Hindawi Publishing Corporation
Advances in Fuzzy Systems

Volume 2016, Article ID 6734161, 15 pages
http://dx.doi.org/10.1155/2016/6734161

Research Article

Hindawi

A Firefly Colony and Its Fuzzy Approach for
Server Consolidation and Virtual Machine Placement in

Cloud Datacenters

Boominathan Perumal' and Aramudhan Murugaiyan®

"Vellore Institute of Technology, Vellore 632014, India

2Perunthalaivar Kamarajar Institute of Engineering and Technology, Puducherry 609603, India

Correspondence should be addressed to Boominathan Perumal; boominathan.p@vit.ac.in

Received 26 November 2015; Revised 12 February 2016; Accepted 14 February 2016

Academic Editor: Ashok B. Kulkarni

Copyright © 2016 B. Perumal and A. Murugaiyan. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Managing cloud datacenters is the most prevailing challenging task ahead for the IT industries. The data centers are considered
to be the main source for resource provisioning to the cloud users. Managing these resources to handle large number of virtual
machine requests has created the need for heuristic optimization algorithms to provide the optimal placement strategies satisfying
the objectives and constraints formulated. In this paper, we propose to apply firefly colony and fuzzy firefly colony optimization
algorithms to solve two key issues of datacenters, namely, server consolidation and multiobjective virtual machine placement
problem. The server consolidation aims to minimize the count of physical machines used and the virtual machine placement
problem is to obtain optimal placement strategy with both minimum power consumption and resource wastage. The proposed
techniques exhibit better performance than the heuristics and metaheuristic approaches considered in terms of server consolidation

and finding optimal placement strategy.

1. Introduction

Cloud computing is the recent cutting-edge technology to
provide computing services over the Internet. It characterizes
a paradigm shift from computing as an artefact that is pur-
chased to computing as a service delivered through Internet.
Infrastructure as a service (IaaS) is the service model which
delivers virtualized computing resources [1, 2]. Resource
provisioning is majorly concerned with datacenters which act
as the source of massive computing resource pools. Generally,
most of the IT services are hosted on dedicated physical
servers to handle the complex resource requirement of
deployed services and to handle further peak demands of the
services. In such a case, this raises a problem of server sprawl,
where multiple, underutilized servers take up huge space and
resources than required for their current workloads. As a
result, this raises the operational costs and investment costs
of the service provider. To handle this drawback of server
sprawl, virtualization based server consolidation emerged,

to achieve more utilization of physical resources and reduce
hardware costs and operational expenses. Virtualization is
achieved by partitioning the available physical resources
into a number of remote execution environments for virtual
machines (VMs). This creates an opinion to the user as if
each VM accommodates an individual operating system and
henceforth a dedicated physical resource of its own. With
an increasing trend towards virtualization based data centers
becoming the host platform for wide range of applications,
server consolidation and virtual machine placement have
become a key research area in cloud computing environment.

Server consolidation runs multiple applications on the
same host machine, thus mainly reducing the energy costs
and increasing the resource utilization of the servers. It
is modelled as a vector bin packing problem where the
maximum number of virtual machines is hosted onto a single
server such that the total number of physical machines is
minimized and thus resource utilization is increased. The
other key challenge is to define an optimal mapping strategy

to place a set of virtual machines on physical machines. For a
fewer number of virtual and physical machines, an operator
might be able to manage the placement of virtual machines.
However, when the number of VMs and the number PMs
increase, automated placement strategies are preferred. In
that case the number of types of possible mapping to be
assessed for a given set of virtual and physical machines
becomes (number of physical servers)Number of virtual machines) [31
Having such a huge mapping strategy or solution space makes
the virtual placement problem a NP-hard problem, where it
is highly impossible to get an exact placement strategy (VM-
PM mapping) with in practically acceptable time period [3].
Hence, there is a need for intelligent methods to fine tune
the search for a VM-PM mapping solution to obtain near-
optimal placement strategies.

Gupta et al. [4] proposed a two-stage heuristic approach
to achieve server consolidation focusing on bin-item incom-
patibility constraints. In their work, they considered the items
to be packed as server itself and the bins for packing as
the target servers. Most of the existing works consider VM
consolidation as a variant of the bin packing problem and
propose some improvements or extensions of simple greedy
algorithms such as first fit decreasing (FFD) [5, 6], best
fit [7, 8], best fit decreasing [9, 10], and others [6, 11, 12]
for constructing the solution. While applying such heuristic
approaches, the VM requests are to be sorted in specific order
to place in physical machines. In single dimensional case, the
sorting process is trivial, whereas for multidimensional place-
ment problem, the sorting methods proposed by Maruyama
et al. [13] can be used. In recent years, few efforts are taken
to convert the multidimensional sizes considered as vectors
into sizes of scalar type. Panigrahy et al. [14] proposed a novel
method of geometric heuristics and presented a report on
their findings related to various arrangements of vectors to
produce the scalar (size). However, the study does not provide
any rationale for when to use a particular heuristics or why
one heuristics outperforms others. Wood et al. [15] proposed
a Sandpiper system to detect hotspot and accordingly enable
VM migrations. Mishra and Sahoo [16] proposed a novel
vector algebra based approach to overcome the anomalies in
the existing VM placement technologies. The other works of
VM placement following bin packing heuristic are given by
Li et al. [17] and Jung et al. [18].

Several metaheuristic approaches are also widely used
for VM placement. Falkenauer [19] proposed an enhanced
approach of genetic algorithm called grouping genetic algo-
rithm to handle the server consolidation problem. In the
proposed approach, group-based encoding scheme with new
mutation and crossover operation is used rather than individ-
ual encoding technique of traditional GA method. Brugger
et al. [20] proposed ACO metaheuristic that had better per-
formance than genetic algorithm for large problem instances.
Rohlfshagen and Bullinaria [21] proposed another variant
of GGA called exon shuffling genetic algorithm. A group
genetic algorithm is proposed by Shubham et al. [22] to solve
server consolidation problem as a vector packing problem
with conflicts and has shown that they achieve better results
compared to other approaches. Xu and Fortes [23] solved

Advances in Fuzzy Systems

VM placement as a multiobjective optimization problem.
As a further enhancement to grouping genetic algorithm, a
reordering grouping genetic algorithm is given by Wilcox
et al. [24]. Feller et al. [25] used another version of ACO to
address VM consolidation and obtained encouraging results
rather than FFD. However, their evaluation was simplified
to one-dimensional resource as they varied only the number
of cores demanded by VM and retained resource demands
unchanged. Mills et al. [26] proposed methods for initial
VM placements and compared against 18 initial placement
algorithms. Wu et al. in [27] proposed simulated annealing
technique for VM placement. Luke [28] designed new muta-
tion and crossover operations where swap, move, and remove
are considered for mutation and these operations are applied
to the steady state genetic algorithm for VM placement.
Adamuthe et al. [29] addressed VM placement as a mul-
tiobjective optimization problem and compared the results of
genetic algorithms, nondominated sorting genetic algorithm-
(NSGA-) I and NSGA-IL Finally they concluded that NSGA-
II provides diversified good solutions. An improved particle
swarm optimization approach for virtual machine placement
is proposed by Wang et al. [30]. A multiobjective ant
colony system for virtual machine placement problem is
proposed by Gao et al. [31]. In this work, they proposed
VMPACS that optimizes the datacenter with both minimum
power consumption and resource wastage simultaneously. A
novel multiobjective memetic algorithm is also proposed to
solve virtual machine placement problem [32]. Ant colony
optimization is used to solve multiobjective optimization
problem to optimize total processing resource wastage and
memory resource wastage [33]. A novel family genetic algo-
rithm is proposed to address the problem of VM placement
with less energy consumption and VM migrations [34]. In
addition, Tang and Pan [35] provided another approach
using hybrid genetic algorithm addressing virtual machine
placement with an objective of reducing energy consumption.
Here, we propose to apply a firefly colony (FCO) opti-
mization algorithm and fuzzy firefly colony (FFCO) opti-
mization algorithm for server consolidation and multiobjec-
tive virtual machine placement (VMP) problem. The firefly
colony [36] approaches used are seen as a variant of firefly
which is based on ant colony optimization (ACO) algorithm.
In this firefly approach, the fireflies are taken as collaborating
learning agents like ants in ACO. In contrast to the standard
firefly algorithm, firefly colony algorithm is a distributed,
autocatalytic, and constructive greedy metaheuristic. In this
approach, it is assumed that the phosphorescent substance
released by the fireflies is absorbed by the paths and, in turn,
they glow. The decision-making is based on the probabilistic
choice, which is biased by the concentration of the phospho-
rescent glowing in its path. This in turn has an autocatalytic
effect that the path chosen by the fireflies will have higher
probability of getting chosen again by other fireflies in the
upcoming visits. It is also assumed that while returning also
the same path would be chosen due to increase in brightness
on the path. The reason behind choosing this approach
for virtual machine placement is as follows [36]. Firstly,
compared to standard firefly, this firefly colony algorithm
works fast as pairwise assessment of flies is eluded in this

