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Abstract: Wireless Sensor Networks (WSNs) are usually troubled with constrained energy and

complicated network topology which can be mitigated by introducing a mobile agent node. Due to

the numerous nodes present especially in large scale networks, it is time-consuming for the collector

to traverse all nodes, and significant latency exists within the network. Therefore, the moving path of

the collector should be well scheduled to achieve a shorter length for efficient data gathering. Much

attention has been paid to mobile agent moving trajectory panning, but the result has limitations in

terms of energy consumption and network latency. In this paper, we adopt a hybrid method called

HM-ACOPSO which combines ant colony optimization (ACO) and particle swarm optimization

(PSO) to schedule an efficient moving path for the mobile agent. In HM-ACOPSO, the sensor field is

divided into clusters, and the mobile agent traverses the cluster heads (CHs) in a sequence ordered

by ACO. The anchor node of each CHs is selected in the range of communication by the mobile agent

using PSO based on the traverse sequence. The communication range adjusts dynamically, and the

anchor nodes merge in a duplicated covering area for further performance improvement. Numerous

simulation results prove that the presented method outperforms some similar works in terms of

energy consumption and data gathering efficiency.

Keywords: wireless sensor network; mobile agent; ant colony optimization; particle swarm

optimization; moving trajectory

1. Introduction

The rapid development of tiny electronic sensors has accelerated the widespread use of wireless

sensor networks (WSNs) [1–3]. WSNs are usually composed of numerous sensors deployed randomly

to detect a target area for some physical features such as temperature, humidity, and gas concentration,

and it has been widely applied in smart home [4,5], smart health [6], environment detecting [7],

and certain intelligent systems technologies [8–11]. These sensors are battery-powered and are

self-organized in order to construct wireless sensor networks. Traditional WSNs usually adopt static

sinks, and that may cause hot spot problems, which makes nodes close to the sink experience premature

death due to the heavy burden of data forwarding. The hot spot problems can be mitigated using

special clustering and well-designed topology controls, but they cannot solve the issue fundamentally.
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Recent research on sink mobility technology provides a series of novel ideas to address the problem of

hot spots and has achieved great results [12–29].

One of the problems demanding prompt solution for sink mobility is the trajectory scheduling of

the mobile agent. An efficient traveling path of the mobile agent can reduce the energy consumption

and mitigate network latency as well. However, the path scheduling problem has been proven

to be a non-deterministic polynomial hard problem (NP-hard) [12,13]. Therefore, it is difficult to

acquire the optimal solution to the problem, and many researchers regard it as traveling salesman

problem (TSP) [14]. Some intelligent heuristic methods such as ant colony optimization (ACO) [30],

particle swarm optimization (PSO) [31], and glowworm swarm optimization (GSO) [32] are introduced

for mobile agent path planning and they achieve some results. Many algorithms aim to search for

a shorter path for the mobile agent and this inevitably increases the energy consumption during

transmission. Therefore, it is hard to make a trade-off between different properties, and the routing

protocol designing should be combined with specific applications. Another great achievement is the

technology of MU-MIMO, which permits multiple receivers and senders to communicate at the same

time by equipping multiple antennas [33–36]. A mobile agent with MU-MIMO can gather data more

efficiently when it accesses more than one target.

The main contribution of this work can be concluded as follows. Firstly, we partition the target

area into subdomains using virtual grids, and the cluster heads (CHs) are elected according to their

weights. Secondly, the ACO algorithm is executed by the sink node to calculate an optimal sequence

of CHs for traversing. Thirdly, the PSO algorithm is executed to select anchor nodes for mobile agents

based on the traverse sequence obtained by the ACO algorithm. Fourthly, the communication range of

the CHs are adjusted, and some anchor nodes can be merged to balance inter-cluster energy and to

economize the sojourn time of the mobile agent. Finally, numerous simulations prove that the presented

algorithm HM-ACOPSO plans a more efficient traveling path for the mobile sink as compared to

some similar works. Section 2 introduces some of the latest work related to the enhancement of the

performance of the network utilizing ACO or PSO and sink mobility technology. Section 3 describes

the model of the network and energy and makes some basic assumptions. The traditional ACO and

PSO algorithms are explained in Section 4. Section 5 details our presented HM-ACOPSO, and Section 6

demonstrates the simulation parameters of this work. Section 7 shows the simulation results and

includes some analyses. Section 8 presents some discussions and proposes some future work. Section 9

concludes the paper.

2. Related Work

In this section, we make a brief summary of recent research which focuses on routing protocols

designing and utilizing mobile technology and the ACO or PSO algorithm in WSN. A brief

summarization of these protocols is shown as Table 1.

