

  

( i, i ca b ( j 1,....,n )⎤ =⎦  

 Fuzzy-T association rule mining: Association Rule 

Mining algorithm preserving privacy in data analysis. 

Our algorithm uses two phases in a partition-approach to 

generate fuzzy association rules . The dataset is logically 

divided into p disjoint horizontal partitions P1, P2, …, 

Pp. Each partition is as large as can fit in available main 

memory. For ease of exposition, we assume that the 

partitions are equal-sized, though each partition could be 

of any arbitrary size as well. 
 
 We use the following notations: 
 
• E = fuzzy dataset generated after pre-processing 

• Set of partitions P = {P1, P2, …, Pp} 

• td[it] = tid list of item set it 

• µ = fuzzy membership of any item set 

 

RESULTS 

 

 In Table 1, the efficiency of ANOVA T 

classification algorithm is compared with existing 

ANOVA classification algorithm. In Table 2, the 

proposed fuzzy-D discretization algorithm is analyzed by 

comparing with existing algorithm in calculating 

classification error rate. In Table 3, the proposed Fuzzy-

T ARM algorithm is analyzed by comparing with 

existing algorithm in analyzing the performance. 

 Figure 2 shows the performance analysis of the 

proposed method by comparing with the existing. The 

performance of the proposed method is 5 percentages 

higher than the existing method. 

 Figure 3 shows the performance analysis of the 

proposed FTARM method by comparing with the 

existing FARM. The performance of the proposed 

method is faster than the existing method. 

 

• Count[it] = cumulative µ of item set it over all 

partitions in which it has been processed 

• d = number of partitions (for any particular item set 

it) that have been processed since the partition in 

which it was added. 

 

 The byte-vector-like data structure will represent the 

phase code. Each cell of the byte-vector stores µ of the 

item set corresponding to the cell index of the tid to 

which the µ pertains. Thus, the ith cell of the byte-vector 

contains the µ for the ith tid. If a particular transaction 

does not contain the item set under consideration, the 

cell corresponding to that transaction is assigned a value 

of 0. When the byte-vector is initialized, each cell by 

default has 0.  

Table 1: ANOVA-T classification data attributes 

 Dataset 
 --------------------------------------------------     
  Number of ANOVA classification ANOVA T classification 
Attribute names Data types data attributes efficiency (%) efficiency (%) 

Non-Relapse contig45645_RC 0.566 12 43.00 93.00 
Continuous contig44916_rc 0.093 14 90.00 93.80 
Continuous D25272 0.136 14 70.08 78.00 
Continuous J00129 0.039 10 78.00 85.70 
Continuous Contig29982_RC 0.066 12 72.00 77.00 
Continuous Contig26811 0.037 10 80.00 78.00 
Continuous  D25274 0.146 10 78.00 79.00 
Continuous Contig36292 0.389 12 78.50 84.00 
Continuous Contig42854 0.270 11 77.00 84.00 
Continuous Contig3396_RC 0.363 11 94.00 91.70 
Continuous Contig1938_RC 0.008 8 90.05 94.05 
Continuous Contig34851 0.169 8 40.00 89.00 
Continuous AB033050 0.029 10 67.00 72.00 
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Table 2: Fuzzy-D discretization-Reduced classification error report 

 Dataset    

 ----------------------------------------------  

  Number of Before discretization After fuzzy-D discretization 

Attribute names Data types data attributes (error rate in % ) (error rate in %) 

Non-Relapse contig45645_RC 0.566 12 93.00 81.00 

Continuous contig26811 0.037 10 78.00 73.00 

Continuous contig3396_RC 0.363 11 91.70 94.70 

Continuous contig34851 0.169 8 87.00 79.20 

 

Table.3.Performance analysis of Fuzzy-T ARM     

Attribute Names Fuzzy ARM attribute values Time (in sec) Fuzzy -T ARM attribute  values Time (in sec) 

continuous  Contig44916_RC  90.00 0.45 96.98 0.40 

continuous D25272  70.08 0.50 88.00 0.41 

continuous J00129  78.00 0.75 85.70 0.61 

continuous Contig29982_RC  72.00 0.85 99.50 0.77 

continuous  D25274  78.00 1.50 79.00 1.00 

continuous Contig36292  78.50 2.00 98.00 1.70 

continuous Contig42854  77.00 2.50 97.00 1.90 

continuous Contig1938_RC  90.05 3.50 97.05 3.00 

continuous AB033050  67.00 4.50 80.00 3.60 

 

 

 

Fig. 2: Performance analysis of fuzzy-D discretization 

 

 

   
Fig. 3: Performance comparison of fuzzy ARM and fuzzy T ARM 
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DISCUSSION 
 
 In this study, we assess the performance of our 
algorithm with respect to fuzzy-T ARM is the most 
popular and widely used online fuzzy mining algorithm. 
We have used the breast cancer dataset for our 
experimental analysis. The crisp dataset has around 
2.5M transactions and the fuzzy dataset has around 10M 
transactions. Thus, the dataset size is significantly larger 
than the available main memory. 
 It can be clearly observed that Fuzzy-T ARM 
performs 8-19 times faster than fuzzy ARM, depending 
on the support used. Please note that the execution times 
for fuzzy ARM for support values 0.075 and 0.1 have 
not been calculated as the time exceeded 50K seconds. 
From that, it is very clear that our algorithm has speeds 
nearly 8-13 times that of fuzzy-T ARM. 
 More importantly, for any dataset there is a 
particular support value for which optimal number of 
item sets is generated and for supports less than this 
value, we get a flood of item sets which are of no 
practical use. From our experiments, we have observed 
that our algorithm performs most efficiently and speedily 
at this optimal support value, which occurs in the range 
of 0.15 - 0.2 for this dataset. 
 

CONCLUSION 

 
 In this study, we have presented a novel fuzzy-
TARM algorithm, for very huge datasets, as an 
alternative to fuzzy ARM, which is the most widely used 
algorithm for fuzzy ARM. Through our experiments, we 
have shown that our algorithm is faster than fuzzy ARM. 
This considerable speed up has been achieved because 
novel properties like two-phased tid list-style processing 
using partitions, tid lists represented in the form of byte-
vectors, effective compression of tid lists and a tauter 
and quicker second phase of processing. 
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