Advances in Fuzzy Systems

approach. Secondly, randomization capacity of the basic FA
is gradually decreased as it reaches the optima, and hence
the performance of the FCO is improved. Thirdly, as it is
the hybridization of greedy metaheuristic algorithm and the
exploitation and exploration process of firefly algorithm, it
turns out to be a prevailing approach for server consolidation
and virtual machine placement problem [36]. In server
consolidation, we aim to minimize the number of physical
servers and in VM placement we aim to simultaneously
minimize the power consumption and resource wastage
while constructing the solution for placement. From the
experimental results conducted, we could show that our
proposed approach outperforms ant colony system, max-min
ant system, and first fit decreasing heuristics.

The rest of the paper is organized as follows. In Section 2,
we present the basic firefly algorithm. In Section 3, we present
firefly colony algorithm, fuzzy firefly colony algorithm for
server consolidation problem with the experimental results
obtained. In Section 4, the multiobjective virtual machine
placement problem is presented with the experimental
results. Section 5 concludes the paper followed by references.

2. Basic Firefly Optimization Technique

The firefly algorithm (FFA) developed by Yang [37-39] is a
swarm intelligence based metaheuristic approach, inspired by
the flashing behaviour of fireflies. Fireflies are simple insects
living in groups. The firefly flashes act as a signal system to
attract (communication) other files. The firefly algorithm is
based on these flashing patterns and the behaviour of fireflies.
The characteristics of standard firefly algorithm are [37] as
follows:

(1) The fireflies are unisex and they get attracted to other
fireflies regardless of their sex.

(2) The less bright fireflies get attracted to brighter
ones. The attractiveness and brightness of the firefly
decrease as the distance increases and the fireflies start
moving randomly if they do not find brighter fireflies
in their path.

(3) The brightness of a firefly depends on the setting of
the objective function.

The two important factors of firefly algorithm are the light
intensity and the attractiveness. We know that the light
intensity I decreases as the distance r increases in terms of
I oc 1/r* obeying inverse square law [37]. At the same time
as the air absorbs light, it becomes feeble as the distance
increases. This makes the fireflies visible only for certain
distance. Basically, the light intensity I(x) varies with the
distance » monotonically and exponentially as given in [37]

1) =1e . 6)

To decrease the function monotonically at a slower rate, the
approximation given by Yang [37] is

1,
I(r)= 1+°W2. 2)

The difference in attractiveness f3 as the distance r changes is
given as [37]

2
B=Poe s 3)
where f3, is the attractiveness at r = 0. It is noted that when
m > 0, the exponent yr? can be replaced by yr™. As it is often

faster to calculate 1/1 + r* than an exponential function, the
above function, if necessary, can conveniently be replaced by

ﬁ_ ﬁO

S 1+yr?

(4)

The distance between any two fireflies is given as [37]

d
= - x| = k; (e =) ©)

The movement of firefly i towards firefly j is determined as
[37]

1

1 —yry; 1
X = X B (xz - xf) oy (rand - E) (6)

3. Firefly Colony Approach for Server
Consolidation

Here we present the problem formulation and the proposed
firefly colony algorithm for server consolidation problem.
Server consolidation is a variant of vector packing problem.
We consider CPU and memory as two major dimensions of
resource utilization for server consolidation problem.

3.1. Problem Formulation. Suppose we are given n virtual
machines (VMs) i € I to place in m physical machines
(PMs) j € J; we assume that no virtual machine requires
more capacity than can be provided by a single server. Let

[Ripu Rinem] be the processing unit demand and memory

demand of each VM. Let [TCgpu TCf;lem] be the process-
ing unit capacity and memory capacity associated with
each physical machine. A threshold of 90% is set for

[TCgpu TCfnem] to avoid physical machine resource utiliza-
tion reaching 100% as it may lead to severe performance
degradation when it is fully utilized [31]. Two decision vari-
ables are defined as follows: allocation matrix alloc; j € {o,1}
is set to 1 if van; is allocated to the server j. A binary variable

yj € {0, 1} indicates whether a server is in use or not.

3.2. Resource Wastage Modelling. 'The possible cost of wasted
resources is determined using [31]

+ &

LCPu _ Lmem
_ J J
RWj - |UCPu mem| i
4+ Ur
J J

7)

where RW; is the resource wastage of the jth server and
U™ and U]C.pu are the normalized memory usage and CPU

resource usage, respectively. In other words, it is the ratio

of used resource to total available resources. L7*" and Lcjpu

are the normalized remaining memory and CPU usage,
respectively. € is a small positive constant set to 0.0001 [31].

Advances in Fuzzy Systems

4
Step 1. Initialize Number of physical machines (PMs), Number of virtual machines (VMs)
Step 2. Set List of physical machines and their current usage
Step 3. Generate VM request demands using the procedure given in Algorithm 2.
Step 4. Set Light absorption coefficient y and maxIterations
Step 5. Initialize the attractiveness matrix f3,
Step 6. Repeat
Step 7. For each firefly k = 1: NF (Number of Fireflies)
Step 8. Repeat
Step 9. For each physical server j =1:m do
Step 10. Issue a new server j from the set of random ordered physical servers
Step 11. Determine the set of eligible virtual machines Q) (j) using (19)
Step 12. Repeat
Step 13. For each residual VM that is eligible to be placed in the currently chosen server
Step 4. Calculate the heuristic information of the VM-PM mapping using (13)
Step 15. Calculate the attractiveness of the VM-PM mapping using (16)-(17)
Step 16. End For
Step 17. Decide the next VM to place in server by applying pseudo random proportional rule (Equation (14))
Step 18. Apply local attractiveness updating rule according to (21)
Step 19. Until no remaining VM can be placed in the server anymore
Step 20. Until all VMs are placed in the server
Step 21. End For
Step 22. Find iteration best firefly solution (s™)
Step 23. if fFi(S®) > globalbest then
Step 24. S® — S
Step 25. globalbest « ffy.(S™)
Step 26. End if
Step 27. Apply global attractiveness update rule according to (22)
Step 28. Until the maximum iteration is reached

ArLGoriTHM l: Firefly colony algorithm for server consolidation.

