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Abstract. This paper addresses a fuzzy mixed-integer non-linear programming (FMINLP) model by con-

sidering machine-dependent and job-sequence-dependent set-up times that minimize the total completion time,

the number of tardy jobs, the total flow time and the machine load variation in the context of unrelated parallel

machine scheduling (UPMS) problem. The above-mentioned multi-objectives were considered based on non-

zero ready times, machine- and sequence-dependent set-up times and secondary resource constraints for jobs.

The proposed approach considers unrelated parallel machines with inherent uncertainty in processing times and

due dates. Since the problem is shown to be NP-hard in nature, it is a challenging task to find the optimal/near-

optimal solutions for conflicting objectives simultaneously in a reasonable time. Therefore, we introduced a new

multi-objective-based evolutionary artificial immune non-dominated sorting genetic algorithm (AI-NSGA-II) to

resolve the above-mentioned complex problem. The performance of the proposed multi-objective AI-NSGA-II

algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional

non-dominated sorting genetic algorithm (CNSGA-II), and it is found that the proposed multi-objective-based

hybrid meta-heuristic produces high-quality solutions. Finally, the results obtained from benchmark instances

and randomly generated instances as test problems evince the robust performance of the proposed multi-

objective algorithm.

Keywords. Unrelated parallel machine; scheduling; meta-heuristics; NP-hard; MINLP.

1. Introduction

In the current competitive business environment, manu-

facturers face more challenges than ever before due to the

highly volatile market. To remain competitive, efficient

scheduling is one of the most critical issues in manufac-

turing and services, as described by Ying and Liao [1].

However, scheduling problems were first considered in the

mid-1950s; since then, a variety of problems that deal with

scheduling have been addressed and published in the lit-

erature. A comprehensive survey of the mentioned prob-

lems was reported by Allahverdi et al [2]. Parallel machine

scheduling is a very common production environment that

can be applied in many manufacturing and services systems

and it has been extensively studied in the past few decades

as discussed in Frendewey and Sumichrast [3].

A classical parallel machine scheduling problem (PMSP)

was defined as a set of independent jobs to be processed on

a number of available identical parallel machines, where

each machine can process only one job at a time [4–7].

PMSPs are classified into three types: identical, uniform

and unrelated by Cheng and Sin [8]. The identical machines

can be defined as machines that are to be used for a task that

has the same processing time across all the machines. In

contrast, in uniform parallel machines, the processing time

to perform a task may vary from one machine to another

machine but each machine works at constant rate, as dis-

cussed by Santos et al [9]. Among the mentioned PMSPs,

the unrelated parallel machine scheduling problem

(UPMSP) represents a generalization of the other two cat-

egories. Here, a set of jobs can be processed on exactly one

machine at different rates out of the set of parallel machines

[5, 6].
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The evolution of UPMSP and the progress made with

scheduling research were reported in Kamath [10] and

Wang and Cheng [11]. Several researchers have addressed

the UPMSP to improve various performance measures of

the system. Li et al [12] examined the UPMSP to minimize

the mean flow time, while Cao et al [13] studied the same

problem by considering the total cost functions. Gairing

et al [14] proposed a two-approximation algorithm to

minimize the makespan for a set of independent jobs on an

unrelated parallel scheduling problem. Handling of UPMSP

with sequence-dependent times and machine set-up times is

very difficult with exact methods due to the presence of

several constraints like no job preemption, uninterrupted

machining and non-linearity in nature, where the number of

solutions obtained may not be feasible in polynomial

amount of time. It is well known that such a problem is NP-

hard in nature. Therefore it requires the application of

evolution computing search techniques, with dominance

and un-dominance methods, to find the Pareto optimal

fronts for obtaining better solutions or near-optimal solu-

tions. Rocha et al [15] developed a branch and bound

algorithm to minimize multi-objectives such as makespan

and total weighted tardiness as a linear combination for a

sequence-dependent UPMSP. Fanjul-Peyro and Ruiz [16]

proposed an iterative greedy local-search-based meta-

heuristic to minimize the makespan of a set of independent

jobs on unrelated parallel machines. Mehravaran and

Logendran [17] addressed a UPMSP to minimize the bi-

objective functions such as minimization of work-in-pro-

cess inventory and maximization of customer service level

in a supply chain. Lin et al [5, 6] proposed a genetic

algorithm (GA) for UPMSPs by considering three objective

functions including makespan, total weighted completion

time and total weighted tardiness, separately, and compared

it to the performance of various heuristics for proving its

effectiveness. Yilmaz Eroglu et al [18] considered a

UPMSP with sequence-dependent set-up times where

evolutionary-algorithm-based GA with local search was

used for minimizing the makespan.