2.1. Mobile Agent-Based Routing Protocols

In Reference [15], the authors discuss the data gathering problem in order to maximize the volume

of collected information in networks with self-charging sensors. By means of convex optimization, they

present a distributed data collecting schema to approximate the optimal solution. In Reference [16],

the authors adopt two mobile agents to gather information collaboratively. The moving trajectory

of mobile agents is characterized by a Fermat spiral route, and it can be predicted according to the

constant velocity and the direction of the mobile agents. The sojourn times of the clusters are different

for further energy balancing.

2.2. ACO-Based Routing Protocols

In Reference [17], the authors present an energy-efficient coverage optimization algorithm called

ACB-SA. ACB-SA introduces ant colony optimization (ACO) to address the network coverage problem.
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In ACB-SA, each sensor can switch between the status of active and inactive freely, and the target of this

work is to adopt as few active sensors as possible in order to maintain optimal network coverage area.

In Reference [18], the authors present an energy-efficient routing schema called ACO-MNCC.

It utilizes the ACO algorithm to search the maximum connected covers that disjoint with each other

to enhance the lifetime of the network. The pheromone denotes the experiences of hunting, and the

heuristic information represents the attraction of the target sensor. Numerous experiments illustrate

the energy efficiency of the presented algorithm, especially in heterogeneous WSNs. In Reference [19],

the authors present a novel sensor deployment method called ACO-MCC3D in 3-D space coordinates.

ACO-MCC3D contains mainly two parts. In phase-I, an improved ACO algorithm is implemented to

find the potential location for node deployment, and the heuristic denotes the number of the target

points the potential sensor covers. In phase-II, the redundant potential sensors will be deleted.

An improved version of ACO which utilizes three different pheromones is presented in

Reference [20]. One of them used local pheromones to minimize the number of sensors and maintain

a certain coverage rate. The other two pheromones are global pheromones used for active sensors

selection. In Reference [21], the authors use ACO to avoid the communication blind district and

decrease the cost of deployment. A load-balanced deployment schema is designed to improve the

connectivity of the network. In Reference [22], the ACO algorithm is utilized for mobile sink moving

trajectory scheduling. Nodes in the same subdomain select a CH in accordance with their residual

energy, and the traveling path of the mobile sink is transformed into a TSP problem to minimize the

network latency. The mobile sink needs to walk to each CH for data gathering.

Authors in Reference [23] present an energy-aware routing method called LTAWSN. Not only the

transmission path but also the residual energy among the path is considered to update the pheromone

by implementing the ACO algorithm. Simulation results prove that the selected routing path is

more reasonable and energy-balancing. Authors in Reference [24] present a hybrid method which

combines fuzzy logic, unequal clustering, and ACO technology called FUCHAR. During the clustering

phase, sensors are divided into clusters with different sizes in accordance with their residual energy,

distance from the sink, neighbor distance, degree of nodes, and so on. The network topology is mainly

constructed by means of ACO to hunt for an optimal path. Additionally, the clusters are marked with

different levels according to their distance from the sink, and cross-level data forwarding is conducted

when necessary. Authors in Reference [25] present an original routing schema called CRT2FLACO.

In CRT2FLACO, the type-2 fuzzy logic is utilized for better clustering by considering the features of

residual energy, neighbor nodes amount, and destination distance. Then, ants link all the CHs for

inter-cluster transmission.

2.3. PSO-Based Routing Protocols

In Reference [26], the PSO algorithm is utilized for cluster forming and inter-cluster routing.

Two different kinds of sensors are randomly deployed in the target area. Nodes with higher initial

energy not only detect the information of surroundings but also function as gateways for data

forwarding. A novel method adopted PSO is presented to determine which gateway should be chosen

as the forwarder. In Reference [27], authors enhance the performance of the algorithm presented

in Reference [26] and pay more attention to energy balancing. A special particle-encoding method

and multi-target fitness method are created to achieve a balance between energy efficiency and

energy balancing.

In Reference [28], a novel idea for a clustering-adopting PSO has been presented in EPMS. The

authors utilize several straight lines to partition the whole sensor area into subdomains, and each

domain denotes a cluster. Each line is represented as an included angle and intercepts with the

coordinate axis, and the fitness function describes the quality of the clustering. In Reference [29],

the authors present a variable dimension PSO method for mobile sink moving trajectory planning.

The mobile sink stays at the rendezvous points for data collection and the number of rendezvous
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is not determinate. The authors also present a novel method for particle updating using the

nearest dimension.