3.3. Objective Function. The objective is to minimize the
number of servers used while no capacity constraint is
violated. The minimization function is formulated as follows
[40]:

m
Minimize Z Y (8)
j=1

subject to constraints:

ialloc,-j =1 Viel, 9)
=1
iRipu -alloc;; < TCgpu y; Vjel, (10)
i=1
Zn:Rinem -alloc;; < TCL,,. - y; Yjel, (11)
i=1
yjpallog; € {0,1} Viel, Vje]. (12)

Constraint (9) assigns VM i to only one of the servers. The
capacity constraint of the server is specified in constraint (10)
and (11). The domain of the binary decision variables used is
given in (12).

fori=1:n
R’Cpu = rand(2R,,)
R =rand(R

r = rand(1.0)
if r<pAR__ >R

. ~cpu cpu
i _ pi
Rmem - Rmem + Rmem

End if
End for

mem)

)V(rzp/\Ri < R_) then

cpu cpu

ALGORITHM 2: Generate instances procedure [31].

3.4. Firefly Colony Optimization Algorithm. The firefly colony
optimization algorithm [36] is a swarm based metaheuristic
approach based on the flashing patterns and behaviour of
the fireflies. The procedure of the firefly colony approach
for virtual machine placement is given in Algorithm 1. In
the initialization phase, the initial attractiveness matrix is
set to 3, as given in Section 3.4.3. In the iterative process,
each firefly constructs solution incrementally using a greedy
stochastic process where it probabilistically assigns VM to the
server. The stochastic policy is indicated by attractiveness trail
and heuristic information. Finally the best so far solution is
used to update the attractiveness values.

Advances in Fuzzy Systems

3.4.1. Procedure for Firefly Solution Construction. Every firefly
initiates the solution construction process with a set of all
VMs and randomly arranged set of available servers. For each
server chosen, the firefly starts allocating the VMs one by
one. The choice of the next VM i to place in current server
j is based on some probability which is proportional to the
attractiveness. In other words, the higher is the attractiveness
of VM i among all eligible virtual machines Q,(j) to pack
in current server j; then the larger is its probability to be
chosen. Once a particular server reaches the state where no
more VMs can be added, then the server is closed and a
new server is hosted for packing VMs. The process continues
until there are no more VMs for each server and no more
servers left for packing VMs. In this process of placement,
the packing arrangements of the VMs from the server 1 to
server j are known dynamically based on the current state
of the firefly; hence, this information is used to calculate the
resource wastage during the process of placing VM u in server
j using the equation given as follows:

j
RW,; = > RW,. (13)
v=1

The pseudo random proportional rule used for solution
construction is given in (14) which includes both exploitation
and exploration process:

—YRW?
R
i=1{ ue() (14)

explore e, otherwise,

where y is the absorption coeflicient of the light initialized to
land B,; is the attractiveness trail defined as the constructive
factor of assigning VM u to server j having set of VMs already
placed in it. The virtual u belongs to a set of eligible virtual
machines.

Equation (14) can be rewritten as

argmax {B,; * n,;}, < qo;
1= 4 ue(j) (15)
explore e, otherwise,

where ¢ is a random variable uniformly distributed in [0, 1]
and ¢, is a fixed variable having a value between 0 and 1.
If g is less than g, then the process is called exploitation
where VM u with higher attractiveness is chosen from a set
of eligible virtual machines. If g is greater than ¢y, then the
process is called exploration where we find the aggregation
of the attractiveness of all eligible VMs using (16), and then
we choose the VM having the higher attractiveness than a
random number:

Attractiveness_Array = cumulativesum (ﬂllj) ,
(16)

i€ (j),
where
Bij * mijp 1€ (j)s

0, otherwise,

Bi () = (17)

where /31}; (t) is the attractiveness at iteration ¢ for placing VM

i in server j along with other virtual machines packed as a
partial solution. The attractiveness value f3;; is determined as

Zuer(j)ﬁui
Bi=1 %G

1, otherwise.

if Q (j) - {i} # 0; (18)

The set of eligible virtual machines which are determined
using (19) as given by Gao et al. [31] is

Q. (j) = 1i ef{l,...,n}| (iallociu :0)

u=1

n
A ((Z (allocuj X Rgpu) + Rlcpu) < TCZpu) (19)

u=1

A ((i (allocuj X R’;em) + Rinem) < TC{nem>} .
u=1

The fitness function used for evaluating the constructed
solution is [40]

ffSC(S)

3 (S (alloc B /(TCh, -3,))|
- - (20)

+ Z;n=1 (Z?:l (allocij : Rinem) / (chnem ’ yj))k
- >

where k is assigned with value of 2 as per the literature given
by Falkenauer [19].

3.4.2. Fitness Function Evaluation. The quality of the con-
structed solution is assessed using (20).

3.4.3. Attractiveness Updating. Another important part of
firefly algorithm is the updating of attractiveness trails. The
attractiveness trails can either increase as phosphorescent
substance is emitted or decrease as the substance evaporates.
The emission of phosphorescent substance is based on the
fact that the information contained in some good solutions
should be shown in the attractiveness trails and the move-
ment included in these good solutions will be biased by
other flies which are constructing the subsequent solutions.
However, the phosphorescent substance evaporation favours
the exploration of new areas of search space as it implements a
useful form of forgetting and also it avoids too rapid form of
convergence of the algorithm towards a suboptimal region.
In this approach, the attractiveness update is done in two
stages: after a firefly k finds a feasible solution to the VM
placement problem; a local updating is performed according
to the following equation [36]:

/31']‘ t+1) =« (rand - %) ﬁij () + By (1)

where « is the attractiveness decay parameter, the initial
By values are calculated using 1/[n - ffs-(S,)], where n is
the number of VMs, and S, is the initial solution obtained
using FFD heuristic. Once all the fireflies construct the

ffsc (Sgb) , if VM placed in server j € global best solution;

Aﬁij (t) =

, otherwise.

3.5. Fuzzy Firefly Colony Approach for Server Consolidation.
A new variant of firefly colony named fuzzy firefly colony
approach is used to handle the uncertainties that could exist
when fireflies makes a choice to choose next virtual machine
for placement in current server. In this variant, the control
strategies of the fireflies are established using fuzzy rules
[41-47]. The fuzzy firefly colony algorithm follows same
placement procedure given in Algorithm 1 except that step
17 in the procedure is modified to include fuzzy strategy
and fuzzy probable strategy for choosing the next virtual
machine for placement. For the placement problem, chosen
a random server, the next virtual machine i to place in
it depends on the attractiveness trail and the desirability
(heuristic information) of placing the virtual machine 7 in
current server j. There is a possibility that the fireflies can
remark the desirability of placing the virtual machine and
the attractiveness trail as fuzzy values (low, medium, or high).
Hence, when choosing the next virtual machine, the fireflies
will have greater or lesser efficacy on choosing the virtual
machine, based on their attractiveness and the desirability.
These efficacies can also be described by the appropriate fuzzy
sets (very very low, very low, low, medium, high, very high, or
very very high). The fuzzy sets of all these state variables are
defined as triangular membership functions.

The approximate reasoning to determine the kth firefly
efficacy in choosing the next VM i for the current server j
consists of following rules for each eligible virtual machine:

If By is low and n; is low then the efficacy e;; of
choosing VM i is very very low.

If B;; is medium and n;; is low then the efficacy e;; of
choosing VM i is very low.

If By is high and n;; is low then the efficacy e;; of
choosing VM i is low.

If By is low and n;; is medium then the efficacy e;; of
choosing VM i is low.

If B;j is medium and n;; is medium then the efficacy e;;
of choosing VM i is medium.

If B;j is high and 1;; is medium then the eflicacy e;; of
choosing VM i is high.

If B is low and n;; is high then the efficacy e;; of
choosing VM i is high.