Some studies have addressed different practical versions

of UPMSPs by considering other features of real life

scheduling problems, such as secondary constraints, non-

zero ready times and so on, to bridge the gap between

theoretical progress and industrial needs. This paper focu-

ses on a UPMSP with machine-dependent and job-se-

quence-dependent set-up times, which has been addressed

much less than the other PMSPs as noted by Yin et al [19].

The addressed problem has numerous industrial applica-

tions such as semiconductor manufacturing systems [20],

automated gear manufacturing process [21], printed circuit

board fabrication, textile manufacturing [22] and hospital

operating rooms [23]. Chen and Wu [24] developed a

heuristic method to minimize makespan in a UPMSP with

different die types as a secondary resource constraint. Chen

[25] developed an iterated local search to minimize the total

weighted number of late jobs on UPMSP without

preemption, with sequence-dependent set-up times and

ready times. Ying et al [26] addressed the problem of

minimizing the total tardiness by including the machine-

dependent and sequence-dependent set-up times. Chen and

Wu [24] solved a UPMSP with auxiliary equipment con-

straints such as secondary resource constraints. Hu et al

[27] proposed a block-based erection scheduling problem in

a shipyard, which is a case of parallel machine scheduling

with precedence constraints and machine eligibility

restrictions to minimize the makespan. Mehravaran and

Logendran [17] proposed a sequence-dependent flow shop

scheduling problem to minimize the performance measures

of linear combined total weighted completion time and total

weighted tardiness. Lamothe et al [28] proposed a new

model to minimize the total tardiness by considering

specific constraints such as secondary resources. Rambod

and Rezaeian [29] addressed a UPMSP with rework pro-

cesses, machine eligibility restrictions and sequence-de-

pendent set-up times to minimize makespan. They

proposed a new mixed integer non-linear programming

model for small size problems and some meta-heuristics

including GA and bees algorithm for medium and large size

problems. Although, many researchers have investigated

different problems in unrelated parallel machine schedul-

ing, to the authors’ knowledge, so far, considering

sequence- and machine-dependent set-up times and sec-

ondary resource constraints for jobs simultaneously has not

been properly addressed yet.

In this paper, a UPMSP with machine-dependent,

sequence-dependent set-up times and secondary resource

constraints (e.g., tools, labour, etc.) available at the same

time is addressed. To improve the objective functions the

performance measures such as minimization of makespan,

tardiness, flow time and machine-load variation have been

considered. To achieve this aim, the presented problem can

be formulated as a fuzzy mixed-integer non-linear pro-

gramming (FMINLP) model, and it belongs to the class of

NP-hard problems. Since, the complexity of the problem is

very high and multi-objective in nature, the need for

effective multi-objective-based optimization techniques is

employed. To solve the present problem CNSGA-II,

MOPSO algorithms are adopted, and a novel hybrid AI-

NSGA-II algorithm is proposed and compared. Moreover, a

centroid-based distance method is used in the proposed

algorithm to evaluate the fuzziness for better solutions.

With several real-sized benchmark instances, the proposed

model efficiency is proved.

In section 2, we provide a detailed description of the

problem and its basic assumptions; later we also develop an

FMINLP mathematical model along with the constraints. In

section 3, we present a framework for the proposed evo-

lutionary algorithms, i.e., AI-NSGA-II, NSGA-II and

MPSO algorithm. Mapping of proposed algorithms on the

research problem is explained in section 4. Experimenta-

tion with different small and large scale instances is illus-

trated, and the results are presented in section 5. The results
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and discussion are detailed in section 6. Finally, conclu-

sions are drawn, and future work delineated.

2. Problem description

In this paper, we introduced a UPMSP with non-zero

ready times, job-sequence- and machine-dependent set-

up times with auxiliary resource constraints in a fuzzy

environment. The set j = {1, 2, …, n} of n jobs can be

processed on set M = {1, 2, …, m} of m parallel

machines, where each job needs one single task to

complete the product with a known processing time.