Protocols such as ACB-SA, ACO-MCC3D, and TPACO, which do not introduce clustering

technology, are restricted to small scale networks because the sink node has no assistants and it

needs to process all packages. Meanwhile, protocols which only adopt a static sink like ACB-SA,

ACO-MNCC, and DSBA may cause hot spot problems and result in nodes’ premature death. One of the

big challenges this field faces is how to combine clustering with sink mobility technology to enhance

the performance of the network. Additionally, all the protocols in Table 1 are centralized, which means

nodes in those protocols need control messages to have guidance for their next action. Distributed

protocols are demanded to decrease the burden of control messages.

Table 1. Routing protocols which adopt ant colony optimization (ACO) and particle swarm optimization

(PSO) algorithms.

Protocol Name Year Targets Methods Sink Type Clustering
Topology
Control

Network
Size

ACB-SA [17] 2012
Energy efficient,

coverage
optimizing

ACO based
single static

sink
False Centralized Small

ACO-MNCC [18] 2012
Network lifetime

enhancing
ACO based

multiple static
sinks

False Centralized Middle

ACO-MCC3D [19] 2018
Deployment
optimization

ACO based
single static

sink
False Centralized Small

TPACO [20] 2011
Network lifetime

enhancing
ACO based

single static
sink

False Centralized Small

DSBA [21] 2015
Deployment
optimization,

blindness avoiding
ACO based

single static
sink

False Centralized Small

ACO-TSP [22] 2016
Mobile sink shortest

moving path
scheduling

ACO based
single mobile

sink
True Centralized Large

LTAWSN [23] 2015
Network lifetime

enhancing
ACO based

single static
sink

False Centralized Middle

FUCHAR [24] 2018
Network lifetime

enhancing

ACO, fuzzy
logic, unequal

clustering

single static
sink

True Centralized Large

CRT2FLACO [25] 2015
Load balancing,
network lifetime

enhancing

ACO, type-2
fuzzy logic,
clustering,

single static
sink

True Centralized Large

PSO [26] 2014 Energy efficient
PSO,

clustering
single mobile

sink
True Centralized Large

PSO-IMPROVE
[27]

2016
Energy efficient and

energy balancing
PSO,

clustering
single mobile

sink
True Centralized Large

EPMS [28] 2016
Network lifetime

enhancing
PSO,

clustering
single mobile

sink
True Centralized Large

VD-PSO [29] 2016
Mobile sink moving

path scheduling
PSO,

clustering
single mobile

sink
True Centralized Large

3. System Model

3.1. Basic Assumptions

The following are some assumptions made to simplify the network for the purpose of conducting

the experiments conveniently.

• All the sensors maintain static after deployment and they can adjust their communication distance

within the communication range.

• All the sensors have the same initial energy and they are all battery-powered. Once the sensor

exhausts its energy, it will be useless.

• We assume that the wireless communication link is ideal and there is no collision during data

transmission and receiving.
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• The mobile agent is carried by an intelligent vehicle and it does not have a limitation of energy.

The MU-MIMO technology is introduced for one-to-many communication. The speed and the

direction of the mobile agent can be controlled freely.

• The computation process is conducted in a sink node and the residual energy of sensors can be

predicted by computation and verified in the transmitted data.

3.2. The Network Model

In this paper, the sensor field is a rectangular area, and numerous sensor nodes are randomly

deployed by plane or other tools, as shown in Figure 1. Each sensor owns its unique ID which is used

to recognize it. Sensor data is generated according to time, and sensors have memory for data storage.

 

 

 

 

 

 

Figure 1. The network model.

3.3. The Energy Model

As the literature records [37,38], the energy consumption of sensors used in transmission is

about 1000 times higher than the energy used for other purposes. Therefore, we only consider energy

consumption used for transmission in our model, which is shown as Figure 2.

 

 

 

 

 
Figure 2. The energy model.

As Figure 2 describes, the energy used in transmission is generally composed of two parts, the

sending and receiving parts. The energy used in sending depends on the transmission distance. Once

the signal is sent by the transmitter, it will be strengthened by the amplifier, and the amplifier will

choose two different power levels to strengthen the signal according to the transmission distance.

