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 

 

Abstract— Fog and Mobile-Edge Computing (FMEC) is a 

sustainable and innovative mobile networking framework that 

enables the offloading of cloud services and resources at the edge 

of mobile cellular networks to provide high bandwidth and 

ultra-low latency. Nonetheless, how to handle several dynamically 

varying security services with the mobile user’s requirements 

efficiently is a critical problem that hinders the development of 

FMEC. To address this problem, we sought to introduce an 

approach to selecting an appropriate security service as per the 

mobile user requirements in FMEC. The problem of appropriate 

security service selection with hesitant fuzzy information is a 

multi-criteria decision making problem. In this paper, we 

introduce a Soft Hesitant Fuzzy Rough Set (SHFRS) to solve 

multi-criteria decision making problems. SHFRS is introduced as 

an innovative extension of the hesitant fuzzy rough set theory by 

fusing it with the hesitant fuzzy soft set. We describe the inverse 

hesitant fuzzy soft set that defines the inverse hesitant fuzzy 

relation to determine the SHFRS upper and lower approximation 

operators of any hesitant fuzzy subset in the given set of 

parameters. We also present different special cases of SHFRS 

upper and lower approximation operators and discuss some 

fundamental theorems based on approximation operators. In 

addition, we propose a novel solution to multi-criteria decision 

making problems based on SHFRS. Finally, we assess the 

proposed solution by applying it to a real-time multi-criteria 

decision making problem of appropriate security service selection 

for FMEC in the existence of multi-observer hesitant fuzzy 

information. 

 

Index Terms— Fog and mobile-edge computing, hesitant 

fuzzy set, hesitant fuzzy soft set, rough set, decision making. 

 

I. INTRODUCTION 

ith the increasing number of mobile terminals, an 

explosive growth in global mobile traffic has been 

observed. According to a report from Cisco, a 74% growth in 

mobile traffic was recorded in 2015; this is expected to increase 

further by approximately eight times from 2016 to 2020 [1]. 

Nevertheless, the greater demands of mobile network services 

due to the increasing amount of mobile traffic cannot be 

accommodated by the conventional infrastructure of mobile 

 

 
 

networking due to lack of energy efficiency. To overcome this 

problem, the concept of Fog and Mobile-Edge Computing 

(FMEC) has been introduced as a sustainable and innovative 

mobile networking framework [2]. FMEC puts cloud 

computing capabilities such as resources and services within 

the access network, i.e., near the users of mobile. Thanks to its 

proximity to mobile users, it provides direct access to the 

available resources and services with high bandwidth and 

ultra-low latency. Moreover, FMEC increases the response of 

services, content, and application from the network edge and 

enriches the experience of the mobile user. 

 With the increasing expansion of mobile network such as 

FMEC, the need for security of mobile traffic is becoming 

critical. Note, however, that few research works focusing on 

real-time and dynamic varying security services to identify the 

different security needs in FMEC have been done. Kanghyo 

Lee et al. [3] discussed various privacy and security issues in 

FMEC in the context of a cloud-based Internet of Things (IoT) 

environment. The discussion provides the categorization of 

various security technologies to secure various network 

components such as IoT node, Fog node (i.e., FMEC server), 

and communication between fog nodes. Ivan Stojmenovic et al. 

[4] studied the various security challenges of FMEC in the 

context of other technologies such as wireless sensor network, 

smart traffic, smart grid, and so on. Similarly, other researches 

such as [5] discussed the security needs and challenges in 

mobile-edge computing. These researches mainly provide the 

privacy and security implications of FMEC and do not offer 

adequate solutions to alleviate all the security issues and 

challenges specifically while considering the collaboration of 

mobile-edge computing with other technologies, such as 

software-defined networking. 

 Therefore, our research sought to introduce an innovative 

approach to security service selection to select optimal security 

services as per the mobile user requirements in the FMEC 

environment. In the security service selection approach, the 

selection of optimal security service among several available 

security services with overlapping functionalities is carried out 

based on various Quality of Service (QoS) parameters such as 

processing delay and CPU usage. This is because optimal 

security service selection is a decision making problem that 

depends on multiple QoS criteria to satisfy the mobile user 
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requirements. Therefore, to choose the optimal security service, 

it comes up with multi-criteria decision making based on Fuzzy 

logic that ranks the security services according to their 

functionalities based on multiple QoS criteria. Recently, a 

Fuzzy based security service chaining approach to find the 

optimal order of the necessary security services in FMEC. The 

approach established a Fuzzy Inference System (FIS) based 

scheme to obtain the goal of multi-criteria decision making [5]. 

However, in fuzzy-based multi-criteria decision making 

problems, it is challenging for decision making experts to come 

up with a final decision because there are always uncertainties 

in their choice of objects. We can consider a case wherein the 

degree of membership for a given object in a set is defined by 

two experts. The degree of membership defined by the first 

expert is 0.5, but the other expert defines it as 0.7. Here, the 

trouble in defining a collective degree of membership for the 

object does not arise due to some possibility distribution values 

[6] or a margin of error [7], [8]. Rather, it occurs due to the 

hesitation of experts among a set of possible values. Recently, 

Vicenc Torra et al. [9], [10] proposed the idea of a hesitant 

fuzzy set in order to handle the issue of hesitation. A Hesitant 

Fuzzy Set (HFS) is an extension of a fuzzy set that supports 

assigning the degree of membership to an object in a set as 

multiple values between 0 and 1. Hesitant information can be 

expressed more comprehensively by using HFS instead of other 

forms of fuzzy sets. To tackle the problem of hesitant 

information, many researchers [11], [12], [13] have introduced 

the idea and its application in decision making (for example, in 

multi-criteria decision making problems [13], where an optimal 

alternative is evaluated from several available alternatives 

according to multiple criteria).  

   In a different vein, D. Molodtsov et al. [14] introduced a new 

mathematical model called a soft set, which handles 

uncertainties that are open to the inadequacies of 

parameterization tools. It has applications in several different 

areas, including the probabilistic model, Perron integration, 

Riemann integration, operations research, game theory, 

smoothness of functions, and forecasting method [15], [16]. 

Pabitra Kumar Maji et al. [16] first used the concept of a soft set 

to solve the problem of decision making. In the past few years, 

many researchers have established a new extension of a soft set 

called fuzzy soft set by applying the theory of soft set in the 

fuzzy environment.  Pabitra Kumar Maji et al. [17] first 

introduced the fuzzy soft set theory by merging the fuzzy 

concept with the soft set theory. Naim Cagman et al. [18] 

described the aggregation operator for a fuzzy soft set. Irfan 

Deli. et al. [19] defined a intuitionistic fuzzy parameterized soft 

sets and provided the application of this set to the decision 

making problem. Akhil Ranjan Roy et al. [20] and Feng Feng et 

al. [21] also applied a fuzzy soft set to the problems of decision 

making. José Carlos R. Alcantud et al. [22] solved the 

decision-making problem in the existence of sets of input 

parameters from multi-observers using a novel method of fuzzy 

soft set. The research of Fuqiang Wang et al. [23] presented a 

hesitant fuzzy soft set theory by applying a soft set concept in 

the hesitant fuzzy environment. They also defined intersection, 

union, “OR,” “AND,” and complement operations in this set. 

Hai-dong Zhang et al. [24] combined the soft set theory and 

dual hesitant fuzzy set theory and defined the dual hesitant 

fuzzy soft set. 

   To handle uncertainty, vagueness, and imprecision in data 

analysis, Zdzisław Pawlak et al. [25], [26] first introduced a 

new mathematical model that works on the key notion of an 

equivalence relation and is called a rough set. Nevertheless, in 

numerous real-world problems, the frequent utilization of the 

equivalence relation is too restrictive. Hence, many researchers 

have used non-equivalence relations in rough sets and 

expanded rough set models, which have been used in numerous 

areas (for example, in expert systems, intelligent 

decision-making systems, and machine learning). Many 

researchers [27], [28], [29] applied the notion of a rough set in 

the fuzzy environment and developed several extended rough 

set models. Moreover, the theory of rough set has also been 

combined with the theory of interval-valued fuzzy set, 

intuitionistic fuzzy set, and hesitant fuzzy set and several new 

rough set models have been developed. 

 Recently, Xibei Yang et al. [30] combined the rough set 

theory with the hesitant fuzzy set and proposed a hesitant fuzzy 

rough set. They also defined various monotonic properties for 

their proposed set. Haidong Zhang et al. [31] and Chao Zhang 

et al. [32] recommended different types of extensions for the 

hesitant fuzzy rough set and applied them to various problems 

of decision making, such as medical diagnosis and the fault 

diagnosis of steam turbines. 

 In this paper, we propose a novel extension of the hesitant 

fuzzy rough set theory [30] by fusing it with the hesitant fuzzy 

soft set -- called the Soft Hesitant Fuzzy Rough Set (SHFRS) -- 

to support multi-criteria decision making for security service 

selection in the FMEC environment. To define SHFRS, we first 

describe the inverse hesitant fuzzy soft set by inversing the 

mapping (from the set of parameters 𝒬  to the universe of 

objects  𝑋) defined in the hesitant fuzzy soft set. Actually, a 

hesitant fuzzy soft set over universe set 𝑋 is described as a 

mapping from parameters (𝒬) to the set of all hesitant fuzzy sets 

in 𝑋. On the other hand, an inverse hesitant fuzzy soft set is 

defined as a mapping from the universe of objects 𝑋 to the set 

of all hesitant fuzzy sets in 𝒬. According to the definitions of 

both sets (hesitant fuzzy soft set and inverse hesitant fuzzy soft 

set), we can easily determine that they define a hesitant fuzzy 

relation between the set of parameters (𝒬) and set of objects 

(𝑋) . Subsequently, it is already known that the traditional 

hesitant fuzzy rough set describes the hesitant fuzzy relation of 

universe 𝑋  [30]. Therefore, we can use the hesitant fuzzy 

relation described by the inverse hesitant fuzzy soft set in the 

traditional hesitant fuzzy rough set and define a new SHFRS 

with upper and lower approximations of any hesitant fuzzy set 

𝕂 ∈ 𝐻𝐹𝑆(𝒬)  with respect to triple (𝑋,  𝒬, 𝒟̃−1) , where 

𝐻𝐹𝑆(𝒬) represents a set of all hesitant fuzzy sets in 𝒬, and 𝒟̃−1 

is a hesitant fuzzy relation defined by an inverse hesitant fuzzy 

soft set. Similarly, the traditional hesitant fuzzy rough set, 

SHFRS, can be used for solving decision making problems. As 

such, we also introduce a novel decision making method based 

on the SHFRS theory. 
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 The rest of this paper is organized as follows: Section II 

describes the hesitant fuzzy set theory and its fusion with the 

soft set and rough set theories; Section III introduces SHFRS 

and discusses some of its fundamental properties & theorems in 

detail; Section IV presents a novel solution for the multi-criteria 

decision making problem based on our proposed SHFRS theory, 

gives the stepwise procedure of the provided solution, and 

presents a security service selection approach for FMEC; 

Finally, Section V presents our conclusion. 

II. PRELIMINARIES  

 In this Section, we briefly discuss the hesitant fuzzy set 

theory and its properties. The fundamental notion of soft and 

rough sets is also described, and some existing concepts related 

to the fusion of the hesitant fuzzy set theory with the soft set 

and rough set theories are defined.  

A. Hesitant fuzzy set 

 The research of Vicenc Torra et al. [9], [10] first presented 

the idea of the hesitant fuzzy set, which is defined below. 