While processing the jobs on machines, it is necessary

to take care of all the machines availability and then

initiate the scheduled time at zero. We have considered

sequence-dependent and machine-dependent set-up

times, i.e., switching off machines from production and

their set-up times are not considered until the comple-

tion of the first job on the same machine. Most of the

real world problems are uncertain in nature, where the

processing times and due dates greatly fluctuate.

Therefore, it is necessary to introduce possibilistic data

as triangular fuzzy numbers (TFNs) to estimate the

parameters precisely; in section 4 a detailed description

of the considered data and implementation are

explained. We developed a novel multi-objective-based

FMINLP model and considered objectives such as

minimization of total makespan, total weighted flow

time, total weighted tardiness and total machine load

variation to examine the performance of the considered

system. The above-mentioned problem assumptions are

described as follows.

2.1 Assumptions

(a) Each job in a set requires an operation that can be

processed on a set of all machines.

(b) Sequence- and machine-dependent set-up times for jobs

are considered.

(c) Jobs may have different arrival (ready) times.

(d) Assignment of a job to a machine is permitted only if

the required secondary resource(s) (e.g., tool, die) is

(are) available.

(e) The machine processing should not be interrupted until

a job operation is completed.

(f) Job pre-emption and machine breakdown are not

allowed.

(g) Processing times and due dates of jobs are formulated in

the form of TFNs due to a lack of knowledge of their

precise parameters.

The notation and description used to formulate the above-

mentioned problem mathematically are described in

table 1. Decision variables are defined as follows:

Decision variables

Xijk ¼
1 if job i precedes job j onmachine k

0 otherwise

�

Yjk ¼
1 if job i is assigned tomachine k

0 otherwise

�

Zij ¼
1 if processing of job i is finished before

processing of job j starts

0 otherwise

8><
>:

2.2 Mathematical model

With the above-mentioned assumptions and notation, the

problem is formulated as the following FMINLP model.

Objectives:

Min Z1¼
XN
i¼1

Ci ð1Þ

Min Z2¼
XN
i¼1

ðCi � SiÞ ð2Þ

Min Z3 ¼
XN
i¼1

ðCi � diÞ ð3Þ

Min Z4 ¼
XM
k¼1

C�
max � Ck

max

� �
ð4Þ

Subjected to constraints:

XN
i¼1
i6¼j

XM
k¼1

Xijk ¼ 1; 8j ð5Þ

Table 1. Notations and description.

Notation Description

i Job indices (i = 1,2,3,…, N)

K Machine index (k = 1,2,3,…,M)

r Required secondary resources index (r = 1,…,g)

Ci Run time of job i

si Starting time of job i

di Fuzzy due dates of job i

C�
max Total completion time

Ck
max

Largest completion time on machine k

sr Required secondary resource index (sr = 1,…,SR)

Pijk Processing time of job i on machine k

Sijk Set-up time to switch from job i to job j on machine k

AN An arbitrary big number

Ti Tardiness of job i

Fi Flow time of job i
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X
i¼1
i1j

N

Xijk ¼ Yjk; 8j; k ð6Þ

X
j¼1

N

j 6¼1

Xijk � Yik; i ¼ 1; . . .;N ð7Þ

C�
j þ AN 1� Xijk

� �
�Max C�

i þ Sijk; Sj
� �

þ Pjk; 8i; j; k
ð8Þ

C�
j þ AN 1� Zij

� �
�Max C�

i ; Sj
� �

þ
XM
k¼1

PjkYjk;

8i; j 2 Srði 6¼ jÞ
ð9Þ

Zij þ Zji ¼ 1; 8i; j 2 Sr; i 6¼ j ð10Þ

XM
k¼1

Xijk � Zij; 8i; j 2 Sr; i 6¼ j ð11Þ

Ti � Ci � dið Þ; 8i ð12Þ

Ci � 0; Ti � 0; 8i; Xijk; Yik; Zij 2 0; 1f g;
8i; j; k: ð13Þ

The above-mentioned objectives, i.e., minimization of

makespan (Z1), flow time (Z2), tardiness (Z3) and machine

load variation (Z4), are given by Eqs. (1)–(4), respectively.