Advances in Fuzzy Systems

solution, the best so far solution is used to globally modify
the attractiveness. The global update rule is given as

By (t+1) = o (rand - %) B, (0 +0B,®), (22

where

(23)

If By is medium and 1;; is high then the efficacy e;; of
choosing VM i is very high.

If By is high and n;; is high then the efficacy e;; of
choosing VM i is very very high.

The fuzzy rule contains both attractiveness and heuristic
information in the antecedent part and the efficacy of
choosing the next VM in the consequent part. This method
uses the minimum operation for fuzzy implication and
max-min operator for the composition. Finally we obtain
f.‘j as the maximum efficacy for each virtual machine i.
Here we introduce two strategies, namely, fuzzy strategy and
fuzzy probable strategy, to implement the exploitation and
exploration process of deciding the next VM i to place in
current server j [45]

e

q < qo (exploitation) ; (24)

Fuzzy strategy,
Fuzzy probable strategy, q > g, (exploration).

The output of each strategy is a crisp number specifying the
next virtual machine to place in the server.

Fuzzy Strategy. The fuzzy strategy is introduced to implement
the exploitation process (g < q,) where, among all the eligible
virtual machines, the virtual machine « having the maximum
efficacy is chosen to be the next VM for placement. In other
words, maximum defuzzification method is used to produce
the output fuzzy sets as fuzzy singletons [45], where i = u”
such that

[eﬁ*;’] = sup {eij}~ (25)

Fuzzy Probable Strategy (FPS). The fuzzy probable strategy is
introduced to implement the exploration process of fireflies.
In contrast to the exploitation process, here we consider
that the VM i with maximum efficacy is not essential to be
selected as the next VM, but it has the highest chance to be
selected; that is, the next VM can be probably i [45]. The fuzzy

Advances in Fuzzy Systems

TABLE 1: Server consolidation results for VM requirements with reference values as 25% and 45% and correlation coefficients as —0.754 and

-0.755.
Reference value m = Ryom = 25% fpu = Ryom = 45%
Correlation coeflicient -0.754 -0.755

Number of Average CPU Number of Average CPU
Algorithm physical machines consolidation execution physical machines consolidation execution

used (m) ratio time (S) used (m) ratio time (S)

Fuzzy firefly colony 95 1.05 5.31 192 1.20 639
Firefly colony 96 1.06 5.28 193 1.20 6.35
ACS 97 1.07 5.31 194 1.21 6.47
MMAS 101 112 5.26 195 1.21 6.53
FFD 125 1.38 8.34 218 1.36 24.61

probability (attractiveness) ﬁf; for the virtual machine i to be
chosen is equivalent to the

(26)

To obtain Fl’; a random number 0 < r,, < 1 is generated for
each eligible virtual machine u belonging to Q. (j). Then
Tk ti
F.= —.
! ZZ:I Ty

Like Fuzzy strategy, maximum defuzzification method
is applied on fuzzy probability to choose the next virtual
machine i among u eligible virtual machines for current
Server j.

27)

3.6. Experimental Results. The VM requirements instances
are generated using the procedure given in Algorithm 2 [31].
Reference-based VM resource demands are generated where
Ref = z% means each randomly generated VM resource
demand falls in the interval [0,2z]. It is to be noted that
we can choose any z value as reference value. For example,
if we choose Ref = 10%, 15%, 20%, 25%, and 45% on
average we get 90/10, 90/15, 90/20, 90/25, and 90/45 VMs per
server.

In Algorithm 2 we consider CPU and memory as two

dimensions of VM requirement. R, is the reference CPU

utilization, R ., is the reference memory utilization, and the

probability p is the reference value. For our experimental
study, we have used two reference values and five probabilities

as followed by Gao et al. [31]. We set both R, and R, to

mem

25% and then to 45%. The distributions of CPU and memory

utilizations are in the range [0,50%] when R, and R,

are set to 25% and [0,90%] when R, and R, are set to
45%. The linear correlation between the input dimensions is

controlled to a certain limit by changing the probability p. For
rpu = Ryem = 25%, the probability values of 0.00, 0.25, 0.50,
0.75, and 1.0 are used. The average correlation coeflicients
for the stated probabilities are —0.754, —0.348, —0.072, 0.371,
and 0.755 and these correspond to strong-negative, weak-
negative, no-correlation, weak-positive, and strong-positive

correlations, respectively [31]. These five probability values

are chosen to show that as the correlation between CPU
and memory increases, the average power consumption and
resource wastage are minimized. We similarly set p for
Ry, = Rpem = 45% and the correlation coefficients
given are —0.755, —0.374, —0.052, 0.398, and 0.751. For each
of the experiments conducted, an upper bound of 90% is
imposed as the threshold value for the resource utilization
of the single server [31]. Using the above procedure and
parameter settings, the instances were generated for specified
number of VMs. The programs for the proposed algorithm
and all other variants were coded in MATLAB and ran
on an Intel Pentium® Dual-Core processor with 2.50 GHz
CPU and 8 GB RAM. To support the worst VM placement
scenario, the number of servers was set to the number
of VMs, in which only one VM is assigned per server
[31].

In Tables 1-5, the performance of the proposed multiob-
jective firefly algorithm and fuzzy firefly algorithm for placing
300 VMs is compared to that of ant colony system (ACS),
max-min ant system (MMAS), and first fit decreasing (FFD)
methods of VM placement. For the proposed firefly algo-
rithms, we set gamma value to be 0.2. From the literature, it is
noted that on an average 10 to 20 runs are performed for each
instance generated varying the probability and the reference
value. For our experimental study, we performed 20 runs
and each run is repeated for 100 iterations. The final results
reported are average of 20 runs. The performance measures
reported are the average number of physical machines used
(m), average consolidation ratio (m/lower bound), and CPU
execution time in seconds. The lower bound of the minimum
number of servers that can be used for placement [40, 48] is
calculated using

Lower Bound

— max " (Z?:l Ripu) “ ,

(28)

TC

cpu

(Z?:l Rinem)
TC

mem

When the average number of servers used for placement
reaches the lower bound then the server consolidation ratio
(m/lower bound (LB)) gets closer to 1 [48].

8 Advances in Fuzzy Systems

TABLE 2: Server consolidation results for VM requirements with reference values as 25% and 45% and correlation coeflicients as —0.348 and
-0.374.

Reference value Ry = Ry =25% Ry = Ry = 45%
Correlation coeflicient —-0.348 -0.374

Number of Average CPU Number of Average CPU
Algorithm physical machines consolidation execution physical machines consolidation execution

used (m) ratio time (S) used (m) ratio time (S)

Fuzzy firefly colony 94 1.04 5.29 189 118 6.37
Firefly colony 95 1.05 5.28 190 118 6.32
ACS 96 1.06 532 191 1.19 6.28
MMAS 98 1.08 5.21 192 1.20 6.52
FFD 121 1.34 8.33 207 1.29 24.59

TABLE 3: Server consolidation results for VM requirements with reference values as 25% and 45% and correlation coefficients as —0.072 and
—-0.052.

Reference value Ry = Riem = 25% Ry = Ryem = 45%
Correlation coefficient -0.072 -0.052

Number of Average CPU Number of Average CPU
Algorithm physical machines consolidation execution physical machines consolidation execution

used (m) ratio time (S) used (m) ratio time (S)

Fuzzy firefly colony 93 1.03 5.28 183 114 6.22
Firefly colony 94 1.04 5.34 184 115 6.25
ACS 95 1.05 5.31 185 115 6.27
MMAS 97 1.07 5.22 187 116 6.49
FFD 117 1.30 8.24 199 1.24 24.61

TABLE 4: Server consolidation results for VM requirements with reference values as 25% and 45% and correlation coeflicients as 0.371 and
0.398.