 

Definition 1 (See [9], [10]): For a given universe of 

discourse 𝑋, hesitant fuzzy set ℱ on 𝑋 is defined in the form of 

function ℎℱ(𝑣) that takes input from 𝑋 and returns a set of 

values between 0 and 1. The mathematical definition of hesitant 

fuzzy set is provided below. 

ℱ = {〈𝑣,  ℎℱ(𝑣)〉|𝑣 ∈ 𝑋} 

Where ℎℱ(𝑣) is a hesitant fuzzy element (HFE) containing a 
set of values between 0 and 1, which indicates the probable 

degrees of membership for element 𝑣 ∈ 𝑋  to ℱ . We can 

describe all possible hesitant fuzzy sets in 𝑋 by using a set 

represented by 𝐻𝐹𝑆(𝑋). Moreover, Vicenc Torra et al. [10] 

described the null and full hesitant fuzzy sets as explained 

below. 

 Definition 2 (See [6]): Hesitant fuzzy set ℱ is defined as a 

null hesitant fuzzy set if ℱ(𝑣) = {0} for every 𝑣 in 𝑋. This type 

of set is denoted by ∅. In contrast, ℱ is defined as a full hesitant 

fuzzy set, if ℎℱ(𝑣) = {1} for every 𝑣 in 𝑋. This type of set is 

denoted by 𝐿. 

 Vicenc Torra et al. [9], [10] introduced the basic operations 

below to deal with HFEs. Let three HFEs be 𝒽, 𝒽1, and 𝒽2. 

Then: 

 

(1)  ~𝒽 = ⋃  {1 − 𝛽}𝛽∈𝒽 , 

(2)  𝒽1 ∨ 𝒽2 = ⋃ max {𝛽1,  𝛽2}𝛽1∈𝒽1 ,  𝛽2∈𝒽2
, 

(3)  𝒽1 ∧ 𝒽2 = ⋃ min{𝛽1,  𝛽2}𝛽1∈𝒽1  , 𝛽2∈𝒽2
. 

 

Here, operations ∨, ∧, and ~ are referred to as the Supremum, 

Infimum, and complement operations on HFEs, respectively.   

 Meimei Xia et al. [33] introduced a score function in order to 

carry out the comparison of HFEs under the following 

assumption: 

(a) The values in all the HFEs selected for comparison should 

be in increasing order. 

(b) The length of all HFEs for comparison should be the same. 

Thus, if the length of any two HFEs is different, the HFE with 

shorter length is expanded with the addition of maximum 

values until the lengths of two HFEs are equal.  

 

 Definition 3 (See [33]): If ℰ is a given HFE, then the score of 

ℰ is computed using the following function: 

𝑠𝑐𝑟(ℰ) = (1/𝑙(ℰ)) ∑ 𝛽
𝛽∈ℰ

 

Where 𝑙(ℰ) is the number of values in ℰ 

 For two HFEs ℰ1 and ℰ2 

𝑖𝑓 𝑠𝑐𝑟(ℰ1) > 𝑠𝑐𝑟(ℰ2), 𝑡ℎ𝑒𝑛 ℰ1 > ℰ2, 

𝑖𝑓 𝑠𝑐𝑟(ℰ1) = 𝑠𝑐𝑟(ℰ2), 𝑡ℎ𝑒𝑛 ℰ1 = ℰ2. 

B. Soft set and its fusion with a hesitant fuzzy set 

 In this subsection, we discuss the fundamental theory of a 

soft set and its fusion with a hesitant fuzzy set. Let us assume 

two sets 𝑋 and 𝒬, where 𝑋 describes the set of objects in the 

universe and 𝒬 denotes the set of parameters. The power set of 

𝑋 is denoted as 𝒫(𝑋). According to D. Molodtsov et al. [14], a 

soft set over 𝑋 is defined as follows: 

 

 Definition 4 (See [14]): A soft set over 𝑋 is defined as pair 

(𝒟, 𝒦), where 𝒦 ⊆ 𝒬 and 𝒟 describes the mapping from 𝒦 to 

𝑋, which is given by 𝒟 ∶ 𝒦 → 𝒫(𝑋). 

 In other form, a soft set (𝒟, 𝒦) over universe 𝑋 is defined as 

a parametric group of subsets of universe 𝑋. For each 𝑞 ∈ 𝒦, 

𝒟(𝑞) is examined as a subset of 𝑋 approximated by 𝑞 or the 

collection of 𝑞-approximated elements of the soft set (𝒟, 𝒦). 
We present a real-time example of soft set as follows: 

 

 Example 1: Let 𝑋 = {𝑣1, 𝑣2, 𝑣3, 𝑣4}  be a universe of 

computers, and 𝒦 holds the parameters {𝑞1, 𝑞2, 𝑞3} that define 

the characteristics of computers. Parameter 𝑞1 stands for “high 

speed,” 𝑞2  describes “high storage,” and 𝑞3  stands for “low 

power consumption.” Therefore, 𝒟(𝑞1) = {𝑣1, 𝑣2, 𝑣3}  means 

that computers with high speed are 𝑣1, 𝑣2, 𝑣3 . Similarly, 

𝒟(𝑞2) = {𝑣2, 𝑣4}  and  𝒟(𝑞3) = {𝑣1, 𝑣3,𝑣4}  define the 

computers with high storage and low power consumption as 

𝑣2, 𝑣4 and 𝑣1, 𝑣3, 𝑣4, respectively. 

 Many researchers have studied the soft set and its related 

concept. Pabitra Kumar Maji et al. [34] defined various 

operations on soft set (for example, union, intersection) and the 

concept of soft supersets and subsets. Sani Danjuma et al.  [35] 

recommended normal parameter reduction algorithm for soft 

set. Moreover, Feng Feng et al. [36] investigated several forms 

of soft subsets and explored the relationship among them. 

Qinrong Feng et al. [37], Naim Çağman et al. [38], and Pabitra 

Kumar Maji et al. [16] described various methods of solving 
decision making problems using a soft set. Recently, Fuqiang 

Wang et al. [23] described the combination of the traditional 

soft set with a hesitant fuzzy set. The resultant set is called a 

hesitant fuzzy soft set and is defined using the definition below. 

 

 Definition 5 (See [23]): A hesitant fuzzy soft set over 𝑋 is 

defined as pair (𝒟̃, 𝒦), where 𝒦 ⊆ 𝒬 , and 𝒟̃  describes the 
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mapping from 𝒦 to 𝑋, which is given by 𝒟̃ ∶ 𝒦 → 𝐻𝐹𝑆(𝑋). 

Here, HFS(X) represents the set of all hesitant fuzzy sets in X. 

 Ideally, a hesitant fuzzy soft set on 𝑋 is defined as a mapping 

from parameters to the set of all hesitant sets in 𝑋. In other 

words, it is a parametric group of hesitant fuzzy subsets of 𝑋. 

For each 𝑞 ∈ 𝒦, 𝒟̃(𝑞) is examined as a hesitant fuzzy subset of 

𝑋 , which is approximated by 𝑞 . In general,  𝒟̃(𝑞) = {(𝑣,
𝒟̃(𝑞)(𝑣))|𝑣 ∈ 𝑋}. 

 As already defined in [14], [23], when both universal set 𝑋 

and parameter set 𝒦 ⊆ 𝒬 are finite, then soft sets and hesitant 
fuzzy soft sets can be represented in table format, where each 

row describes an object in 𝑋  and each column describes a 

parameter in 𝒦. Each cell of the table that represents a soft set 

contains either 0 or 1, whereas each cell of the table that 

represents a hesitant fuzzy soft set contains a set of values 

between 0 and 1, indicating the probable degrees of 

membership for an object. 

 Fuqiang Wang et al. [23] described the AND  (∧) operation 
on a hesitant fuzzy soft set as follows: 

 

  Definition 6 (See [23]): Consider (𝒜̃,   𝒦) and  (ℬ̃,  ℒ) as 

two hesitant fuzzy soft set; then the AND operation of these two 

sets is represented as (𝒜̃,   𝒦) ∧ (ℬ̃,  ℒ)  and can be defined 
using the following mathematical expression:  

(𝒜̃,   𝒦) ∧ (ℬ̃,  ℒ) = (ℛ̃, 𝒦 × ℒ) 

 Where  ℛ̃(𝑎, 𝑏) = 𝒜̃(𝑎) ∩ ℬ̃(𝑏), for all (𝑎, 𝑏) ∈  𝒦 × ℒ. 

C. Rough set and its fusion with hesitant fuzzy set 

 In this subsection, we discuss the fundamental theory of a 

rough set and its fusion with a hesitant fuzzy set. Let us assume 

two sets 𝑋 and 𝒬, where 𝑋 describes the set of objects in the 

universe and 𝒬 denotes the set of parameters. The power set of 

𝑋 is denoted as 𝒫(𝑋). According to Y.Y. Yao et al. [39] and 

Wei-Zhi Wu et al. [40], a rough set over 𝑋 is defined as stated 
below. 

 

   Definition 7 (See [39], [40]): If  𝒢  is an arbitrary crisp 

relation from 𝑋  to 𝒬 , then, 𝒢𝑠 ∶ 𝑋 → 𝒫(𝒬)  is a set-valued 

function and is described using the following mathematical 

expression: 

𝒢𝑠(𝑣) = {𝑤 ∈ 𝒬|(𝑣,  𝑤) ∈ 𝒢},    𝑣 ∈ 𝑋 

  𝒢𝑠(𝑣)  is identified as a successor neighborhood of 𝑣  for 

crisp relation 𝒢 . The triple (𝑋, 𝒬, 𝒢)  is called a generalized 

crisp approximation space. Upper approximation 𝒢(𝒦)  and 

lower approximation 𝒢(𝒦) of any set 𝒦 ⊆ 𝒬 with respect to 

triple (𝑋, 𝒬, 𝒢) are computed using the following expression: 

𝒢(𝒦) = {𝑣 ∈ 𝑋|𝒢𝑠(𝑣) ∩ 𝒦 ≠ ∅}, 

𝒢(𝒦) = {𝑣 ∈ 𝑋|𝒢𝑠(𝑣) ⊆ 𝒦}. 

 Finally, a generalized crisp rough set of any set 𝒦 ⊆ 𝒬 with 

respect to triple (𝑋, 𝒬, 𝒢)  is defined as pair (𝒢(𝒦), 𝒢(𝒦)), 

where 𝒢 and  𝒢 are called upper and lower generalized crisp 

approximation operators, respectively. 