Therefore, the energy model used in sending data is also classified into two different types, the free
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space model (d2 power loss) and multi-path fading model (d4 power loss). The energy used for sending

the l-bit data package can be calculated as:

ETx(l, d) =

{

l·Eelec + l·ε f s·d2 i f , d < d0

l·Eelec + l·εmp·d4 i f , d ≥ d0
(1)

where Eelec is the energy use of the transmitter and receiver unit. ε f s and εmp denote the amplification

coefficients for two different models, respectively. d0 is the distance threshold for choosing different

amplifier powers, which can be calculated as:

d0 =

√

ε f s

εmp
(2)

The energy used for the receiver is simpler compared to the sending part, and its power is constant,

the same as the transmitter. The energy used for receiving the l-bit data package can be calculated as:

ERx = l·Eelec (3)

4. Overview of Traditional ACO and PSO Algorithms

Ant colony optimization (ACO) is a searching method determined by means of previous

experience [30] and enlightened by the food-hunting process of ants. When ants walk through

a path, they release a material called pheromone, and pheromone can volatilize after a while. In the

beginning, ants choose each path with equal probability, and the path with the shorter length costs less

time for traveling. Therefore, the path with shorter length will be travelled by more ants in a given

time, and the pheromone in those paths become higher. In cycles, more ants will choose the short

path for food hunting to reduce the total time cost. ACO is applied to address the traveling salesman

problem (TSP) [14,39] originally and it has been widely used in various fields. The working procedure

of ACO is described in Figure 3.

2 4

2
0

4
0

  ,
( , )

   ,





    

0

0     

      

 
.Figure 3. The workflow of ACO.
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PSO is another intelligent heuristic algorithm which utilizes the wisdom of the swarm [31,40,41].

Each particle commonly represents a whole solution for the problem, and the fitness function evaluates

the performance of the solution represented by the particle. During each iteration, a local and

a globally-optimal solution are marked for updating the location of the particles. Particles search for

better solutions according to local and global optimal solutions. The working procedure of PSO is

described as in Figure 4.

 

2
2

    

R

Figure 4. The workflow of PSO.

5. Our Presented HM-ACOPSO Algorithm

In this section, we will illustrate our presented HM-ACOPSO algorithm. HM-ACOPSO mainly

contains four phases: Clustering; mobile agent shortest moving sequence searching based on ACO;

further improvement of the scheduled path using anchor nodes based on PSO; and communication

range adaption for energy balancing and anchor nodes merging for decreasing the sojourn time of the

mobile agent. During the initial phase of the network, sensors exchange their own information that

includes location and sensor ID with their neighbors in the range of communication.

5.1. Sub-Domain Division

We utilize a virtual grid to divide the sensor field into subdomains, and each subdomain represents

a cluster. In order to simplify the intra-cluster communication, cluster members only communicate

with their corresponding cluster head directly. In order to guarantee that any two nodes in the

same subdomain can communicate with each other, the length of each subdomain should satisfy the

following formula:

w =

√
2

2
R (4)

where R is the communication range of ordinary sensors. Each subdomain elects a cluster head in

accordance with the weight of each node, and the weight can be calculated using Formulas (5)–(7):
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Wi =
Eresidual

Dtotal
(5)

Dtotal = ∑
i∈A

dis(i, j)2 (6)

dis(i, j) =
√

(xi − xj)
2 + (yi − yj)

2 (7)

where Eresidual is the residual energy of node i and A is the set of neighbors of node i.

During the initial phase of election, nodes close to the subdomain center take the lead in

broadcasting a competition package which contains the node ID and weight. Neighboring nodes

compare their own weights with the receiving package. If the neighbor nodes own the bigger weight,

they will broadcast their own competition package. Finally, nodes with the biggest weight will be

chosen as CH. The process of clustering needs to create many control messages which increase the

extra energy consumption. Therefore, the network conducts the clustering procedure after several

rounds. Figure 5 describes the result of the clustering.

     

2( , )      

2 2( , ) ( ) ( )     

 

,

Figure 5. The sensor field after clustering.

5.2. Shortest Path Selection Based on ACO

For some delay-tolerant applications such as environment monitoring, there is no need for

multi-hop communication among cluster heads which will result in a heavy forwarding burden on

CHs. In our proposed HM-ACOPSO algorithm, we use a mobile agent for data collection. During each

round, the mobile agent needs to traverse all the CHs and sojourn for data gathering. The moving

trajectory of the mobile agent has a significant impact on the performance of the network. A vital

feature for moving trajectory planning is the length of the path. A short moving path will cost less

time for the mobile agent traveling. In this section, we utilize the ACO algorithm for shortest path

selection. We use an undirected complete graph G =< V, E > to represent the network and V denotes

the set of cluster heads and E denotes the set of edges between any two cluster heads. The following

steps are used to conduct the ACO algorithm.

Step 1: m ants are randomly placed in n CHs and a matrix with m × n dimension is used to record

each ant’s traveling path.