Reference value Ry = Ryem = 25% Ry = Ryem = 45%
Correlation coeflicient 0.371 0.398

Number of Average CPU Number of Average CPU
Algorithm physical machines consolidation execution physical machines consolidation execution

used (m) ratio time (S) used (m) ratio time (S)

Fuzzy firefly colony 92 1.02 5.27 180 112 6.23
Firefly colony 93 1.03 5.31 183 1.14 6.31
ACS 94 1.04 5.29 184 115 6.24
MMAS 96 1.06 5.21 185 115 6.47
FFD 112 1.24 8.21 195 1.21 24.54

TABLE 5: Server consolidation results for VM requirements with reference values as 25% and 45% and correlation coefficients as 0.775 and
0.751.

Reference value fpu = Ryem = 25% fpu = Ryom = 45%
Correlation coefficient 0.755 0.751

Number of Average CPU Number of Average CPU
Algorithm physical machines consolidation execution physical machines consolidation execution

used (m) ratio time (S) used (m) ratio time (S)

Fuzzy firefly colony 91 1.01 5.25 173 1.08 6.22
Firefly colony 92 1.02 5.27 175 1.09 6.21
ACS 93 1.03 5.28 176 1.10 6.23
MMAS 95 1.05 5.18 181 113 6.42

FFD 105 116 8.19 190 1.18 24.23

Advances in Fuzzy Systems

120 + R

100 k

60 i

40t .

Number of physical machines used

20 ¢ 1

<t [} o — wn

Lo} <t o~ o~ L

& @ S « &

S s 3 ° S

Correlation coefficient

E FFD mm FCO
Em MMAS H FFCO
3 ACS

FIGURE 1: Number of servers utilized when R__ =

. = 25%.

From the results shown in Figures 1 and 2 we could
observe that our proposed firefly colony approach utilizes
minimum number of servers compared to other determin-
istic and nondeterministic approaches.

4. Multiobjective Firefly Colony Approach for
Virtual Machine Placement

In this section we present the problem formulation and the
implementation of firefly colony and fuzzy firefly colony

m

for solving the multiobjective virtual machine placement
problem. The multiobjectives considered are the power con-
sumption and resource wastage which are to be minimized
simultaneously.

4.1. Power Consumption and Resource Wastage Modelling.
The power consumption of the jth server is defined as a
function of the CPU utilization [31]:

. (P = i) x UP] + PiY; US> 0;

J (29)

0; otherwise,

i b
where P}dle and P;"™ are the average power values when the

jth server is idle and fully utilized, respectively. The power
consumption in idle state is not a part of the total energy

consumed by the CPU. We have set P}Jusy = 215 Watts and

P]i.d]e = 162 Watts for homogeneous physical servers [31].
The resource wastage considered for multiobjective virtual
machine placement problem is same as specified in server
consolidation problem given in (7).

4.2. Objective Functions. Formally, the problem of VM place-
ment is formulated as follows. Given a set of n virtual
machines, m physical servers, and the physical servers host-
ing n; VMs, the VM placement algorithms generate possible
mapping solutions for n VMs on the m physical servers under
a specified set of constraints. The objective functions to be
minimized are the total power consumption and resource
wastage and these objective functions are modelled as follows
[31]:

Minimize ZPJ' = i [yj X <(Pbusy 1dle) X i (alloc Cpu) + P‘dle>] , (30)

J=1 j=1

i=1

|(TC£pu =¥ (alloc

R’Cpu)) (TCI]nem - (alloc Rinem))| +e€

m m
Minimize ZRW]- = Z yj X

=1 =1
subject to
Zallocij =1 Viel,
=1
>K
calloc;; < TC. -y, VjeJ,
& cpu j cpu Jj (32)
ZRinem alloc;; < TCmem y; Vjel,
i=1

yjpalloc; € {0,1} VieLVje].

p (alloc

cpu) + Z, 1 (aHOC (31)

mem)

The objective function given in (30) is to minimize the power
consumption and the objective function in (31) focuses on
reducing the resource wastage. As we consider the VMP
problem as a multiobjective combinatorial optimization
problem the optimization strategy focuses on simultaneously
minimizing the power consumption and the resource wastage
under the given set of constraints.

4.3. Firefly Colony Procedure for Multiobjective Virtual
Machine Placement. The initial attractiveness matrix for the
multiobjective virtual machine placement problem is deter-
mined using 3, = 1/[n - (P'(S,) + RW(S,))], where n is
the number of VMs and S, is the solution generated by FFD

10

200 + R

150 + i

100 + 4

Number of physical machines used

[Xe} A [N <) —

(1o} [wn [*N) wn

& 0 < i) N

$ s s = S

Correlation coeflicient

Em FFD mm FCO
mm MMAS Hm FFCO
/= ACS

FIGURE 2: Number of servers utilized when R, = R,,,.,,, = 45%.

mem

heuristic. RW(S,) is the resource wastage of the solution S,
(see (7)). P'(SO) is the normalized power consumption of the
solution S, which is determined as [31]

m P.
P’ (SO) = Z <Pp;’ax > : (33)
J

j=1

As given in Section 3.4.1, the packing arrangements of the
VMs from the server 1 to server j are known dynamically
based on the current state of the firefly; hence this informa-
tion is used to calculate the normalized power consumption
and resource wastage during the process of multiobjective
VM placement using

P —i P, (34)
uj = pmax | °
v=1 v

The pseudo random proportional rule in (14) is rewritten
for multiobjective solution construction (see (35)) which
includes both power consumption and resource wastage
information:

J/ m
argmax {,BMj s @ V(B tRWy) } . q<qu
i= uey(j) (35)
explore e, otherwise,

where y is the absorption coefficient of the light initialized
to 1, 3,,; is the attractiveness trail defined as the favourability
of assigning VM u to server j having set of VMs already
placed in it. The virtual u belongs to the set of eligible virtual
machines. RW; is determined using (13). The procedure for
multiobjective firefly colony and fuzzy fire colony approach
is same as the procedure given in Section 3.4 except for the
objective functions, fuzzy strategy, and the fitness evaluation
method used. The objective functions are given above in

Advances in Fuzzy Systems

Section 4.2. The fuzzy strategy to decide the next virtual
machine is given in Section 3.5. The fuzzy fitness evaluation
given by Sait et al. [48] is used here for assessing the quality of
the solutions. The fuzzy fitness evaluation method combines
both the power consumption and resource wastage objectives
into one objective to be maximized [48].

4.4. Fuzzy Fitness Evaluation [48]. The fuzzy rule used to
evaluate the solution is given as follows [48].

“If solution has low power consumption and
small resource wastage then it is a good solu-
tion.”

A solution with highest membership in the fuzzy sets of
{low, small} is chosen to be best quality solution. The limits
of the fuzzy sets for the power consumption and resource
wastage are determined as given by Sait et al. [48]. The lower
limit of the power consumption is presumed to be the power
consumed by the solution having the minimum number of
servers [48]:

powerconsumption; ..

_ LBPidle + (Pbusy _ Pidle) iRi (36)
=P N AV A
i=

LB is the theoretical lower bound given in (28).

The upper limit of the power consumption is the power
consumed by the worst case solution where each VM occu-
pies one server [48]:

pOWCI'COIISl,lI'l’lp'(lOIlupper

al . ey [(37)
_ 1dle usy 1dle 1
= VM P + (P = PI) chpu :
pa

VM, oune 18 the number of VMs. The lower limit of resource
wastage is presumed to be the wastage which results when all
VMs are placed in a single large server [48]:

z?:l Rlcpu - Z?:l Rinem| +e
Z?:l Rlcpu + Z?:l Ri’nem

The upper limit on resource wastage is the wastage resulting
due to worst VM placement scenario, that is, one VM per
server [48]:

(38)

resourcewastage, ... =

n (|RE -R. _|+e
resourcewastage, ... = Z {M . (39
1 1
|chu - Rmem|

i=1
Given a solution s, the membership functions of the solution s
in the fuzzy set low and small are determined as follows [48].