 Haidong Zhang et al. [31] described the fusion of a 

traditional rough set with a hesitant fuzzy set. The resultant set 

is called a hesitant fuzzy rough set and is defined using the 
following notion: 

 

   Definition 8 (See [31]): Let 𝔾 be a hesitant fuzzy relation 

from 𝑋 to 𝒬; then, a hesitant fuzzy approximation space over 𝑋 

and 𝒬  is defined as triple (𝑋,  𝒬,  𝔾) . Upper approximation 

𝔾(𝕂) and lower approximation 𝔾(𝕂) of any set 𝕂 ∈ 𝐻𝐹𝑆(𝒬) 

with respect to triple (𝑋, 𝒬, 𝔾)  are computed using the 

following expression: 

𝔾(𝕂) = {〈𝑣,  ℎ𝔾(𝕂)(𝑣)〉 |𝑣 ∈ 𝑋}, 

𝔾(𝕂) = {〈𝑣,  ℎ𝔾(𝕂)(𝑣)〉 |𝑣 ∈ 𝑋}, 

Where 

ℎ𝔾(𝕂)(𝑣) =∨𝑤∈ 𝒬 {ℎ𝔾(𝑣, 𝑤) ∧ ℎ𝕂(𝑤)},   𝑣 ∈ 𝑋 

ℎ𝔾(𝕂)(𝑣) =∧𝑤∈ 𝒬 {(1 − ℎ𝔾(𝑣,  𝑤)) ∨ ℎ𝕂(𝑤)},     𝑣 ∈ 𝑋 

 Finally, a hesitant fuzzy rough set of any set 𝕂 ∈ 𝐻𝐹𝑆(𝒬) 

with respect to triple (𝑋, 𝒬, 𝔾)  is defined as pair (𝔾(𝕂),

𝔾(𝕂)), where 𝔾 and  𝔾 are called upper and lower hesitant 

fuzzy rough approximation operators, respectively. If we 

assume that 𝑋 = 𝒬, then the resultant set is called a hesitant 

fuzzy rough set over the same universe as defined by Xibei 

Yang et al. [30].   

III. SOFT HESITANT FUZZY ROUGH SET: A NOVEL PROPOSED SET 

 After describing the fundamental definition and concept of 

hesitant fuzzy soft set and hesitant fuzzy rough set, in this 

section, we combine the concepts of these two sets and 
introduce an innovative notion of hesitant fuzzy rough set based 

on a hesitant fuzzy soft set called SHFRS.      

 As we have already discussed, the soft set describes each 

object 𝑣𝑖  in universe 𝑋  by defining it in object set 𝒟(𝑞) 

corresponding to any parameter 𝑞 ⊆ 𝒦. This is illustrated in 

example 1, where we define object set 𝒟(𝑞2) = {𝑣2, 𝑣4}  that 

describes computers 𝑣2  and 𝑣4 , which hold parameter 𝑞2 

(“high storage”). Contrary to the soft set, we can consider a 

general problem wherein one wants to know that what are the 

characteristics or parameters that computer 𝑣𝑖 ∈ 𝑋  has. To 

describe this problem, we first present the following notion of 

an inverse soft set: 

 

 Definition 9: An inverse soft set over 𝑋 is defined as pair 

(𝒟−1, 𝒦), where 𝒦 ⊆ 𝒬 and 𝒟−1 describes the mapping from 

𝑋 to 𝒦  given by 𝒟−1 ∶ 𝑋 → 𝒫(𝒦). Here, 𝒫(𝒦) denotes the 

power set of parameter set 𝒦. 

 From the definition above, an inverse soft set over 𝑋 maps 

each object 𝑣 ∈ 𝑋  with the group of parameters 𝑝 ∈ 𝒫(𝒦) 

held by object 𝑣 . To illustrate this, we present a real-time 

decision making problem as follows: 

 

 Example 2: Assume that a person wants to purchase a 

computer from a shop. Let 𝑋 = {𝓅𝒞1, 𝓅𝒞2, 𝓅𝒞3, 𝓅𝒞4, 𝓅𝒞5} , 
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which is a set of five computers with various characteristics. 

Suppose that the characteristics of all computers in set 𝑋 is 

defined by a set of 𝒦 = {𝓆1, 𝓆2, 𝓆3, 𝓆4, 𝓆5, 𝓆6, 𝓆7} parameters, 

where 𝓆1, 𝓆2, 𝓆3, 𝓆4, 𝓆5, 𝓆6, 𝑎𝑛𝑑 𝓆7  stand for high capacity, 

high storage, high versatility, high diligence, high accuracy, 
high speed, and low power consumption, respectively. For the 

evaluation of an optional computer under the consideration of 

the given parameter, we define soft set (𝒟, 𝒦) that depicts the 

“efficiency of the computer” that the person wants to purchase. 

The defined soft set (𝒟, 𝒦) for this example is shown in Table 

1. 

 Contrary to the soft set (𝒟, 𝒦), if the person wants to know 

what are the characteristics or parameters of an optional 

computer that he/she is going to purchase, then we define an 

inverse soft set (𝒟−1, 𝒦) that depicts the following results: 

𝒟−1(𝓅𝒞
1

) = {𝓆
1

, 𝓆
4

, 𝓆
7

} , 𝒟−1(𝓅𝒞
2

) = {𝓆
1

, 𝓆
4

, 𝓆
5

} , 

𝒟−1(𝓅𝒞
3

) = {𝓆
2

},        𝒟−1(𝓅𝒞
4

) = {𝓆
3

, 𝓆
4

, 𝓆
6

},   𝒟−1(𝓅𝒞
5
) =

{𝓆
1

, 𝓆
5

, 𝓆
6

} 

 The expression 𝒟−1(𝓅𝒞1) = {𝓆1, 𝓆4, 𝓆7}  denotes that 

computer 𝓅𝒞1 define with three characteristics: high capacity, 

high storage, and low power consumption. Similarly, other 

expression can be described.  

 As clearly shown in Example 2 and Definition 9, an inverse 

soft set describes another way of representing the relationship 

between parameter set 𝒦 and universe 𝑋 of objects. With the 
notion of an inverse soft set, the basic characteristics of a given 

object 𝑣𝑖 ∈ 𝑋 can be described by determining each parameter 

𝑞𝑖 ∈ 𝒦 that belongs to the given object. 

 
Table 1. Representation of soft set (𝒟, 𝒦) in table format (in Example 

2) 

     𝒦 
X 

𝓆
1
 𝓆

2
 𝓆

3
 𝓆

4
 𝓆

5
 𝓆

6
 𝓆

7
 

𝓅𝒞
1
 1 0 0 1 0 0 1 

𝓅𝒞
2
 1 0 0 1 1 0 0 

𝓅𝒞
3
 0 1 0 0 0 0 0 

𝓅𝒞
4
 0 0 1 1 0 1 0 

𝓅𝒞
5
 1 0 0 0 1 1 0 

 

 Similar to the inverse soft set, the inverse hesitant fuzzy soft 
set can be defined by applying the concept of an inverse soft set 

with the hesitant fuzzy set. We define an inverse hesitant fuzzy 

soft set as described below. 

 

 Definition 10: An inverse hesitant fuzzy soft set over 𝑋 is 

defined as pair (𝒟̃−1, 𝒦),  where 𝒦 ⊆ 𝒬  and  𝒟̃−1: 𝑋 →
𝐻𝐹𝑆(𝒦), with 𝐻𝐹𝑆(𝒦) as the set of all hesitant fuzzy sets in 

parameter set 𝒦 . In general, we can denote  𝒟̃−1(𝑣)(𝑞) ∈
[0, 1],   ∀𝑣 ∈ 𝑋, 𝑞 ∈ 𝒦. 

 As per this definition, it is clear that the mapping 𝒟̃−1: 𝑋 →
𝐻𝐹𝑆(𝒦) describes a hesitant fuzzy relation from the universe 

of objects 𝑋 to a set of parameters 𝒦. In other words, we can 
define this hesitant fuzzy relation as follows: 

For any 𝑣𝑖 ∈ 𝑋, 𝑞𝑗 ∈ 𝒦,   𝒟̃−1(𝑣𝑖)(𝑞𝑗) ∈ 𝐻𝐹𝑆(𝑋 × 𝒦). 

 In general,  𝒟̃−1(𝑣𝑖)(𝑞𝑗)  is referred to as an arbitrary 

hesitant fuzzy binary relation because it does not hold the 

condition of an equivalence relation (reflexive, symmetric, and 

transitive). 

   Now, we describe the following definition of SHFRS by 

using the notion of inverse hesitant fuzzy soft set: 

 

 Definition 11: Suppose  (𝒟̃−1, 𝒬) is an inverse hesitant fuzzy 

soft set on 𝑋. Then, a soft hesitant fuzzy approximation space 

over 𝑋  and 𝒬  is defined as triple (𝑋,  𝒬,   𝒟̃−1) . The upper 

approximation 𝒟(𝕂) and lower approximation 𝒟(𝕂) of any 

set 𝕂 ∈ 𝐻𝐹𝑆(𝒬)  with respect to triple (𝑋,  𝒬,  𝒟̃−1)  are 

computed using the following mathematical expression: 

𝒟(𝕂) = {〈𝑣,  ℎ𝒟(𝕂)(𝑣)〉|𝑣 ∈ 𝑋}, 

𝒟(𝕂) = {〈𝑣,  ℎ𝒟(𝕂)(𝑣)〉|𝑣 ∈ 𝑋}, 

Where 

ℎ𝒟(𝕂)(𝑣) =∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎ𝕂(𝑤)},   𝑣 ∈ 𝑋 

ℎ𝒟(𝕂)(𝑣) =∧𝑤∈ 𝒬 {(1 − ℎ𝒟̃−1(𝑣,  𝑤)) ∨ ℎ𝕂(𝑤)},     𝑣 ∈ 𝑋. 

 

 Finally, the SHFRS of any set 𝕂 ∈ 𝐻𝐹𝑆(𝒬) with respect to 

triple (𝑋,  𝒬,   𝒟̃−1) is defined as pair (𝒟(𝕂), 𝒟(𝕂)), where 𝒟 

and  𝒟 are called upper and lower soft hesitant fuzzy rough 

approximation operators, respectively.  

 Since 𝒟̃−1 is an arbitrary hesitant fuzzy binary relation, it is 

clear that, for any set  𝕂 ∈ 𝐻𝐹𝑆(𝒬),  𝒟(𝕂) ⊑ 𝒟(𝕂) does not 

hold. Here, ⊑ denotes the proper subset operation on a hesitant 

fuzzy set.  

 We can describe the following four different cases of 

Definition 11: 

 

Remark 1: Let (𝒟̃−1, 𝒬) be an inverse soft set on 𝑋. In this case, 

upper approximation 𝒟(𝕂) and lower approximation 𝒟(𝕂) of 

any set 𝕂 ∈ 𝐻𝐹𝑆(𝒬)  with respect to triple (𝑋,  𝒬,   𝒟̃−1)  are 
computed using the following expression: 

𝒟(𝕂) = {(𝑣,  ℎ𝒟(𝕂)(𝑣)) |𝑣 ∈ 𝑋}, 

𝒟(𝕂) = {(𝑣,  ℎ𝒟(𝕂)(𝑣)) |𝑣 ∈ 𝑋}, 

where 

ℎ𝒟(𝕂)(𝑣) =∨𝑤∈ 𝒟̃−1(𝑣) {ℎ𝕂(𝑤)},   𝑣 ∈ 𝑋 

ℎ𝒟(𝕂)(𝑣) =∧𝑤∈ 𝒟̃−1(𝑣) {ℎ𝕂(𝑤)},     𝑣 ∈ 𝑋. 

Here, triple (𝑋,  𝒬, 𝒟̃−1) is called a soft approximation space, 
and the resultant set is called a soft rough hesitant fuzzy set 

defined by pair (   𝒟(𝕂), 𝒟(𝕂)). 

 

 Remark 2: Let the given set 𝕂 ∈ 𝒫(𝒬) be the crisp set of 𝒬. 