Step 2: The possibility of next cluster heads that ants will choose can be calculated using

Formula (8):



Sensors 2019, 19, 575 9 of 19

pk
ij(t) =











τα
ij (t)·µ

β
ij(t)

∑
k∈next

τα
ik(t)µ

β
ik(t)

if j ∈ next

0 otherwise

(8)

where pk
ij denotes the possibility that the kth ant travels from CH i to CH j and next denotes the set

of CHs that ant k has not travelled. τ is the pheromone, and µ is the inspired factor, which is the

reciprocal of the distance between CH i to CH j. Each ant travels all the CHs in accordance with the

above possibility. α and β are two constant control factors.

Step 3: A fitness function is utilized to evaluate the quality of the traveling path of the ants’ and it

can be defined as follows:

Fitness(k) = ∑
e∈Path

e (9)

where Path denotes the set of edges the ant travels. The best travel path is recorded as the parameters

for PSO.

Step 4: The pheromone will volatilize after a while and when an ant travels through a path, it will

emit a pheromone. Therefore, the pheromone can be updated as:

τij(t + 1) = (1 − ρ) ∗ τij(t) + ∆τij (10)

∆τij =
m

∑
k=1

∆τk
ij (11)

∆τk
ij =

{

Q
f itness(k)

if ant − k pass pathij

0 otherwise
(12)

where ρ is the evaporation rate.

Step 5: Repeat steps 1–4 until reaching the necessary number of iterations. Finally, we record the

path with the shortest length. The sample after path selection using the ACO algorithm is shown as

Figure 6.

next

( ) ( )
      if  j next

( ) ( )( )

0                                 otherwise









    

th

( )                       

( 1) (1 )* ( )     

1
       

  if ant-k pass path
( )

0                  otherwise 






   

 

 

Figure 6. Shortest path selection using the ACO algorithm.

The pseudocode of the ACO-based shortest path selection is described in Algorithm 1.
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Algorithm 1: Pseudocode of ACO-based shortest path selection

1: Input: Set of CHs C = {C1, C2 . . . Cn}, distance between CHi and CHjCij, pheromone Tabuij, set of visited

CHs C_Visit, the probability of next CH for visiting P

2: Output: Shortest Path L = {A1, A2 . . . An}

3: Step 1:

4: Initialize m ants, Cij and Tabuij

5: Step 2:

6: for i = 1 to Iteration Number do

7: Reinitialize C_Visit

8: Randomly place m ants in n CHs

9: for j =1 to m do

10: for k=1 to n do

11: Calculate P /* Using formula (8) */

12: Select next visit CHk according P

13: Add CHk into C_visit

14: end for

15: end for

16: Calculate Fitness(m) /* Using formula (9) */

17: Record the best path L

18: Update Tabuij /* Using formula (10), (11) and (12)*/

19: end for

20: Return the best path L

21: Step 3: Stop

5.3. Anchor Nodes Selection Based on PSO

As mentioned above, the mobile agent needs to move to the location of the CHs for data collecting.

However, each sensor owns its fixed wireless communication coverage, and any two sensors which

are in each other’s communication range can communicate with each other freely. Therefore, the

mobile agent has no occasion to reach CHs for data collecting, and the shortest path selected by ACO

can be further optimized. We allocate a virtual anchor node for each cluster head and we utilize the

PSO algorithm for anchor nodes selection. We still use the order that the preceding ACO achieves

to traverse the anchor nodes of the CHs. Each particle represents a path across all the anchors, and

we assume that the current order for traversing is A = {a1, a2, a3 · · · · · · an}. The dimension of each

particle is 2n and the particle swarm can be denoted as:

P =

















p1

p2

p3

...

pn

















=

















x1
a1

, y1
a1

, x1
a2

, y1
a2
· · · · · · x1

an
, y1

an

x2
a1

, y2
a1

, x2
a2

, y2
a2
· · · · · · x2

an
, y2

an

x3
a1

, y3
a1

, x3
a2

, y3
a2
· · · · · · x3

an
, y3

an

...

xn
a1

, yn
a1

, xn
a2

, yn
a2
· · · · · · xn

an
, yn

an

















(13)

where xk
ai

, yk
ai

denotes the location of kth anchor. The target of the PSO algorithm is to minimize the

traveling path of the mobile agent and we still adopt the fitness function as the ACO used. We set an

initial speed for each dimension of the particle and the restriction of speed and location of particles are

as follows:

limit(vk
i ) = [−10, 10] (14)

dis(anchork, CHk) < R (15)

We use the following steps to execute our POS algorithm.