The membership of the solution s in the set {low} is
denoted as

Hspower
_ powerconsumption, ..., — powerconsumption, (40)
powerconsumption, .. — POWerconsumption;,, .,

Advances in Fuzzy Systems

1

TABLE 6: Comparison of the multiobjective firefly and fuzzy firefly technique with other algorithms for average power consumption and
resource wastage of VM requirements with reference values as 25% and 45% and correlation coefficients as —0.754 and —0.755.

Reference value Ry = Ryem =25% Ry = Ryem =45%
Correlation coefficient —-0.754 —-0.755
. Resource Fuzzy fitness CPU execution Resource Fuzzy fitness CPU
Algorithm Power (W) 3 . Power (W) 3 execution
wastage (107™) time (S) wastage 1077) .
time (S)
Fuzzy firefly colony 20430 6.12 905 5.43 30701 11.12 911 6.21
Firefly colony 20645 7.32 889 5.41 30985 11.21 901 6.23
ACO 20990 7.41 859 5.47 31315 11.42 832 6.41
MMAS 21910 7.96 852 5.70 31348 11.98 836 6.56
FFD 24818 24.26 716 8.54 34969 51.01 756 24.61
The membership of the solution s in the set {small} is denoted x10*
as 25
tuswastage
2 ¢]
- resourcewastage, ... — resourcewastage, (41))
resourcewastage, .. resourcewastage, .. é sl |
=1
The weights of each objective are calculated as [49] g
o
— = 1F 4
m _ Auswastage %
swastage — — — > A
Auswastage + Mspower
B (42) 051]
— A"ispower
wspower = _— _— ’
.uspower + Auswastage
<] N — n
G & S S G
where o‘ 3 ol S S
ﬁswastage =1- Uswastage> Correlation coefficient
_ (43) = FED == FCO
Hspower = 1~ Hspower- Em MMAS = FFCO
/3 ACS

Using the weights given in ((42)-(43)), the complement of the
overall degree of membership of solution s in the fuzzy set
{low, small} is determined as given by Sait et al. [48]:

ps = (wswastage) (Pswastage) + (wspower) (Fspower) . (44)

Atlast, the fuzzy fitness evaluation of solution s is determined
as [48]

uo=1-F,. (45)

The solution which has maximum fuzzy fitness evaluation is
considered to be the best solution.

4.5. Computational Experimental Study. We present the
experimental results of the multiobjective FCO and FFCO
algorithm to solve the VM placement problem. The experi-
mental set up is same as discussed in Section 3.6. The results
of heuristics and metaheuristic approaches considered are
recorded in Tables 6-10.

From the results shown in Figures 3-6, we could observe
that among the methods considered our proposed firefly
colony approach has minimum power consumption and
resource wastage.

FIGURE 3: Power consumption of multiobjective techniques when
Ropu = Rypem = 25%.

5. Conclusion

In this paper we propose to apply firefly colony and fuzzy
firefly colony algorithms for server consolidation and virtual
machine placement problem. The objective of server con-
solidation is to minimize the number of physical servers so
as to minimize resource wastage. The multiobjective virtual
machine placement problem aims to find an optimal solu-
tion of VM placement with minimum power consumption
and resource wastage. Both the objectives are considered
simultaneously during the solution construction process. The
advantages of choosing firefly colony for the placement prob-
lem is that, unlike the standard firefly algorithms, the firefly
colony approach is fast and decreases much of randomization
during the search for optimal solution, thus leading to good
performance. The fuzzy firefly colony approach is proposed
with fuzzy transition probability rule to handle the exploring
behaviour of fireflies with uncertainty. The obtained results

12 Advances in Fuzzy Systems

TABLE 7: Comparison of the multiobjective firefly and fuzzy firefly technique with other algorithms for average power consumption and
resource wastage of VM requirements with reference values as 25% and 45% and correlation coefficients as —0.348 and —0.374.

Reference value Ry = Ryem =25% Ry = Ryem =45%
Correlation coefficient —-0.348 -0.374

. Resource Fuzzy fitness CPU execution Resource Fuzzy fitness CPU
Algorithm Power (W) 3) Power (W) 33 execution

wastage 107™) time (S) wastage 1077) .
time (S)

Fuzzy firefly colony 20402 5.29 908 5.25 30554 10.87 918 6.20
Firefly colony 20460 5.82 895 5.41 30786 10.92 906 6.19
ACO 21586 6.23 867 5.49 31175 8.12 838 6.89
MMAS 21643 6.15 859 5.73 31280 8.10 848 6.52
FFD 24680 21.78 721 8.12 34712 4723 769 23.24

TaBLE 8: Comparison of the multiobjective firefly and fuzzy firefly technique with other algorithms for average power consumption and
resource wastage of VM requirements with reference values as 25% and 45% and correlation coefficients as —0.072 and —0.052.

Reference value Ry = Ryem =25% Ry = Ryem =45%
Correlation coefficient -0.072 —-0.052

. Resource Fuzzy fitness ~CPU execution Resource Fuzzy fitness CPU
Algorithm Power (W) 3 : Power (W) 3 execution

wastage (107™) time (S) wastage 1077) .
time (S)

Fuzzy firefly colony 18105 4.1 9l 5.23 28190 6.09 922 6.18
Firefly colony 18264 4.12 904 5.41 28436 6.12 918 6.17
ACO 18453 4.12 876 5.43 28854 6.34 844 6.42
MMAS 19501 5.96 865 5.71 29428 7.86 851 6.51
FFD 24476 20.89 739 8.12 34511 44.31 771 23.15

TaBLE 9: Comparison of the multiobjective firefly and fuzzy firefly technique with other algorithms for average power consumption and
resource wastage of VM requirements with reference values as 25% and 45% and correlation coefficients as 0.371 and 0.398.

Reference value Ry = Riypem =25% Ry = Riper = 45%
Correlation coefficient 0.371 0.398

Resource Fuzzy fitness CPU execution Resource Fuzzy fitness CPU
Algorithm Power (W) Y) Power (W) Y execution

wastage 107™) time (S) wastage 10™) .

time (S)

Fuzzy firefly colony 17980 3.46 916 5.31 27980 4.86 934 6.25
Firefly colony 18200 3.58 908 5.35 28200 5.75 921 6.21
ACO 18215 3.61 884 5.34 28365 5.86 849 6.34
MMAS 19016 3.94 872 5.68 29316 5.89 856 6.42
FFD 21871 18.23 742 7.86 33654 30.18 776 21.12

TaBLE 10: Comparison of the multiobjective firefly and fuzzy firefly technique with other algorithms for average power consumption and
resource wastage of VM requirements with reference values as 25% and 45% and correlation coefficients as 0.755 and 0.751.