In this case, upper approximation 𝒟(𝕂)  and lower 

approximation 𝒟(𝕂)  of set 𝕂 ∈ 𝒫(𝒬)  with respect to triple 

(𝑋,  𝒬,   𝒟̃−1) are computed using the following expression: 

𝒟(𝕂) = {(𝑣,  ℎ𝒟(𝕂)(𝑣)) |𝑣 ∈ 𝑋}, 

𝒟(𝕂) = {(𝑣,  ℎ𝒟(𝕂)(𝑣)) |𝑣 ∈ 𝑋}, 

Where 
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ℎ𝒟(𝕂)(𝑣) =∨𝑤∈ 𝕂 {ℎ𝒟̃−1(𝑣, 𝑤)},   𝑣 ∈ 𝑋 

ℎ𝒟(𝕂)(𝑣) =∧𝑤∉𝕂 {1 − ℎ𝒟̃−1(𝑣,  𝑤)},     𝑣 ∈ 𝑋. 

Here, triple (𝑋,  𝒬, 𝒟̃−1)  is called a soft hesitant fuzzy 

approximation space, and a soft hesitant fuzzy rough set of any 

crisp set 𝕂 ∈ 𝒫(𝒬)  with respect to triple (𝑋,  𝒬,  𝒟̃−1)  is 

defined as pair (𝒟(𝕂), 𝒟(𝕂)) , where 𝒟  and  𝒟  are called 

upper and lower soft hesitant fuzzy approximation operators, 

respectively. 

 

 Remark 3: Let (𝒟̃−1, 𝒬) be an inverse soft set on 𝑋 and the 

given set 𝕂 ∈ 𝒫(𝒬) be the crisp set of 𝒬. In this case, upper 

approximation 𝒟(𝕂)  and lower approximation 𝒟(𝕂)  of set 

𝕂 ∈ 𝒫(𝒬)  with respect to triple (𝑋,  𝒬,  𝒟̃−1)  are computed 
using the following expression: 

𝒟(𝕂)(𝑣) = {𝑤 ∈ 𝒬|∃𝑣 ∈ 𝑋, ∃𝑤 ∈ 𝒟̃−1(𝑣) ∩ 𝕂 ≠ 𝜙} 

𝒟(𝕂)(𝑣) = {𝑤 ∈ 𝒬|∃𝑣 ∈ 𝑋, ∃𝑤 ∈ 𝒟̃−1(𝑣) ⊆ 𝕂} 

Here, triple (𝑋,  𝒬, 𝒟̃−1) is called a soft approximation space, 
and the resultant set is called a soft rough set defined by pair 

( 𝒟(𝕂), 𝒟(𝕂)). 

 

 Remark 4: With regard to Definition 11, suppose the hesitant 

fuzzy elements ℎ𝒟̃−1(𝑣, 𝑤) and ℎ𝕂(𝑤) have only one element 

each; then hesitant fuzzy relation 𝒟̃−1 is reduced to a fuzzy 

relation from 𝑋 to 𝒬 and hesitant fuzzy set 𝕂 is reduced to a 

fuzzy set, with SHFRS over 𝑋 and 𝒬 reduced to a soft fuzzy 

rough set defined by Dan Meng, et al [41]. 

 Let us now consider the example below to clarify the results 

presented above: 

 

 Example 3: With regard to Example 2, assume that a person 
is evaluating an optional computer considering various 

characteristics with hesitant fuzzy element. Then, all computers 

in 𝑋  with their characteristics under the hesitant fuzzy 

information are illuminated by using the hesitant fuzzy soft set  

(𝒟̃, 𝒦) as presented in Table 2.       
 

If a hesitant fuzzy set 

 

𝕂 =   
{0.3, 0.4,0.6}

𝓆1

+
{0.6,0.8}

𝓆2

+
{0.3,0.5,0.9}

𝓆3

+
{0.5,0.7}

𝓆4

+
{0.6,0.7}

𝓆5

+
{0.4,0.6}

𝓆6

+
{0.5,0.7,0.9}

𝓆7

  

 

Then, by Definition 11, we get the hesitant fuzzy upper and 

lower approximation of 𝕂 as follows: 

 

ℎ𝒟(𝕂)(𝓅𝒞1) =∨𝓆∈ 𝒦 {ℎ𝒟̃−1(𝓅𝒞1, 𝓆) ∧ ℎ𝕂(𝓆)} 

= ({0.3,0.4,0.5} ∧ {0.3,0.4,0.6}) ∨ ({0.3,0.5,0.6} ∧ {0.6,0.8}) 

∨ ({0.2,0.4} ∧ {0.3,0.5,0.9}) ∨ ({0.2,0.4,0.7} ∧ {0.5,0.7}) 

∨ ({0.3,0.5,0.7} ∧ {0.6,0.7}) ∨ ({0.3,0.4} ∧ {0.4,0.6}) 

∨ ({0.2,0.3,0.4} ∧ {0.5,0.7,0.9}) 

= {0.3,0.4,0.5} ∨ {0.3,0.5,0.6} ∨ {0.2,0.3, 0.4} ∨ 

{0.2,0.4,0.5,0.7} ∨ {0.3,0.5,0.6,0.7} ∨ {0.3,0.4} ∨ {0.2,0.3,0.4} 
={0.3,0.4,0.5,0.6,0.7}. 
 

ℎ𝒟(𝕂)(𝓅𝒞1) =∧𝓆∈ 𝒦 {(1 − ℎ𝒟̃−1(𝓅𝒞1,  𝓆)) ∨ ℎ𝕂(𝓆)} 

= ({0.5,0.6,0.7} ∨ {0.3,0.4,0.6}) ∧ ({0.4,0.5,0.7} ∨ {0.6,0.7,0.8}) 

∧ ({0.6,0.8} ∨ {0.3,0.5,0.9}) ∧ ({0.3,0.6,0.8} ∨ {0.5,0.7}) 

 

 

∧ ({0.3,0.5,0.7} ∨ {0.6,0.7}) ∧ ({0.6,0.7} ∨ {0.4,0.6}) 

∧ ({0.6,0.7,0.8} ∨ {0.5,0.7,0.9}) 

= {0.5,0.6,0.7} ∧ {0.6,0.8} ∧ {0.6,0.8,0.9} ∧ {0.5,0.6,0.7,0.8} 

∧ {0.6,0.7} ∧ {0.6,0.7} ∧ {0.6,0.7,0.8,0.9} 

= {0.5,0.6,0.7}. 

Similarly, we have 

ℎ𝒟(𝕂)(𝓅𝒞2) = {0.3, 0.4, 0.5,0.6},  

ℎ𝒟(𝕂)(𝓅𝒞2) = {0.4, 0.5,0.6,0.7}, 

ℎ𝒟(𝕂)(𝓅𝒞3) = {0.5,0.6,0.7},   

ℎ𝒟(𝕂)(𝓅𝒞3) = {0.5, 0.6},   

ℎ𝒟(𝕂)(𝓅𝒞4) = {0.5,0.6,0.7},  

ℎ𝒟(𝕂)(𝓅𝒞4) = {0.4, 0.5,0.6},   

ℎ𝒟(𝕂)(𝓅𝒞5) = {0.4, 0.5}, 

ℎ𝒟(𝕂)(𝓅𝒞5) = {0.5, 0.6,0.7}. 

 We can represent upper approximation 𝒟(𝕂)  and lower 

approximation 𝒟(𝕂)  of 𝕂  with respect to (𝑋,  𝒬, 𝒟̃−1)  as 

follows: 

𝒟(𝕂) = {〈𝓅𝒞1,   {0.3, 0.5,0.6,0.7}〉,  〈𝓅𝒞2,   {0.3, 04,0.5,0.6}〉,  
〈𝓅𝒞3,  {0.5,0.6,0.7}〉,  〈𝓅𝒞4,   {0.5,0.6,0.7}〉,  〈𝓅𝒞5,  {0.4, 0.5}〉} 

𝒟(𝕂) = {〈𝓅𝒞1,  {0.5, 0.6,0.7}〉, 〈𝓅𝒞2,  {0.4, 0.5,0.6,0.7}〉,  
〈𝓅𝒞3,  {0.5, 0.6}〉,  〈𝓅𝒞4,   {0.4, 0.5,0.6}〉, 〈𝓅𝒞5,  {0.5, 0.6,0.7}〉} 

 It can be easily verified that  𝒟(𝕂) ⊈ 𝒟(𝕂). Similarly, the 

four cases described in Remarks 1, 2, 3, and 4 can also be 

proven.    

 

 

 

 

 

 

 

 

 

Table 2. Illustration of hesitant fuzzy soft set (𝒟̃, 𝒦) in table format 
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      𝒦 

𝑋    
𝓆

1
 𝓆

2
 𝓆

3
 𝓆

4
 𝓆

5
 𝓆

6
 𝓆

7
 

𝓅𝒞
1
 {0.3, 0.4, 0.5} {0.3, 0.5, 0.6} {0.2, 0.4} {0.2, 0.4, 0.7} {0.3, 0.5, 0.7} {0.3, 0.4} {0.2, 0.3, 0.4} 

𝓅𝒞
2
 {0.2, 0.4} {0.2, 0.4} {0.5, 0.6} {0.3, 0.5} {0.2, 0.4} {0.3, 0.5, 0.6} {0.3, 0.5, 0.6} 

𝓅𝒞
3
 {0.4} {0.5} {0.2, 0.4} {0.4, 0.8} {0.4, 0.6} {0.2, 0.4} {0.2, 0.4} 

𝓅𝒞
4
 {0.2, 0.3} {0.4, 0.6} {0.3, 0.5, 0.6} {0.3, 0.5, 0.6} {0.5, 0.7} {0.5, 0.6, 0.7} {0.3, 0.5, 0.7} 

𝓅𝒞
5
 {0.3, 0.4} {0.2, 0.3} {0.4, 0.5} {0.2, 0.3} {0.3} {0.3} {0.4, 0.5} 

 

 Similar to the hesitant fuzzy rough approximation operators, 

soft hesitant fuzzy rough approximation operators have various 

properties. We describe some properties as follows: 

 

 Proposition 1: Suppose that a soft hesitant fuzzy 

approximation space is defined as triple (𝑋,  𝒬, 𝒟̃−1); then for a 

given set ℍ ∈ 𝐻𝐹𝑆(𝒬), we can describe the following: 

(1) ℎ
𝒟(ℍ)
+ (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ𝒟̃−1

+ (𝑣, 𝑤), ℎℍ
+(𝑤)} ∶ 𝑤 ∈

𝒬},    𝑣 ∈ 𝑋 

(2) ℎ
𝒟(ℍ)
− (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ𝒟̃−1

− (𝑣, 𝑤), ℎℍ
−(𝑤)} ∶ 𝑤 ∈

𝒬} ,   𝑣 ∈ 𝑋 

(3) ℎ𝒟(ℍ)
+ (𝑣) = 𝑚𝑖𝑛 {max  {(1 − ℎ𝒟̃−1

+ (𝑣,  𝑤)), ℎℍ
+(𝑤)} ∶ 𝑤 ∈

𝒬},   𝑣 ∈ 𝑋 

(4) ℎ𝒟(ℍ)
− (𝑣) = 𝑚𝑖𝑛 {max  {(1 − ℎ𝒟̃−1

− (𝑣,  𝑤)), ℎℍ
−(𝑤)} ∶ 𝑤 ∈

𝒬},   𝑣 ∈ 𝑋. 

Where ℎ𝒟̃−1
+ (𝑣, 𝑤) and ℎℍ

+(𝑤) are the upper bound of HFEs 

ℎ𝒟̃−1(𝑣, 𝑤)  and ℎℍ(𝑤) , respectively.  ℎ𝒟̃−1
− (𝑣, 𝑤)  and ℎℍ

−(𝑤) 

are the lower bound of HFEs ℎ𝒟̃−1(𝑣, 𝑤)  and ℎℍ(𝑤) , 

respectively. 
 