Step 1: We randomly set the initial location and speed of particles. The location and speed satisfy

the restriction of Formulas (14) and (15).



Sensors 2019, 19, 575 11 of 19

Step 2: The fitness value of particles is calculated in accordance with Formula (9). Each particle

compares the current fitness value with its previous optimal fitness value and chooses the better one

as its Pbest. Similarly, we compare the current global fitness value with the previous optimal global

fitness value and choose the better one as Gbest.

Step 3: The speed and the location of particle pi is updated using the following

formulas respectively.

Vi(t + 1) = ηVi(t) + c1 × rand()× (Pibest − Pi(t)) + c2 × rand()× (Gbest − Pi(t)) (16)

Pi(t + 1) = Pi(t) + Vi(t+1) (17)

where η denotes the inertia factor. c1,c2 denote the weight factor and they satisfy c1 + c2 = 1.

Step 4: After updating the speed and location, each particle checks whether the value of its speed

and location exceed the boundary. If the speed exceeds the limit, it will be set as the boundary value,

and if the location exceeds the limit, the location information will not be updated.

Step 5: Next, it conducts step 2 and iterates until reaching the maximal iteration number.

Finally, Gbest represents the solution for the anchor nodes selection. The sample after the anchor

nodes selection is shown as Figure 7.

( , )

1 2( 1) ( ) () ( ( )) () ( ( ))    

( 1) ( ) ( +1)

1 2 1 2 1

 

 

Figure 7. Anchor nodes selection using the PSO algorithm.

The pseudocode of the PSO-based anchor nodes selection is described in Algorithm 2.
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Algorithm 2: Pseudocode of PSO-based anchor nodes selection

1: Input: Location of CHs Loc_CH, particle matrix P, velocity of particle V, the shortest path L from Algorithm

1

2: Output: Optimal anchor nodes Anchor = {a1, a2 . . . an}

3: Step 1:

4: Initialize particle matrix P according to Loc_CH, L and formula (15), randomly initialize V according to the

formula (14)

5: Step 2:

6: for i = 1 to Iteration Number do

7: Calculate Fitness(particle) /* Using formula (9) */

8: for j = 1 to n do

9: Pjbest = {Pjbest|Fitness(Particlej))}

10: end for

11: Gbest = {Gbest|min(Fitness(Particles))}

12: for j = 1 to n do

13: Update velocity Vj of Particlej /* Using formula (16) */

14: Update P /* Using formula (17) */

15: Check the boundary of Particlej

16: end for

17: end for

18: Return the optimal anchor nodes Anchor = {a1, a2 . . . an}

19: Step 3: Stop

5.4. Communication Range Adjustment

During the initial round, sensors own the same initial energy, and the network is energy-balanced.

As the number of rounds increases, the network becomes energy-heterogeneous due to the uneven

deployment and heavy burden of forwarding. The clustering addresses the problem of energy

unbalancing within the cluster, whereas, the unbalanced energy of the inter-cluster is still unsolved.

In this paper, we adopt the method of sensor communication range adjustment to handle the

unbalanced energy between different clusters. The CHs commonly consumes the most energy during

the transmission with the mobile agent, and we only consider adjusting the communication range of

the CHs. The communication range of each CHs is dynamic and is changed according to Formula (18).

RCHi
= (1 − c

EMax − ECHi
+ ε

EMax − EMin + ε
)R (18)

where EMax denotes the maximal residual energy of CHs and EMin denotes the minimal residual

energy of CHs. c is a regulatory factor between 0 and 1, and it usually is set as 0.5. ε is a very small

constant to avoid the denominator to be zero. The sample after communication range adjustment is

shown as Figure 8.

5.5. Anchor Nodes Merging

The total traveling time contains two parts, including moving time and sojourn time. The total time

the mobile agent uses to complete a whole travel path can be calculated using the following formula.

Ttotal =
Ltotal

v
+ Nanchor·tsojourn (19)

The sojourn time is related to the number of anchor nodes. More anchor nodes mean that the

mobile agents have to spend more time data collecting. In this paper, the MU-MIMO technology is

adopted to enable the mobile agent to collect the data from multiple sensor nodes. If any anchor node

is in the transmission range of multiple CHs simultaneously, we can merge the relevant anchor nodes.
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Each anchor node is checked to determine whether it is in multiple CHs’ transmission ranges utilizing

the following equation:

√

(xi − x△)2 + (yi − y△) ≤ R&&
√

(xj − x△)2 + (yj − y△) ≤ R (20)

where (xi, yi),(xj, yj) are the coordinates of any two CHs and (x△, y△) is the coordinate of any anchor

node. We only reserve the anchor nodes which are in a conjunct communication range and remove the

other anchor nodes.