Reference value Ry = Ripem =25% Ry = Riper = 45%
Correlation coefficient 0.755 0.751

Resource Fuzzy fitness CPU execution Resource Fuzzy fitness CPU
Algorithm Power (W) Y) Power (W) Y execution

wastage (107°) time (S) wastage 10™) .

time (S)

Fuzzy firefly colony 17420 2.14 924 5.26 27083 3.14 938 6.24
Firefly colony 17860 2.42 912 5.28 27250 3.43 926 6.06
ACO 17880 2.71 897 5.31 27342 3.56 857 6.11
MMAS 19048 2.86 886 5.51 28344 4.01 869 6.24

FFD 21280 17,51 754 7.73 33410 25.52 786 21.16

Advances in Fuzzy Systems

25

20 + R

10} 1

Resource wastage

< o0 N —)
[Te} < [y [N wn

Correlation coefficient

B FCO
B FFCO

B FFD
Bl MMAS
1 ACS

FIGURE 4: Resource wastage of multiobjective techniques when
Ry = Rypem = 25%.

cpu mem

x10*
35F g " " " "]

Power consumption

-0.755
—-0.374
-0.052
0.398
0.751

Correlation coefficient

B FFD @ FCO

mm MMAS mm FFCO

3 ACS
FIGURE 5: Power consumption of multiobjective techniques when
Repy = Ropem = 45%.

of firefly colony approaches are found to be better and
encouraging compared to FFD deterministic heuristics and
other few metaheuristic approaches considered.

Competing Interests

The authors declare that they have no competing interests.

13

Resource wastage
N
wu
.

—-0.755
—-0.374
—-0.052
0.398
0.751

Correlation coefficient

B FFD = FCO
mEm MMAS mm FFCO
3 ACS

FIGURE 6: Resource wastage of multiobjective techniques when
Repy = Rppers = 45%.

References

(1] P. Mell and T. Grance, “The nist definition of cloud computing
(draft),” NIST Special Publication, vol. 800, no. 145, 2011.

[2] W. Voorsluys, J. Broberg, S. Venugopal, and R. Buyya, “Cost
of virtual machine live migration in clouds: a performance
evaluation,” in Cloud Computing: First International Conference,
CloudCom 2009, Beijing, China, December 1-4, 2009. Proceed-
ings, vol. 5931 of Lecture Notes in Computer Science, pp. 254-265,
Springer, Berlin, Germany, 2009.

[3] H. Chris, B. Mckee, R. Gardner, and B.]J. Watson, “Autonomic
virtual machine placement in the data center,;” HP Laboratories
HPL-2007-189, 2008.

[4] R. Gupta, S. K. Bose, S. Sundarrajan, M. Chebiyam, and
A. Chakrabarti, “A two stage heuristic algorithm for solving
the server consolidation problem with item-item and bin-
item incompatibility constraints,” in Proceedings of the IEEE
International Conference on Services Computing (SCC *08), pp.
39-46, IEEE, Honolulu, Hawaii, USA, July 2008.

[5] A. Anand, J. Lakshmi, and S. K. Nandy, “Virtual machine
placement optimization supporting performance SLAs, in
Proceedings of the 5th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom ’13), pp. 298-
305, Bristol, UK, December 2013.

[6] H. Jin, D. Pan, J. Xu, and N. Pissinou, “Efficient VM placement
with multiple deterministic and stochastic resources in data
centers,” in Proceedings of the IEEE Global Communications
Conference (GLOBECOM ’12), pp. 2505-2510, IEEE, Anaheim,
Calif, USA, December 2012.

[7] J. Dong, H. Wang, X. Jin, Y. Li, P. Zhang, and S. Cheng,
“Virtual machine placement for improving energy efficiency
and network performance in IaaS cloud,” in Proceedings of the
33rd IEEE International Conference on Distributed Computing
Systems Workshops (ICDCSW ’13), pp. 238-243, IEEE, Philadel-
phia, Pa, USA, July 2013.

14

[8] S.Fang, R. Kanagavelu, B.-S. Lee, C. H. Foh, and K. M. M. Aung,
“Power-efficient virtual machine placement and migration in
data centers,” in Proceedings of the IEEE Green Computing
and Communications (GreenCom ’13), and IEEE International
Conference on Internet of Things, and IEEE Cyber, Physical and
Social Computing (iThings/CPSCom ’13), pp. 1408-1413, Beijing,
China, August 2013.

T. Ferreto, C. A. F De Rose, and H.-U. Heiss, “Maximum
migration time guarantees in dynamic server consolidation for
virtualized data centers,” in Euro-Par 2011 Parallel Processing,
vol. 6852 of Lecture Notes in Computer Science, pp. 443-454,
Springer, Berlin, Germany, 2011.

[10] D. Dong and J. Herbert, “Energy efficient VM placement
supported by data analytic service,” in Proceedings of the
13th IEEE/ACM International Symposium on Cluster, Cloud,
and Grid Computing (CCGrid ’13), pp. 648-655, Delft, The
Netherlands, May 2013.

[11] I. S. Moreno, R. Yang, J. Xu, and T. Wo, “Improved energy-
efficiency in cloud datacenters with interference-aware virtual
machine placement,” in Proceedings of the 1Ith IEEE Inter-
national Symposium on Autonomous Decentralized Systems
(ISADS ’13), pp. 1-8, IEEE, Mexico City, Mexico, March 2013.

W. Shi and B. Hong, “Towards profitable virtual machine place-
ment in the data center,” in Proceedings of the 4th IEEE/ACM
International Conference on Cloud and Utility Computing (UCC
11), pp- 138-145, New South Wales, Australia, December 2011.

[13] K. Maruyama, S. K. Chang, and D. T. Tang, “A general packing
algorithm for multidimensional resource requirements,” Inter-
national Journal of Computer and Information Sciences, vol. 6,
no. 2, pp. 131-149, 1977,

[14] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics
for vector bin packing,” research. microsoft.com, 2011.

[15] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif, “Sand-
piper: Black-box and gray-box resource management for virtual
machines,” Computer Networks, vol. 53, no. 17, pp. 2923-2938,
20009.

[16] M. Mishra and A. Sahoo, “On theory of vm placement:
anomalies in existing methodologies and their mitigation using
a novel vector based approach,” in Proceedings of the IEEE 4th
International Conference on Cloud Computing (CLOUD ’11), pp.
275-282, IEEE, Washington, DC, USA, July 2011.

[17] B. Li, J. Li, J. Huai, T. Wo, Q. Li, and L. Zhong, “EnaCloud:
an energy-saving application live placement approach for cloud
computing environments,” in Proceedings of the IEEE Interna-
tional Conference on Cloud Computing (CLOUD "09), pp. 17-24,
IEEE, Bangalore, India, September 2009.

G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C.
Pu, “Generating adaptation policies for multi-tier applications
in consolidated server environments,” in Proceedings of the 5th
International Conference on Autonomic Computing (ICAC °08),
pp. 23-32, IEEE, Chicago, IlI, USA, June 2008.

[19] E. Falkenauer, “A hybrid grouping genetic algorithm for bin
packing;” Journal of Heuristics, vol. 2, no. 1, pp. 5-30, 1996.

[20] B. Brugger, K. E Doerner, R. E Hartl, and M. Reimann,
“AntPacking—an ant colony optimization approach for the one-
dimensional bin packing problem,” in Evolutionary Computa-
tion in Combinatorial Optimization, vol. 3004 of Lecture Notes in
Computer Science, pp. 41-50, Springer, Berlin, Germany, 2004.

[21] P. Rohlfshagen and J. A. Bullinaria, “A genetic algorithm
with exon shuffling crossover for hard bin packing problems,”
in Proceedings of the 9th Annual Genetic and Evolutionary

=

[12

=
2

[22]

'~
=

[26]

(27]

(31]

(33]

(34]

Advances in Fuzzy Systems

Computation Conference (GECCO ’07), pp. 1365-1371, London,
UK, July 2007.

A. Shubham, S. K. Bose, and S. Sundarrajan, “Grouping genetic
algorithm for solving the serverconsolidation problem with
conflicts,” in Proceedings of the Ist ACM/SIGEVO Summit on
Genetic and Evolutionary Computation, pp. 1-8, ACM, 2009.