 Proof: The above results can be directly derived from the 

definitions of ∨ and ∧ operations and Definition 11. 

 

 Proposition 2: Suppose that a soft hesitant fuzzy 

approximation space is defined as triple (𝑋,  𝒬, 𝒟̃−1); then for a 

given set ℍ ∈ 𝐻𝐹𝑆(𝒬), we can describe the following: 

(1) ~𝒟(~ℍ) = 𝒟(ℍ),      

(2) ~𝒟(~ℍ) = 𝒟(ℍ). 

 

   Proof (1): ∀𝑣 ∈ 𝑋, from Definition 11, we have 

ℎ∼𝒟(∼ℍ)(𝑣) =∼ { ∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎ(∼ℍ)(𝑤)}} ,   𝑣 ∈ 𝑋                                                          

=∼ { ∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ~ℎℍ(𝑤)}}                                                     

=∧𝑤∈ 𝒬 {∼ ℎ𝒟̃−1(𝑣, 𝑤) ∨ ℎℍ(𝑤)}                                                      

=∧𝑤∈ 𝒬 {(1 − ℎ𝒟̃−1(𝑣, 𝑤)) ∨ ℎℍ(𝑤)}  

 = ℎ𝒟(ℍ)(𝑣) 

This implies that ~𝒟(~ℍ) = 𝒟(ℍ).   

 Proof (2): It can be proven similar to proof of (1). 

 
  

 

 

Theorem 1: Suppose that a soft hesitant fuzzy approximation 

space is defined as triple (𝑋,  𝒬, 𝒟̃−1); then for two given sets 

ℍ,  𝕝 ∈ 𝐻𝐹𝑆(𝒬), we can describe the following properties: 

(1) 𝒟(ℍ ⋓ 𝕀) = 𝒟(ℍ) ⋓ 𝒟(𝕀),           

(2) 𝒟(ℍ ⋒ 𝕀) ⊑ 𝒟(ℍ) ⋒ 𝒟(𝕀),       

(3) 𝒟(ℍ ⋒ 𝕀) = 𝒟(ℍ) ⋒ 𝒟(𝕀),        

(4) 𝒟(ℍ ⋓ 𝕀) ⊒ 𝒟(ℍ) ⋓ 𝒟(𝕀), 

(5)  ℍ ⊑ 𝕀 ⇒ 𝒟(ℍ) ⊑ 𝒟(𝕀),                

(6) ℍ ⊑ 𝕀 ⇒ 𝒟(ℍ) ⊑ 𝒟(𝕀),                

(7) 𝒟(𝒬) = 𝑋,                                      

(8) 𝒟(∅) = ∅ 

Here, it should be noted that operations ⋓, ⋒, ⊑, and ⊒ denote 

union, intersection, proper subset, and proper superset 

operations on hesitant fuzzy sets, respectively, whereas 

operations ∪, ∩, ⊆, and ⊇ are the ordinary union, intersection, 
proper subset, and proper superset operations, respectively. 

 

 Proof (1): ∀𝑣 ∈ 𝑋, from Definition 11 , we have 

ℎ𝒟(ℍ⋓𝕀)(𝑣) =∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎℍ⋓𝕝(𝑤)},   𝑣 ∈ 𝑋                                                               

=∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ (ℎℍ(𝑤) ∨ ℎ𝕀(𝑤))}                                                                        

=∨𝑤∈ 𝒬 {(ℎ𝒟̃−1(𝑣, 𝑤) ∧ (ℎℍ(𝑤)) ∨ (ℎ𝒟̃−1(𝑣, 𝑤) ∧ (ℎ𝕀(𝑤))}                                                                        

= {∨𝑤∈ 𝒬 (ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎℍ(𝑤))} 

∨ {∨𝑤∈ 𝒬 (ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎ𝕀(𝑤))} 

 =ℎ𝒟(ℍ)(𝑣) ∨ ℎ𝒟(𝕀)(𝑣)   

 =ℎ𝒟(ℍ)⋓𝒟(𝕀)(𝑣). 

This implies that  𝒟(ℍ ⋓ 𝕀) = 𝒟(ℍ) ⋓ 𝒟(𝕀), 

   Proof (2), (3), (4): These three properties can be proven to be 

similar to the proof of (1).  

   Proof (5): ∀𝑣 ∈ 𝑋, from proposition 1, we get 

 ℎ
𝒟(ℍ)
+ (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ𝒟̃−1

+ (𝑣, 𝑤), ℎℍ
+(𝑤)}}, and 

 ℎ
𝒟(ℍ)
− (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ𝒟̃−1

− (𝑣, 𝑤), ℎℍ
−(𝑤)}} , similarly for 

ℎ
𝒟(𝕀)
+ (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ𝒟̃−1

+ (𝑣, 𝑤), ℎ𝕀
+(𝑤)}}  and ℎ

𝒟(𝕀)
− (𝑣) =

𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ𝒟̃−1
− (𝑣, 𝑤), ℎ𝕀

−(𝑤)}}. Since ℍ ⊑ 𝕀 , then we have 

ℎℍ
+(𝑣) ≤ ℎ𝕀

+(𝑣)  and ℎℍ
−(𝑣) ≤ ℎ𝕀

−(𝑣)  for each 𝑣 ∈ 𝑋 , which 

implies that 𝑚𝑖𝑛{ℎ𝒟̃−1
− (𝑣, 𝑤), ℎℍ

−(𝑤)} ≤

𝑚𝑖𝑛{ℎ𝒟̃−1
− (𝑣, 𝑤), ℎ𝕀

−(𝑤)} for each 𝑤 ∈ 𝒬, it can be concluded 

that ℎ
𝒟(ℍ)
− (𝑣) ≤ ℎ

𝒟(𝕀)
− (𝑣). In the same way, we can conclude 

that ℎ
𝒟(ℍ)
+ (𝑣) ≤ ℎ

𝒟(𝕀)
+ (𝑣). From the two conclusions above, we 

hold ℎ𝒟(ℍ)(𝑣) ≤ ℎ𝒟(𝕝)(𝑣), which implies that  𝒟(ℍ) ⊑ 𝒟(𝕀). 

   Proof (6): It can be proven to be similar to the proof of (5). 
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 Proof (7): ∀𝑤 ∈ 𝒬  , we have ℎ𝒬(𝑤) = {1} . Then from 

Definition 11, 

 

ℎ𝒟(𝒬)(𝑣) =∧𝑤∈ 𝒬 {(1 − ℎ𝒟̃−1(𝑣,  𝑤)) ∨ ℎ𝒬(𝑤)},     𝑣 ∈ 𝑋 

=∧𝑤∈ 𝒬 {(1 − ℎ𝒟̃−1(𝑣,  𝑤)) ∨ {1}} = {1} 

This implies that 𝒟(𝒬) = 𝑋. 

   Proof (8): ∀𝑤 ∈ 𝒬  , we have ℎ∅(𝑤) = {0} . Then from 

Definition 11, 

ℎ𝒟(∅)(𝑣) =∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎ∅(𝑤)},   𝑣 ∈ 𝑋 

                                                                       =
∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ {0}} = {0}. 

This implies that  𝒟(∅) = ∅. 

 In general, the results described in theorem 1 are similar to 

the results presented by Xibei Yang et al. [30] for traditional 

hesitant fuzzy rough set. 

 Theorem 2: Suppose (𝒟̃1
−1, 𝒬) and (𝒟̃2

−1, 𝒬) are two inverse 

hesitant fuzzy soft sets on 𝑋 . Then, two soft hesitant fuzzy 

approximation spaces over 𝑋 and 𝒬 can be defined as triples 

(𝑋, 𝒬, 𝒟̃1
−1)  and (𝑋, 𝒬, 𝒟̃2

−1) . If  𝒟̃1
−1 ⊑ 𝒟̃2

−1 , then we can 
describe the following properties: 

 

(1) 𝒟1(ℍ) ⊑ 𝒟2(ℍ),   ∀ℍ ∈ 𝐻𝐹𝑆(𝒬).  

(2)  𝒟1(ℍ) ⊒ 𝒟2(ℍ),    ∀ℍ ∈ 𝐻𝐹𝑆(𝒬),     

 

Where 𝒟1 and  𝒟1 denote upper and lower soft hesitant fuzzy 

rough approximation operators, respectively with respect to 

triple (𝑋, 𝒬, 𝒟̃1
−1) and 𝒟2  and  𝒟2  are upper and lower soft 

hesitant fuzzy rough approximation operators, respectively 

with respect to triple (𝑋, 𝒬, 𝒟̃2
−1).  

 

 Proof (1): ∀𝑣 ∈ 𝑋, from proposition 1, we get  

ℎ
𝒟1(ℍ)
+ (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ

𝒟̃1
−1

+ (𝑣, 𝑤), ℎℍ
+(𝑤)} ∶ 𝑤 ∈ 𝒬}  and 

ℎ
𝒟1(ℍ)
− (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ

𝒟̃1
−1

− (𝑣, 𝑤), ℎℍ
−(𝑤)}} , similarly for 

ℎ
𝒟2(ℍ)
+ (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ

𝒟̃2
−1

+ (𝑣, 𝑤), ℎℍ
+(𝑤)} ∶ 𝑤 ∈ 𝒬}  and 

ℎ
𝒟2(ℍ)
− (𝑣) = 𝑚𝑎𝑥{𝑚𝑖𝑛{ℎ

𝒟̃2
−1

− (𝑣, 𝑤), ℎℍ
−(𝑤)}}. 

Since  𝒟̃1
−1 ⊑ 𝒟̃2

−1 , then we have ℎ
 𝒟̃1

−1
+ (𝑣, 𝑤) ≤ ℎ

𝒟̃2
−1

+ (𝑣, 𝑤) 

and ℎ
𝒟̃1

−1
− (𝑣, 𝑤) ≤ ℎ

𝒟̃2
−1

− (𝑣, 𝑤)  for all (𝑣, 𝑤) ∈ 𝑋 × 𝒬 , which 

implies that 𝑚𝑖𝑛{ℎ
𝒟̃1

−1
− (𝑣, 𝑤), ℎℍ

−(𝑤)} ≤

𝑚𝑖𝑛{ℎ
𝒟̃2

−1
− (𝑣, 𝑤), ℎℍ

−(𝑤)} for each 𝑤 ∈ 𝒬, it can be concluded 

that ℎ
𝒟1(ℍ)
− (𝑣) ≤ ℎ

𝒟2(ℍ)
− (𝑣). In the same way, we can conclude 

that ℎ
𝒟1(ℍ)
+ (𝑣) ≤ ℎ

𝒟2(ℍ)
+ (𝑣). From the two conclusions above, 

we hold ℎ𝒟1(ℍ)(𝑣) ≤ ℎ𝒟2(ℍ)(𝑣), which  implies that 𝒟1(ℍ) ⊑

𝒟2(ℍ). 
  Proof (2): It can be proven to be similar to the proof of (1). 