 


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Parameter Name Parameter Value 
Network size 400 × 400 m 

Number of sensors (N) 200 
Memory capacity of sensors  500 bits 

Communication range of sensors (R) [0,50] m 
Data generation ratio of sensors (l) 1 bits/s 

Initial energy of sensors ( 0 ) 0.05 J 
Mobile agent moving speed (v) 2 m/s 

Figure 8. Communication range adjustments.

6. Simulation Environment

6.1. Network Parameters

With the purpose of having an evaluation of our proposed HM-ACOPSO algorithm, we employ

Matlab to simulate the experiment. We also compare some similar works such as ACO-TSP, VD-PSO,

and LEACH with this work to highlight the outstanding performance of this work. The relevant

parameters used in this paper are listed in Table 2.

Table 2. Network parameters.

Parameter Name Parameter Value

Network size 400 × 400 m
Number of sensors (N) 200

Memory capacity of sensors 500 bits
Communication range of sensors (R) [0,50] m
Data generation ratio of sensors (l) 1 bits/s

Initial energy of sensors (E0) 0.05 J
Mobile agent moving speed (v) 2 m/s
Mobile agent sojourn time (E0) 5 s

Energy consumption on circuit (Eelec) 50 nJ/bit
Free-space channel parameter (ε f s) 10 pJ/bit/m2

Multi-path channel parameter (εmp) 0.0013 pJ/bit/m4

6.2. ACO Parameters

In the ACO algorithm, the parameters α, β and ρ have great influence on the performance of the

ACO. We make numerous attempts to find a better combination of the parameters to enhance the
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performance of ACO. Numerous simulations are shown in Table 3, and from Table 3, we can see that

the best values for α, β and ρ are 1, 2, and 0.5 respectively.

Table 3. Optimal path length under different ACO parameter combinations.

α β ρ Optimal Path Length Iteration Number

0.5 0.5 0.5 2031.6 65
0.5 1 0.5 1737.4 62
1 1 0.5 1548.7 58
1 2 0.5 1548.7 45
1 3 0.5 1548.7 54
2 1 0.5 1588.5 55
1 2 0.4 1548.7 48
1 2 0.6 1548.7 60

6.3. PSO Parameters

In the PSO algorithm, η, c1, and c2 also have a significant effect on the final anchor nodes selection

and iteration. Different combinations of these parameters and their performances are described in

Table 4. From Table 4, we can see that the best values for η, c1, and c2 are 0.8, 0.4, 0.6, respectively.

Table 4. Optimal path length under different PSO parameters combination.

η c1 c2 Optimal Path Length Iteration Number

0.8 0.5 0.5 1015.9 33
0.8 0.4 0.6 983.6 29
0.8 0.3 0.7 1024.6 32
0.8 0.6 0.4 1005.6 34
0.7 0.4 0.6 1064.4 38
0.9 0.4 0.6 1026.1 34

7. Performance Evaluation

We first analyze the energy consumption of the network between different algorithms. As illustrated

in Figure 9, as time rises, the energy consumption of the four algorithms increases, and LEACH rises

more rapidly. We know that each of the four algorithms adopts a clustering algorithm. However, CHs

are more unevenly distributed in LEACH. Some nodes may be far away from the CHs and that results in

long-distance communication which consumes significantly more energy. HM-ACOPSO, VD-PSO, and

ACO-TSP all introduce mobile data collectors for data gathering which conserve energy. The energy

consumption of ACO-TSP increases most slowly before 5500 s because the mobile agent in ACO-TSP

needs to access each CH and the transmission distance between the mobile agent and CHs is very close.

Whereas, the CHs selection in ACO-TSP only considers the residual energy which causes significant

energy dissipation in intra-cluster communication. VD-PSO takes energy balances into consideration so

that it schedules a moving trajectory with much more energy consumption, but the energy of the whole

network is much more balanced. Therefore, the energy increases steadily in VD-PSO. Our proposed

HM-ACOPSO method features a more reasonable clustering method and the scheduled path is optimized

so that it achieves better performance in aspects of energy consumption.

We also research the traveling path that different algorithms schedule, and the result is described

as Figure 10. We can clearly see from Figure 10 that HM-ACOPSO almost has the best performance in

terms of scheduled path length. There is no doubt that the ACO-TSP achieves the worst performance

in terms of traveling path length because the mobile agent in ACO-TSP needs to access each CH

closely to collect information. VD-PSO schedules rendezvous points of mobile agents to sojourn for

information gathering, and that is much more efficient compared to ACO-TSP. However, VD-PSO does

not make full use of wireless communication range and it sacrifices some performance for balancing

the energy of the whole network. One of the great improvements in HM-ACOPSO is that it makes full
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use of the wireless communication range, and therefore, it can schedule the optimal traveling path for

the mobile agent.