J. Xuand]J. A. B. Fortes, “Multi-objective virtual machine place-
ment in virtualized data center environments,” in Proceedings
of the IEEE/ACM Int’l Conference on Green Computing and
Communications (GreenCom ’10) & Int’l Conference on Cyber,
Physical and Social Computing (CPSCom ’10), pp. 179-188, IEEE,
Hangzhou, China, December 2010.

D. Wilcox, A. McNabb, and K. Seppi, “Solving virtual machine
packing with a reordering grouping genetic algorithm,” in
Proceedings of the IEEE Congress of Evolutionary Computation
(CEC’11), pp. 362-369, IEEE, New Orleans, La, USA, June 2011.

E. Feller, L. Rilling, and C. Morin, “Energy-aware ant colony
based workload placement in clouds,” in Proceedings of the 12th
IEEE/ACM International Conference on Grid Computing (Grid
1), pp- 26-33, Lyon, France, September 2011.

K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-
placement algorithms for on-demand clouds,” in Proceedings
of the 3rd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 1), pp. 91-98, IEEE, Athens,

Greece, December 2011.

Y. Wu, M. Tang, and W. Fraser, “A simulated annealing
algorithm for energy efficient virtual machine placement,” in
Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics (SMC ’12), pp. 1245-1250, IEEE, Seoul,
South Korea, October 2012.

S. Luke, Essentials of Metaheuristics, Lulu, 2nd edition, 2013,
https://cs.gmu.edu/~sean/book/metaheuristics/.

A. C. Adamuthe, R. M. Pandharpatte, and G. T. Thampi, “Mul-
tiobjective virtual machine placement in cloud environment,”
in Proceedings of the International Conference on Cloud and
Ubiquitous Computing and Emerging Technologies (CUBE ’13),
pp- 8-13, IEEE, Pune, India, November 2013.

S. Wang, Z. Liu, Z. Zheng, Q. Sun, and E Yang, “Particle swarm
optimization for energy-aware virtual machine placement opti-
mization in virtualized data centers,” in Proceedings of the
19th IEEE International Conference on Parallel and Distributed
Systems (ICPADS ’13), pp. 102-109, IEEE, Seoul, South Korea,
December 2013.

Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in
cloud computing,” Journal of Computer and System Sciences, vol.
79, no. 8, pp. 1230-1242, 2013.

E L. Lopez Pires, E. Melgarejo, and B. Baran, “Virtual machine
placement. A multi-objective approach,” in Proceedings of the
39th Latin American Computing Conference (CLEI ’13), pp. 1-8,
IEEE, Naiguata, Venezuela, October 2013.

M. A. Tawfeek, A. B. El-Sisi, A. E. Keshk, and E A. Torkey,
“Virtual machine placement based on ant colony optimization
for minimizing resource wastage,” in Advanced Machine Learn-
ing Technologies and Applications, pp. 153-164, Springer, Basel,
Switzerland, 2014.

C. T. Joseph, K. B. Chandrasekaran, and R. Cyriaca, “A novel
family genetic approach for virtual machine allocation,” in
Proceedings of the International Conference on Information and
Communication Technologies, Kochi, India, December 2014.

Advances in Fuzzy Systems

(35]

(36]

(37]

(38]

(39]

(48]

(49]

M. Tang and S. Pan, “A hybrid genetic algorithm for the energy-
efficient virtual machine placement problem in data centers,
Neural Processing Letters, vol. 41, no. 2, pp. 211-221, 2015.

A. Layeb and Z. Benayad, “A novel firefly algorithm based
ant colony optimization for solving combinatorial optimization
problems,” International Journal of Computer Science and Appli-
cations, vol. 11, no. 2, article 19, 2014.

X.-S. Yang, “Firefly algorithms for multimodal optimization,” in
Stochastic Algorithms: Foundations and Applications, vol. 5792 of
Lecture Notes in Computer Science, pp. 169-178, Springer, Berlin,
Germany, 2009.

X.-S. Yang, “Firefly algorithm, stochastic test functions and
design optimisation,” International Journal of Bio-Inspired Com-
putation, vol. 2, no. 2, pp. 78-84, 2010.

X. S. Yang and X. He, “Firefly algorithm: recent advances and
applications,” International Journal of Swarm Intelligence, vol. 1,
no. 1, pp. 36-50, 2013.

Y. Gao, H. Guan, Z. Qi, and B. Wang, “An ant colony system
algorithm for the problem of server consolidation in virtualized
data centers,” Journal of Computational Information Systems,
vol. 8, no. 16, pp. 6631-6640, 2012.

A. A. Alsawy and H. A. Hefny, “Fuzzy-based ant colony
optimization algorithm,” in Proceedings of the 2nd International
Conference on Computer Technology and Development (ICCTD
’10), pp. 530-534, IEEE, Cairo, Egypt, November 2010.

W. Elloumi, N. Baklouti, A. Abraham, and A. M. Alimi, “The
multi-objective hybridization of particle swarm optimization
and fuzzy ant colony optimization,” Journal of Intelligent &
Fuzzy Systems. Applications in Engineering and Technology, vol.
27, no. 1, pp. 515-525, 2014.

L. Gacogne and S. Sandri, “A study on ant colony systems with
fuzzy pheromone dispersion,” in Proceedings of the Interna-
tional Conference on Information Processing and Management of
Uncertainty (IPMU "08), vol. 8, p. 812, Malaga, Spain, 2008.

J. Van Ast, R. Babuska, and B. De Schutter, “Fuzzy ant colony
optimization for optimal control,” in Proceedings of the Amer-
ican Control Conference (ACC °09), pp. 1003-1008, IEEE, St.
Louis, Mo, USA, June 2009.

C.-W. Tao, J.-S. Taur, J.-T. Jeng, and W.-Y. Wang, “A novel
fuzzy ant colony system for parameter determination of fuzzy
controllers,” International Journal of Fuzzy Systems, vol. 11, no.
4, pp. 298-307, 2000.

S.J. Narayanan, I. Paramasivam, R. B. Bhatt, and M. Khalid, “A
study on the approximation of clustered data to parameterized
family of fuzzy membership functions for the induction of fuzzy
decision trees,” Cybernetics and Information Technologies, vol.
15, no. 2, pp. 75-96, 2015.

R. B. Bhatt, S. J. Narayanan, I. Paramasivam, and M. Khalid,
“Approximating fuzzy membership functions from clustered
raw data,” in Proceedings of the Annual IEEE India Conference
(INDICON °’12), pp. 487-492, 1IEEE, Kochi, India, December
2012.

S. M. Sait, A. Bala, and A. H. El-Maleh, “Cuckoo search based
resource optimization of datacenters,” Applied Intelligence, vol.
44, n0. 3, pp. 489-506, 2016.

J. A. Khan and S. M. Sait, “Fuzzy aggregating functions for
multiobjective VLSI placement,” in Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ-IEEE "02),
vol. 2, pp. 831-836, IEEE, Honolulu, Hawaii, USA, May 2002.

15

= _'A'. ' N - -
Advances in b ,“ . e industal Engineering
iR, ARINE - -
L& s S . Applied
. - o Computational

Intelligence and Soft
Ep/mputing—'

The Scientific ISR —
World Journal Sensor Networks

Advances in

Fuzzy

Modelling &
Simulation
in Engineering

o

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications P eEsl

Artificial
Intelligence

Advances in
jomedical Imaging. M Artificial
‘ol Neural Systems

s

International Journal of
Computer Games 5 in
Technology oy re Engineering

Reconfigurable
Computing

Computational o
Journal of ¢ Hu;jja[)TCOrjj|3L|tey‘ \ntengence and 2 Electrical and Computer
Robotics Interaction Neuroscience Engineering

SN