 Theorem 3: Suppose  𝒟̃−1 is a hesitant fuzzy relation defined 

by an inverse hesitant fuzzy soft set on 𝑋 and 𝒬. The upper 

approximation and lower approximation of any set ℍ ∈

𝐻𝐹𝑆(𝒬)  with respect to triple (𝑋,  𝒬,  𝒟̃−1)  are 𝒟(ℍ)  and 

𝒟(ℍ), respectively; then 𝒟̃−1 is serial if one of the following 

conditions holds: 

(1) 𝒟(∅) = ∅, 

(2) 𝒟(𝒬) = 𝑋, 

(3) 𝒟(ℍ) ⊑ 𝒟(ℍ), ∀ℍ ∈ 𝐻𝐹𝑆(𝒬). 

 Proof: These three conditions can be validated similar to 

theorem 1 and by using Definition 11. 

 
 Definition 12: Let two soft hesitant fuzzy approximation 

spaces over universal set 𝑋  and 𝒬  be (𝑋, 𝒬, 𝒟̃1
−1)  and 

(𝑋, 𝒬, 𝒟̃2
−1) ; then: 

 

(1) The intersection of (𝑋, 𝒬, 𝒟̃1
−1)  and (𝑋, 𝒬, 𝒟̃2

−1)  can be 
defined by using soft hesitant fuzzy approximation space 

(𝑋, 𝒬,   𝒟̃1
−1 ⋒ 𝒟̃2

−1).  

(2) The union of (𝑋, 𝒬, 𝒟̃1
−1) and (𝑋, 𝒬, 𝒟̃2

−1) can be defined by 

using soft hesitant fuzzy approximation space (𝑋, 𝒬,   𝒟̃1
−1 ⋓

𝒟̃2
−1).  

 

 Theorem 4: Let two soft hesitant fuzzy approximation spaces 

over universal set 𝑋 and 𝒬 are (𝑋, 𝒬, 𝒟̃1
−1) and (𝑋, 𝒬, 𝒟̃2

−1). If  

𝒟̃−1 = 𝒟̃1
−1 ⋓ 𝒟̃2

−1 , then for any set ℍ ∈ 𝐻𝐹𝑆(𝒬) , the 

following conditions hold: 

 

(1) 𝒟(ℍ) = 𝒟1(ℍ) ⋓ 𝒟2(ℍ), 
(2) 𝒟(ℍ) = 𝒟1(ℍ) ⋒ 𝒟2(ℍ). 

  Proof (1):  ∀𝑣 ∈ 𝑋, from Definition 11 , we have 

ℎ𝒟(ℍ)(𝑣) =∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎℍ(𝑤)},   𝑣 ∈ 𝑋                                               

=∨𝑤∈ 𝒬 {ℎ𝒟̃1
−1⋓𝒟̃2

−1(𝑣, 𝑤) ∧ ℎℍ(𝑤)}                                                                           

=∨𝑤∈ 𝒬 {(ℎ𝒟̃1
−1(𝑣, 𝑤) ∨ ℎ𝒟̃2

−1(𝑣, 𝑤)) ∧ ℎℍ(𝑤)}                                                                            

= { ∨𝑤∈ 𝒬 (ℎ𝒟̃1
−1(𝑣, 𝑤) ∧ ℎℍ(𝑤))} 

                                   ∨ { ∨𝑤∈ 𝒬 (ℎ𝒟̃2
−1(𝑣, 𝑤) ∧ ℎℍ(𝑤))}                                                                                                                                          

= ℎ𝒟1(ℍ)(𝑣) ∨ ℎ𝒟2(ℍ)(𝑣)                                                                                                                   

= ℎ𝒟1(ℍ)⋓𝒟2(ℍ)(𝑣). 

 

This implies that  𝒟(ℍ) = 𝒟1(ℍ) ⋓ 𝒟2(ℍ). 

 Proof (2): It is dual of condition (1); therefore, it follows the 

proof and conclusion of (1).  

 

 Theorem 5: Let two soft hesitant fuzzy approximation spaces 

over universal set 𝑋 and 𝒬 be (𝑋, 𝒬, 𝒟̃1
−1) and (𝑋, 𝒬, 𝒟̃2

−1). If  

𝒟̃−1 = 𝒟̃1
−1 ⋒ 𝒟̃2

−1 , then for any set ℍ ∈ 𝐻𝐹𝑆(𝒬) , the 
following conditions hold: 

 

(1) 𝒟(ℍ) ⊑ 𝒟1(ℍ) ⋒ 𝒟2(ℍ), 
(2) 𝒟(ℍ) ⊒ 𝒟1(ℍ) ⋓ 𝒟2(ℍ). 

 Proof (1): ∀𝑣 ∈ 𝑋, from Definition 11, we have 

ℎ𝒟(ℍ)(𝑣) =∨𝑤∈ 𝒬 {ℎ𝒟̃−1(𝑣, 𝑤) ∧ ℎℍ(𝑤)},   𝑣 ∈ 𝑋                                                                            

=∨𝑤∈ 𝒬 {ℎ𝒟̃1
−1⋒𝒟̃2

−1(𝑣, 𝑤) ∧ ℎℍ(𝑤)}                                                                             
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=∨𝑤∈ 𝒬 {(ℎ𝒟̃1
−1(𝑣, 𝑤) ∧ ℎ𝒟̃2

−1(𝑣, 𝑤)) ∧ ℎℍ(𝑤)}                                                                            

= { ∨𝑤∈ 𝒬 (ℎ𝒟̃1
−1(𝑣, 𝑤) ∧ ℎℍ(𝑤))} 

                         ∧ { ∨𝑤∈ 𝒬 (ℎ𝒟̃2
−1(𝑣, 𝑤) ∧ ℎℍ(𝑤))}                      =

ℎ𝒟1(ℍ)(𝑣) ∧ ℎ𝒟2(ℍ)(𝑣) = ℎ𝒟1(ℍ)⋒𝒟2(ℍ)(𝑣) 

This implies that 𝒟(ℍ) ⊑ 𝒟1(ℍ) ⋒ 𝒟2(ℍ). 

 Proof (2): It is dual of condition (1); therefore, it follows the 

proof and conclusion of (1).  

 

 Remark 5: In this paper, we have described SHFRS, which is 

a combination of two concepts. One is hesitant fuzzy rough set 

over two universes (𝑋  and 𝒬 ), and the other is an inverse 

hesitant fuzzy binary relation 𝒟̃−1 or an inverse hesitant fuzzy 

mapping between 𝑋 and 𝒬. Since these two universes 𝑋 and 𝒬 

are completely dissimilar with different sense, the reflexive, 

symmetric, and transitive properties cannot be defined for the 

inverse hesitant fuzzy binary relation 𝒟̃−1  because we can 

describe all these properties on the identical universe. As such, 

all of the results that have been described for a traditional 

hesitant fuzzy rough set [30] cannot be defined for SHFRS; 
thus showing that our proposed set differs from a traditional 

hesitant fuzzy rough set. 

IV. MULTI-CRITERIA DECISION MAKING BASED ON SHFRS 

 In this Section, we present a novel solution for multi-criteria 

decision making problems based on our proposed SHFRS. 

 The research of A.R. Roy et al. [20] first presented a method 

of solving the decision making problem based on the fuzzy soft 

theory. Feng Feng et al. [21] cited the shortcomings of this 
method [20] and introduced a new level soft set technique for 

providing a solution to the decision making problem based on a 

fuzzy soft set. Fuqiang Wang et al. [23] applied this level soft 

set technique to hesitant fuzzy soft set-based decision making. 

Nonetheless, we found that, in the level soft set technique, a 

threshold fuzzy set must be chosen in advance by the decision 

maker. The final result of the decision is dependent on the 

threshold fuzzy set to a certain extent. Therefore, the concept of 

choosing a threshold fuzzy set is not appropriate for solving the 

decision making problem based on a fuzzy soft set. In the next 

subsection, a novel method that uses the concept of SHFRS for 
solving the decision making problem is proposed. Our 

proposed method does not require supplementary information 

(for example, threshold fuzzy set) to be delivered by decision 

makers or in another manner. It only uses the data information 

delivered by the given problem. Thus, the final decision results 

obtained by our proposed method are free from the influence of 

subjective information. Moreover, our method avoids 

ambiguity in the decision results for the same decision problem 

because it is not influenced by any information delivered by 

different decision experts. 

A. Procedural steps for multi-criteria decision making based 

on SHFRS 

   Here, we will describe the procedural steps for our proposed 

method in detail. 

   Let 𝑋 = {𝑣1, 𝑣2, … … . 𝑣𝑛}  and (𝒟̃−1, 𝒬)  be an inverse 

hesitant fuzzy soft set over 𝑋 , where 𝒬 = {𝑞1, 𝑞2 … … . 𝑞𝑚}. 

According to Definition 5, for each 𝑞𝑖 ∈ 𝒬 ,  𝒟̃(𝑞𝑖) =

{(𝑣1, 𝒟̃(𝑞𝑖)(𝑣1)) , (𝑣2, 𝒟̃(𝑞𝑖)(𝑣2)) , … . . , (𝑣𝑛 , 𝒟̃(𝑞𝑖)(𝑣𝑛))} . 

We can compute the score of each hesitant fuzzy element by 

Definition 3 That is,  

𝑠𝑐𝑟(𝒟̃(𝑞𝑖)) = {(𝑣1, 𝑠𝑐𝑟 (𝒟̃(𝑞𝑖)(𝑣1))) , (𝑣2,

𝑠𝑐𝑟(𝒟̃(𝑞𝑖)(𝑣2))), … . . , (𝑣𝑛, 𝑠𝑐𝑟(𝒟̃(𝑞𝑖)(𝑣𝑛)))}. 

 Step 1: Since, for a certain decision making problem, a 

decision maker is willing to choose an optional object in 

universe 𝑋 with the parameter value 𝑞𝑖 ∈ 𝒬 as high as at each 

parameter index 𝑖 ,  an optimal normal decision object on 

parameter set 𝒬  is first computed using the following 

mathematical expression: 

𝕂 = ∑
max {( 𝒟̃(𝑞𝑖)}

𝑞𝑖

|𝒬|
𝑖=1 , 𝑞𝑖 ∈ 𝒬 ,    

 

                                   i.e. ,    𝕂(𝑞𝑖) = max {𝒟̃(𝑞𝑖)(𝑣𝑗)|𝑣𝑗 ∈ 𝑋} 

Where |𝒬| is the number of parameters in set  𝒬. 

We can compute max {( 𝒟̃(𝑞𝑖)}  by calculating the score 
function of each hesitant fuzzy element by using Definition 3. 

max {( 𝒟̃(𝑞𝑖))} = {ℎ𝑖𝑗  | 𝑚𝑎𝑥ℎ𝑖𝑗∈𝒟̃(𝑞𝑖)(𝑣𝑗) {𝑠𝑐𝑟(ℎ𝑖𝑗)}},  𝑣𝑗 ∈ 𝑋   

  Step 2: According to Definition 11, soft hesitant fuzzy upper 

approximation 𝒟̅ (𝕂)   and soft hesitant fuzzy lower 

approximation 𝒟 (𝕂)  of optimal normal decision object 𝕂 

with respect to (𝑋,  𝒬, 𝒟̃−1)  are calculated. Thus, for each 

object 𝑣𝑖 ∈ 𝑋 in 𝑋, we get the two closest values  𝒟̅ (𝕂)(𝑣𝑖)  

and 𝒟 (𝕂)(𝑣𝑖) by using the soft hesitant fuzzy upper and lower 

approximations of hesitant fuzzy subset 𝕂. 