Figure 9. Total energy consumption of the network.

 

Figure 10. The traveling path length of the mobile agent.

We then study the package loss rate of each algorithm. We assume that all of the communication

is successful and that the packages will be dropped only when the memory of the sensors overflows.

The result is demonstrated as Figure 11. The package loss rate has great relevance to the efficiency

of the mobile agent data gathering. In LEACH, the sink node is static, and all the data is transmitted

to it timely by multiple-hop communication. Therefore, package loss will not occur. Whereas,

in HM-ACOPSO, VD-PSO, and ACO-TSP, the mobile agent is introduced to collect data, and the

shorter the traveling path and the less the sojourn points are, the more efficient the mobile agent is.

Our proposed HM-ACOPSO method makes full use of the wireless communication range to shorten

the mobile agent traveling path and merge the sojourn points to enhance the work efficiency of the

mobile agent. A long traveling path of a mobile agent is likely to induce a high package loss rate.
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Figure 11. Overflowing data of the network.

The input of PSO needs to use the output of ACO. Specifically, when we construct the particles P

which represent anchor nodes, we need to use the sequence the ACO created to order the CHs. We

also compare it with the anchor nodes ordered in a random way. The simulation result is shown as

Figure 12. We can clearly see that the schema without ACO performs worse than the schema using

ACO. The upper limit of the schema which doesn’t adopts ACO is close to twice that of the schema

which adopts ACO. Even if the sets of anchor nodes in the two schemas are the same, when the mobile

agent travels them in a different order, the result could be very different. That is also the reason why

we need to combine the ACO with PSO rather than only using PSO algorithm.
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Figure 12. Comparison of whether to adopt ACO.

8. Discussion and Future Work

Sink mobility as an emerging technology is widely used in various types of WSNs. One important

issue which needs to be addressed is moving path scheduling which has a significant effect on the

performance of the mobile agent. Much research has been done to explore efficient data gathering

methods for mobile agents, and the moving schema is generally divided into three types, including

the controlled moving schema, the uncontrolled moving schema, and the random moving schema.

Different moving schema are applied to different applications. In the controlled moving schema, we

hope the traveling path is as short as possible to decrease the network latency and reduce the loss
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package rate. Meanwhile, the shortest traveling path means that the mobile agent may not approach

nodes and cause extra energy consumption. Meanwhile, the predictability of the mobile agent greatly

enhances the reliability of the network because nodes can have the exact location of the mobile agent

and the routing can be scheduled in advance. The schema of the uncontrolled moving and random

moving are mainly used in applications such as endangered animal detecting. The mobile agent is

usually placed on the animals and moves with the animals, which may result in network isolation.

The traveling path planning should be determined by the specific application which demands

low energy consumption or low network latency and package loss rate. In our proposed HM-ACOPSO

algorithm, we also take energy balancing into consideration. The communication range of each CHs

can be adjusted dynamically according to their residual energy so that the weak CHs will be protected

using a close communication distance. Additionally, more mobile agents can also be adopted to collect

data cooperatively to reduce energy consumption and network latency at the same time, if the budget

allows for this.

Our future work will mainly focus on multiple mobile agents cooperative work which can further

enhance the performance of the network. Multiple mobile agents cooperative work faces challenges

as follows: Firstly, mobile agents need to communicate with each other to collect data cooperatively.

How can the mobile agents communicate with each other efficiently? Then we must determine how

to schedule the traveling path of each agent, which is much harder than for multiple agents than for

a single mobile agent network. Finally, as the mobile agent number increases, the control messages

among the network increase exponentially. How can we decrease the control messages to simply the

network? These problems must be solved.

9. Conclusions

In this paper, we presented an efficient moving path scheduling method called HM-ACOPSO.

We firstly partition the whole sensor field into several subdomains utilizing virtual grids, and then

the CHs are selected in accordance with their weights. An efficient traveling loop is planned using

a hybrid method with ACO and PSO. The communication range of CHs can be adjusted according

to residual energy to protect the weak nodes, and anchor nodes can be merged to save sojourn time.

Finally, the mobile agent moves along a predefined trajectory to traverse all the sojourn points for data

collection. The simulation results prove that our presented method outperforms similar methods in

terms of energy consumption and package loss rate.
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