 

 Step 3: To calculate choice value 𝜎𝑖 for each object 𝑣𝑖 ∈ 𝑋, 

the score functions 𝑠𝑐𝑟(𝒟(𝕂)(𝑣𝑖))  and 𝑠𝑐𝑟(𝒟(𝕂)(𝑣𝑖))  of 

values  𝒟(𝕂)(𝑣𝑖)  and 𝒟 (𝕂)(𝑣𝑖) , respectively, are calculated 

using Definition 3.  Finally, we define choice value 𝜎𝑖  as 
follows:   

𝜎𝑖 = 𝑠𝑐𝑟 (𝒟(𝕂)(𝑣𝑖)) + 𝑠𝑐𝑟 (𝒟(𝕂)(𝑣𝑖)) ,      𝑣𝑖 ∈ 𝑋 

 Choice value 𝜎𝑖 for each object  𝑣𝑖 ∈ 𝑋 is then calculated. For 

the given decision problem, the object with the highest choice 

value 𝜎𝑖 is selected as the optimal decision object. In the case of 

similar highest choice value 𝜎𝑖  for two or more objects, any one 

of them can be randomly selected as the optimal decision 

object. 

B. SHFRS based security service selection approach for 

FMEC 

 In FMEC, several security services with overlapping 

functions are presented for the composite security service. 

Therefore, the composite service maker requires some key 

criteria to differentiate the efficiency and user satisfaction level 
offered by every presented security service on a certain QoS 



2169-3536 (c) 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2017.2774837, IEEE Access

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

 

10 

parameter. A number of non-functional, context-dependent, 

and domain-specific properties of services and several 

influential factors such as CPU usage, processing delay, 

overhead, and many more are included in the QoS. For the 

security service composition, a multi-criteria decision making 

process is required to select optimal services from several 
available security services based on QoS. Therefore, in this 

subsection, we present a novel method for selecting the optimal 

services based on SHFRS in the existence of multi-observer 

hesitant fuzzy information. Here, we describe the 

multi-observer hesitant fuzzy information as multiple hesitant 

fuzzy soft sets containing multi-observer hesitant fuzzy 

information in terms of different sets of QoS parameters 

defined by the FMEC security service. The method mainly 

consists of two phases for solving the given problem of service 

composition. In the first phase, the method performs an 

aggregation procedure with respect to input parameter set R to 

compute the resultant hesitant fuzzy soft set from the multiple 
hesitant fuzzy soft sets. Here, we use the AND operation as an 

aggregation procedure given in Definition 6. In the second 

phase, the algorithm finds the optimal decision from the 

resultant hesitant fuzzy soft set by using the concept of SHFRS, 

which is described in the earlier subsection. 

   To understand better how the presented method works, we 

take the following example of optimal security service 

selection problem in the FMEC environment and solve it by 

using the concept of SHFRS-based decision making: 

 

 Example 4: Considering the most common security services 

in FMEC, we choose Firewall (𝑣1), Network address translator 

(𝑣2), Deep packet inspection (DPI) (𝑣3), Load balancer (𝑣4), 

and Virtual private network (𝑣5) as an example represented by 

security service set 𝑋 = {𝑣1,   𝑣2,    𝑣3,    𝑣4,    𝑣5}. Each service in 

this set is differentiated by three types of QoS parameters: 

processing delay, CPU usage, and memory overhead. The 

processing delay parameter is represented by set 𝒦 =
{𝑙𝑜𝑤(𝑘1), ℎ𝑖𝑔ℎ(𝑘2), 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(𝑘3), 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(𝑘4) } . The 

CPU usage parameter is represented by set  ℒ = {𝑙𝑜𝑤(𝑙1),
ℎ𝑖𝑔ℎ(𝑙2), 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(𝑙3), 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(𝑙4), 𝑖𝑑𝑙𝑒(𝑙5)} . The 

memory overhead is defined by set ℳ = {𝑙𝑜𝑤(𝑚1),
ℎ𝑖𝑔ℎ(𝑚2), 𝑣𝑒𝑟𝑦 𝑙𝑜𝑤(𝑚3), 𝑣𝑒𝑟𝑦 ℎ𝑖𝑔ℎ(𝑚4)} . The universal 

set of parameters is defined by 𝒬 = 𝒦 ∪ ℒ ∪ ℳ. 

 Let the hesitant fuzzy soft set  (𝒜̃,   𝒦)  describes the 

mapping of security services with the processing delay 

parameter. The hesitant fuzzy soft set (ℬ̃,  ℒ)  describes the 
mapping of security services with the CPU usage parameter and 

the hesitant fuzzy soft set  (𝒞̃,  ℳ) describes the mapping of 
security services with the memory overhead parameter. The 

tabular representation of all three fuzzy soft sets is shown in Fig. 

1. 

 The problem here is selecting an optimal security service 

from the set of given security services with respect to input 

parameter set  ℛ by an observer. 

 Let the input parameter set be ℛ = {𝑟1 = 𝑘1 ∧ 𝑙1 ∧ 𝑚1, 𝑟2 =
𝑘1 ∧ 𝑙3 ∧ 𝑚4, 𝑟3 = 𝑘2 ∧ 𝑙2 ∧ 𝑚2, 𝑟4 = 𝑘2 ∧ 𝑙4 ∧ 𝑚4, 𝑟5 =
𝑘3 ∧ 𝑙3 ∧ 𝑚3, 𝑟6 = 𝑘3 ∧ 𝑙4 ∧ 𝑚2, 𝑟7 = 𝑘4 ∧ 𝑙4 ∧ 𝑚2}. 

 Step 1: The resultant hesitant fuzzy soft set (𝒟̃, ℛ)  is 

computed by applying the AND operation (in accordance with 

Definition 6) to hesitant fuzzy sets  (𝒜̃,   𝒦), (ℬ̃,  ℒ), (𝒞̃,  ℳ) as 

shown in Table 3. 

 

 Step 2: Calculate the optimal normal decision object. 

  

𝕂 = ∑
max { 𝒟̃(𝑟𝑖)}

𝑟𝑖

|ℛ|

𝑖=1

, 𝑟𝑖 ∈ ℛ 

Where 

max { 𝒟̃(𝑟𝑖)} = {ℎ𝑖𝑗  | 𝑚𝑎𝑥ℎ𝑖𝑗∈𝒟̃(𝑟𝑖)(𝑣𝑗) {𝑠𝑐𝑟(ℎ𝑖𝑗)}},  𝑣𝑗 ∈ 𝑋 

max { 𝒟̃(𝑟1)}= 

{ℎ1𝑗  | 𝑚𝑎𝑥ℎ1𝑗∈𝒟̃(𝑟1)(𝑣𝑗) {𝑠𝑐𝑟 (𝒟̃(𝑟1)(𝑣1)) , 𝑠𝑐𝑟 (𝒟̃(𝑟1)(𝑣2)),  

𝑠𝑐𝑟(𝒟̃(𝑟1)(𝑣3)), 𝑠𝑐𝑟(𝒟̃(𝑟1)(𝑣4)), 𝑠𝑐𝑟(𝒟̃(𝑟1)(𝑣5))}} 

= {ℎ1𝑗  | 𝑚𝑎𝑥ℎ1𝑗∈𝒟̃(𝑟1)(𝑣𝑗)  {𝑠𝑐𝑟({0.3, 0.4}), 𝑠𝑐𝑟({0.2, 0.4}),  

𝑠𝑐𝑟({0.4}), 𝑠𝑐𝑟({0.2, 0.3}), 𝑠𝑐𝑟({0.3, 0.4})}} 

Since, according to the assumption of Meimei Xia et al. [33] 

and Definition 3, the lengths of all HFEs should be the same for 

computing score function, in Table 3, we make the lengths of 

all HFEs equal to 3 through the addition of the maximum value 

in each HFE, e.g., 𝒟̃(𝑟1)(𝑣1) = {0.3, 0.4} = {0.3, 0.4,0.4} . 

Now, we have 

 

max { 𝒟̃(𝑟1)}  = {ℎ1𝑗  | 𝑚𝑎𝑥ℎ1𝑗∈𝒟̃(𝑟1)(𝑣𝑗) {𝑠𝑐𝑟({0.3, 0.4,0.4}),  

𝑠𝑐𝑟({0.2, 0.4,0.4}), 𝑠𝑐𝑟({0.4,0.4,0.4}), 𝑠𝑐𝑟({0.2, 0.3,0.3}), 
𝑠𝑐𝑟({0.3, 0.4,0.4})}}   

= {ℎ1𝑗  | 𝑚𝑎𝑥ℎ1𝑗∈𝒟̃(𝑟1)(𝑣𝑗) {0.37,  0.33,  0.40,  0.27, 0.37}}  

Since, in the expression above, the maximum score is 0.40, 

which corresponds to 𝒟̃(𝑟1)(𝑣3), we have 

i = 1 ,j = 3 ,ℎ1𝑗 = ℎ13  ,and max { 𝒟̃(𝑟1)} = ℎ13  . 

Hence,  max { 𝒟̃(𝑟1)} = ℎ13 = 𝒟̃(𝑟1)(𝑣3) = {0.4} 

Similarly, we have 

max {( 𝒟̃(𝑟2))} = {0.4,0.5,0.6} ,              
max {( 𝒟̃(𝑟3))} = {0.5,0.6} ,  

max {( 𝒟̃(𝑟4))} = {0.4,0.6,0.8} , 
max {( 𝒟̃(𝑟5))} = {0.5,0.6, 0.7} , 

max {( 𝒟̃(𝑟6))} = {0.5,0.6} , 
max {( 𝒟̃(𝑟7))} = {0.4,0.5} . 

   Thus, we obtain the following optimal normal decision object:  
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 𝑘1 𝑘2 𝑘3 𝑘4 

𝑣1 {0.3, 0.5} {0.2, 0.4} {0.4, 0.6} {0.2, 0.3} 

𝑣2 {0.2, 0.4} {0.6, 0.7} {0.5, 0.7} {0.5, 0.6} 

𝑣3 {0.5} {0.8, 0.9} {0.6, 0.8} {0.3, 0.5} 

𝑣4 {0.6, 0.7} {0.3, 0.5} {0.7, 0.9} {0.3, 0.5} 

𝑣5 {0.5, 0.6} {0.4, 0.6} {0.3} {0.4, 0.5} 

   

 𝑚1 𝑚2 𝑚3 𝑚4 

𝑣1 {0.5, 0.6} {0.3, 0.4} {0.7, 0.8} {0.6, 0.8} 

𝑣2 {0.3, 0.5} {0.5, 0.6} {0.2, 0.4} {0.3, 0.5} 

𝑣3 {0.5, 0.7} {0.2, 0.4} {0.4, 0.6} {0.4, 0.9} 

𝑣4 {0.2, 0.3} {0.5, 0.6} {0.6, 0.7} {0.4, 0.6} 

𝑣5 {0.3, 0.4} {0.6, 0.9} {0.5, 0.6} {0.2, 0.3} 

 

Fig.1. Illustration of hesitant fuzzy soft set (𝒜̃,   𝒦), (ℬ̃,  ℒ), (𝒞̃,  ℳ) in table format (Example 4) 

 

Table 3. Illustration of hesitant fuzzy soft set (𝒟̃, ℛ) in table format 

 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 

𝑣1 {0.3, 0.4} {0.3, 0.5} {0.2, 0.3, 0.4} {0.2, 0.4} {0.3, 0.4, 0.5} {0.3, 0.4} {0.2, 0.3} 

𝑣2 {0.2, 0.4} {0.2, 0.3, 0.4} {0.5, 0.6} {0.3, 0.5} {0.2, 0.4} {0.3, 0.5} {0.3, 0.5} 

𝑣3 {0.4} {04, 0.5} {0.2, 0.4} {0.4, 0.6, 0.8} {0.4, 0.6} {0.2, 0.4} {0.2, 0.4} 

𝑣4 {0.2, 0.3} {0.4, 0.5, 0.6} {0.3, 0.4, 0.5} {0.3, 0.4, 0.5} {0.5, 0.6, 0.7} {0.5, 0.6} {0.3, 0.5} 

𝑣5 {0.3, 0.4} {0.2, 0.3} {0.4, 0.5} {0.2, 0.3} {0.3} {0.3} {0.4, 0.5} 

 
 

𝕂 =
{0.4}

𝑟1

+
{0.4,0.5,0.6}

𝑟2

+
{0.5,0.6}

𝑟3

+
{0.4,0.6,0.8}

𝑟4

+
{0.5,0.6,0.7}

𝑟5

+
{0.5,0.6}

𝑟6

+
{0.4,0.5}

𝑟7

 

 

   Step 3: In this step, soft hesitant fuzzy upper approximation 

𝒟̅ (𝕂)  and soft hesitant fuzzy lower approximation 𝒟 (𝕂) of 

optimal normal decision object 𝕂 with respect to (𝑋,  𝒬, 𝒟̃−1) 

are computed, as shown in Table 4. 

 

  Step 4: Score functions 𝑠𝑐𝑟(𝒟(𝕂)(𝑣𝑖)) and 𝑠𝑐𝑟(𝒟(𝕂)(𝑣𝑖)) 

of values  𝒟(𝕂)(𝑣𝑖)   and 𝒟 (𝕂)(𝑣𝑖)  are then calculated, 

respectively, in accordance with Definition 3. For calculation, 

we make the lengths of all HFEs the same in Table 3. Then 

choice value 𝜎𝑖   is defined by adding 𝑠𝑐𝑟(𝒟(𝕂)(𝑣𝑖))  and 

𝑠𝑐𝑟(𝒟(𝕂)(𝑣𝑖)), as shown in Table 4.  

  As shown in Table 4, service  

𝑣2  has the highest choice value. Therefore, the composite 

service maker will select it as the optimal service. It can also be 

observed since 𝒟̃−1  is an arbitrary relation; therefore, 

according to Theorem 3 and Definition 11, the condition  

𝒟(𝕂) ⊆ 𝒟(𝕂) does not hold in Table 4. 

C. Comparison with the existing solution for multi-criteria 

decision making based on hesitant fuzzy   

  In this section, we validate the effectiveness of SHFRS in 

multi-criteria decision making. For this, we compare our 

method of decision making with the other existing solution.  

 

For comparison, Example 4 is solved with the help of the 

hesitant fuzzy soft set-based algorithm proposed by Fuqiang 

Wang et al. [23]. The Procedural steps of solution of Example 4 

by using the hesitant fuzzy soft set-based algorithm are as 

follows: 

 

 Step 1: Since Fuqiang Wang et al. [23] did not discuss the 

problem of multi-observer hesitant fuzzy information, we 

consider the hesitant fuzzy soft set (𝒟̃, ℛ) shown in Table 3 to 
be an input hesitant fuzzy soft set. 

 

 Step 2: The induced fuzzy soft set ∆𝒟̃ = (𝒯̃, ℛ) is computed 
as shown in Table 5. 

   

 Step 3: Input a threshold fuzzy set. Here, the threshold fuzzy 

set is chosen by applying the middle-level decision rule to  

∆𝒟̃ = (𝒯̃, ℛ). That is, 

  𝑚𝑑́∆𝒟̃
= {(𝑟1, 0.35),  (𝑟2 , 0.394),  (𝑟3 , 0.416),  

(𝑟4, 0.406),  (𝑟5, 0.472),  (𝑟6 , 0.40),  (𝑟7 , 0.386)}. 

 

 Step 4: For 𝑚𝑑́ ∆𝒟̃
, the mid-level soft set 𝑀(∆𝒟̃∶ 𝑚𝑑́∆𝒟̃

) is 

computed as shown in Table 6. 

 

   Step 5: In Table 6, the choice value 𝜎𝑖 of each service 𝑣𝑖 ∈ 𝑋 

is computed. 

 

      Step 6: The security service with the highest choice value is 

chosen as optimal security service. Nonetheless, it can be easily 

seen in Table 6 that there are multiple security services 

(𝑣2, 𝑣3, 𝑣4, 𝑣5) for which the choice value is 4. Therefore, it is 

difficult to decide which security service is the optimal security  
 

 

 

Table 4. The results of the decision algorithm (Example 4) 

 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 

𝑣1 {0.3, 0.4} {0.5, 0.6} {0.3, 0.5} {0.4, 0.6} {0.7} 

𝑣2 {0.6, 0.7} {0.6, 0.7} {0.7, 0.8} {0.3, 0.5} {0.3, 0.4} 

𝑣3 {0.4} {0.7, 0.8} {0.8, 0.9} {0.6, 0.8} {0.6, 0.8} 

𝑣4 {0.5, 0.6} {0.4, 0.5} {0.5, 0.7} {0.6, 0.8} {0.6, 0.8} 

𝑣5 {0.7, 0.8} {0.4, 0.5} {0.8} {0.6, 0.7} {0.4, 0.6} 
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 𝒟(𝕂) 𝒟(𝕂) 𝑠𝑐𝑟(𝒟(𝕂)) 𝑠𝑐𝑟(𝒟(𝕂)) 𝜎 

𝑣1 {0.5, 0.6, 0.7} {0.3, 0.4, 0.5} 0.60 0.40 1.00 
𝑣2 {0.5, 0.6} {0.5, 0.6} 0.566 0.566 1.132 
𝑣3 {0.4, 0.5, 0.6} {0.4, 0.6, 0.8} 0.50 0.60 1.10 
𝑣4 {0.4, 0.5, 0.6} {0.5, 0.6, 0.7} 0.50 0.60 1.10 
𝑣5 {0.5, 0.6} {0.4, 0.5} 0.566 0.466 1.032 

 

service in universe 𝑋. As described in algorithm [23], however, 

in the case of similar highest choice value 𝜎𝑖  for two or more 

objects, any one of them can be randomly selected as  

the optimal decision object. Therefore, we select 𝑣2 as optimal 

security service.  
   Let us consider Step 3 again and input another threshold 

fuzzy set. This time, the threshold fuzzy set is chosen by 

applying the top-level decision rule to ∆𝒟̃ = (𝒯̃, ℛ). That is, 

 𝑡𝑝́∆𝒟̃
= {(𝑟1 , 0.40),  (𝑟2 , 0.50),  (𝑟3 , 0.57),  (𝑟4, 0.60),  

(𝑟5, 0.60),  (𝑟6, 0.57),  (𝑟7, 0.47)}. 

 For 𝑝́∆𝒟̃
 , the top-level soft set 𝑇(∆𝒟̃: 𝑡𝑝́∆𝒟̃

) is computed as 

shown in Table 7. It can be easily seen in Table 7 that only one 

security service, 𝑣4, has highest choice value. Therefore, it is 
selected as the optimal security service. 

 From the procedure above, two results are obtained: one is 

𝑣2 (in the case of mid-level soft set), and the other is 𝑣4 (in the 

case of top-level soft set). It shows that there is ambiguity in the 

decision results, and it cannot be decided whether object 𝑣2  or 

object 𝑣4  is optimal. We can easily conclude that the final 

result of the algorithm proposed by Fuqiang Wang et al. [23] is 

not unique and dependent on the threshold fuzzy set to a certain 

extent. Note, however, that our proposed solution to the 
multi-criteria decision making problem does not depend on any 

input threshold fuzzy set. Therefore, the final result of our 

solution is unique or free from ambiguity. A brief comparison  

 

 

 

of the proposed solution with the solution proposed by Fuqiang 

Wang et al. [23] is shown in Table 8.  

 

Table 5. Illustration of induced fuzzy soft set ∆𝒟̃  = (𝒯̃, ℛ) in table 
format (Example 4) 

 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 

𝑣1 0.37 0.43 0.30 0.33 0.40 0.37 0.27 

𝑣2 0.33 0.30 0.57 0.43 0.33 0.43 0.43 

𝑣3 0.40 0.47 0.34 0.60 0.53 0.33 0.33 

𝑣4 0.27 0.50 0.40 0.40 0.60 0.57 0.43 

𝑣5 0.37 0.27 0.47 0.27 0.50 0.30 0.47 

 

Table 6. Illustration of mid-level soft set 𝑀(∆𝒟̃ : 𝑚𝑑́∆𝒟̃
) in table 

format (Example 4) 

 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 Choice value 

𝑣1 1 1 0 0 0 0 0 2 

𝑣2 0 0 1 1 0 1 1 4 

𝑣3 1 1 0 1 1 0 0 4 

𝑣4 0 1 0 0 1 1 1 4 

𝑣5 1 0 1 0 1 0 1 4 

 

Table 7. Illustration of top-level soft set 𝑇(∆𝒟̃: 𝑡𝑝́∆𝒟̃
) in table format 

(Example 4) 

 𝑟1 𝑟2 𝑟3 𝑟4 𝑟5 𝑟6 𝑟7 Choice value 
𝑣1 0 0 0 0 0 0 0 0 

𝑣2 0 0 1 0 0 0 0 1 

𝑣3 1 0 0 1 0 0 0 2 

𝑣4 0 1 0 0 1 1 0 3 

𝑣5 0 0 0 0 0 0 1 1 

 
Table 8. A Comparative study of solutions for multi-criteria decision making based on hesitant fuzzy 

 

                 Feature 
Solution 

Additional input 

required 

 Ambiguity in 

decision result 

Ranking 

methodology 

Multi-source 

aggregation 
(multi-observer 
hesitant fuzzy 
information) 

Applied theory 

Fuqiang Wang et 
al. [23] 

Yes Yes Choice value, which 
is calculated by 
using level soft set. 

Not discussed Hesitant fuzzy 
soft set 

Haidong Zhang et 
al. [31] 

Yes Yes Choice value, which 
is calculated by 
using score function 
of upper and lower 
approximation. 

Not discussed Hesitant fuzzy 
rough set 

Proposed solution No No Choice value, which 
is calculated by 
using score function 

of upper and lower 
approximation. 

AND as a min 
operator 

SHFRS 
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V. CONCLUSION

 In this paper, we studied the hesitant fuzzy set to solve the 

multi-criteria decision making problem of optimal security 

service selection for FMEC. This study has made three new 

contributions in the area of hesitant fuzzy theory and FMEC. 

First, we proposed an innovative extension of the hesitant fuzzy 

rough set theory by fusing it with the hesitant fuzzy soft set, 

which is known as SHFRS. Second, we introduced a novel 

solution to multi-criteria decision making problems based on 

our proposed SHFRS. Finally, the problem of selecting optimal 

security services for FMEC is solved by using SHFRS based 

multi-criteria decision making. A practical example of optimal 

security service selection for FMEC was given, showing the 
validity of the proposed SHFRS and its application to 

multi-criteria decision making problems. Our findings suggest 

that the proposed SHFRS-based multi-criteria decision making 

solutions can be used in FMEC as a selection module that 

selects the optimal security services among several available 

security services, and it can efficiently handle dynamically 

varying security services with the mobile user’s requirements. 
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