Equation (5) assures that each job is assigned to only one

position on a machine. Equation (6) suggests that if job j is

allotted to machine k, then it is adopted by another job

indicating dummy job 0. Constraint (7) specifies that at

most one job can immediately adopt the previously allotted

job i on machine k. Constraint (8) computes the completion

time of a job when it is processed instantly after job i on the

machine. Constraints (9 and 10) ensure that if job i and

j need the same tool, one must be finished earlier before

starting the other. Constraint (11) gives the relation

between Xijk and Zij. Equation (12) computes tardiness of

job j. Equation (13) points out the non-negativity and

integrality constraints.

3. Solution procedure

We first apply a conventional non-dominated sorting

genetic algorithm-II (CNSGA-II), which includes non-

dominated sorting and crowding distance operators for

selection of the individuals to find the Pareto-optimal fronts

[30]. With this algorithm, there might be a chance of

obtaining premature convergence of the solutions. There-

fore, a better algorithm is required to avoid the above-

mentioned difficulties in achieving optimal Pareto optimal

fronts. Hence, we adopt a multi-objective particle swarm

optimization algorithm (MOPSO) to compare the assumed

benchmark CNSGA-II algorithm. After that, we propose a

novel artificial immunity-based non-dominated sorting

genetic algorithm (AI-NSGA-II) in which the operators like

vaccination and immunity selection greatly help in con-

vergence of the solutions for approximating the Pareto-

optimal frontiers. The above three meta-heuristics are used

to generate effective and efficient solutions for the men-

tioned complex instances in the context of UPMSP. A

detailed description of each algorithm with its frameworks

as follows.

3.1 Conventional non-dominated sorting genetic

algorithm (CNSGA-II)

First, the concept of the non-dominated sorting genetic

algorithm (NSGA) was suggested by Goldberg [31] and

Srinivas and Deb [32], who implemented it first. While

using the NSGA, researchers found some drawbacks such

as the following ones: (1) while operating a non-dominated

sorting operator the algorithm takes more time for com-

putation, (2) the absence of an elitism mechanism and (3)

the absence of a tuneable parameter. Thus, the adopted

CNSGA-II addresses the drawbacks of NSGA and details

of the schematic procedure for processing CNSGA-II are

shown in figure 1.

3.1a Generation of fuzzy environment: In this work,

adopted and proposed evolutionary algorithms are used to

find the Pareto-optimal frontier in a fuzzy domain to

handle uncertainty in all parameters (e.g., processing time

and due dates). Thus, it seems realistic to consider

inherent fuzziness in the critical parameters. In this way,

an imprecise processing time with some tolerance values

(e.g., a processing time such as 40 ± 5 time units) could

be modelled as a fuzzy number representing the incom-

pleteness and imprecision of the required information.

Ranking of fuzzy numbers to find the optimum solution is

one of the important tasks to be achieved. According to

Chen and Hwang [33], the ranking methods are classified

into four main classes. Out of these classes, we adopt the

centroid-based distance method that has been found from

the literature to be best, where the ranking of fuzzy

numbers is achieved with Euclidian distance from their

centre of points to their origin [34]. A comprehensive

method is used to represent each fuzzy parameter, i.e., a

TFN. Moreover, the possibility distributions of the fuzzy

processing times and due dates have been derived based

on available historical data as well as subjective data

about the knowledge and experience of the decision

maker(s). Therefore, in this research work, we have con-

sidered processing times and due dates as fuzzy numbers.

The objective functions (1–4) are reformulated based on

V K Manupati et al



the concept of a triangular membership function to rep-

resent uncertainty.

Let us consider a triangular function with a lower limit a,

an upper limit b and a value c, where a\ b\ c, as pre-

sented in figure 2. Membership functions represent a

graphical representation of a fuzzy set by taking the uni-

verse of discourse on the x-axis and the degree of mem-

bership on the y-axis, as represented in Eq. (14) in the [0,1]

interval.

lðxÞ¼

0 x� a

ðx� aÞ=ðb� aÞ a\x� b

ðb� aÞ=ðb� cÞ b\x\c

0 x� b

8>><
>>:

ð14Þ

To face fuzzy constraints related to UPMS, the fuzziness

of data is represented as in Torabi et al [35]. However, for

our concerned problem, evolutionary algorithms are ini-

tialized in a state close to optimal solutions. Let us consider

that A = (a1, a2, a3) and B = (b1, b2, b3) are two TFNs;

then the summation operator of the two fuzzy sets works

according to the following formula:

Aþ B ¼ a1; a2; a3ð Þ þ b1; b2; b3ð Þ
¼ a1 þ b1; a2 þ b2; a3 þ b3ð Þ

ð15Þ

According to the Zadeh [36] extension principle, the

technique used for computing two or more membership

Combine popula�on (Select N 
individuals, rank popula�on)

Non-domina�on sor�ng to the combined 
popula�on

Calculate pareto front and 
crowding distance

Selec�on: based on its rank and 
crowding distance

Stopping 
criteria 

Report final 
population and stop

NO

YES

Selection

Apply crossover and muta�on for 
selected chromosomes (offspring)

Evaluate objec�ve func�on for 
new offspring solu�ons (O)

Select parent solu�ons for ma�ng 
based on tournament selec�on

Evaluate objec�ve func�on with 
fuzzy processing �me and due 

date

Start

Generate initial population (P) of size 
(N)

Figure 1. Schematic procedure for processing CNSGA II.

0

0.5

1

1.5

a b c

M
em

be
rs

hi
p 

va
lu

es

limits

Figure 2. Representation of a triangular fuzzy number.
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values, considering minimization and maximization of the

fitness function, is represented as follows:

UA[BðxÞ ¼ minðUAðxÞ;UBðxÞÞ ð16Þ

UA[BðxÞ ¼ max ðUAðxÞ; UBðxÞÞ ð17Þ

Therefore, the above operations are considered for cal-

culation of starting and ending time of each job. We pro-

vide the following parametric definitions.

Interpretation 1 A fuzzy number P in parametric form is a

pair (p, p0) of function P(x), P0(x), 0 B x B 1 that satisfies

all the following requirements:

1. P(x) is bounded by a left increasing continuous function,

2. P0(x) is bounded by a left decreasing continuous

function,

3. P(x) B P0(x), 0 B x B 1.

For the membership function p = (a, b, c), let us assume

a TFN with one defuzzifier b, the left fuzziness a[ 0 and

the right fuzziness c[ 0 as presented earlier. In Eq. (18),

the parametric form of the afore-mentioned membership

function can be presented as follows:

P xð Þ ¼ a x�1ð Þ þ b; P0 xð Þ ¼ c 1�xð Þ þ b ð18Þ

Interpretation 2 For arbitrary fuzzy numbers P = (P, P0)
and Q = (Q, Q0) the distance between P and Q can be

calculated using the following formula:

DðP;QÞ ¼
Z 1

0

ðPðxÞ � QðxÞÞ2dxþ
Z 1

0

ðP0ðxÞ � Q0ðxÞÞ2dx
� �1=2

ð19Þ

3.2 Multi-objective particle swarm optimization

(MOPSO)

Kennedy et al [37] proposed the PSO algorithm for optimiza-

tion. To solve themulti-objective problem, the PSO strategy has

to be modified to find the Pareto-optimal front. Thus, PSO is

suitable for multi-objective optimization with a high speed of

convergence, allowing each individual to benefit from the

experience. The main characteristic of this algorithm is to

evaluate the performance measures of every particle and com-

pare them with neighbourhood values, where all the non-

dominated solutions generated at each iteration are stored in an

external archive. A flowchart of MOPSO is shown in figure 3.

The schematic procedure followed by the MOPSO to

obtain solution set, i.e., the Pareto optimal set, is as follows:

Step 1: Swarm (population) initialized.

Step 2: Generate random velocities.

Step 3: A set of leaders is initialized with some non-

dominated solutions from the swarm, which are stored in

the external archive.

Step 4: Some sort of quality measures such as velocity,

position and cognitive learning factor are considered for

all the leaders for selecting leaders in the archive.

Step 5: For each iteration update the velocity and position

of each particle in the swarm.

Step 6: Evaluate the fitness function to sort pbest and

gbest.

Step 7: Non-dominated sorting—set of optimal solutions

where Pareto front is the best so that no front can dominate

the existing one.

Step 8: Crowding distance—calculation of the distance

between the members of each front to form the optimal

Pareto front.

Step 9: Update leaders in the external archive, gbest.

Step 10: Check whether the termination (maximum

iterations) criterion is reached. Otherwise, return to Step 2.

3.3 Immunity-based hybrid non-dominated sorting

genetic algorithm (AI-NSGA-II)

We depict the main operations of the algorithm on the

proposed problem in figure 4.

i = i + 1
NO

YES

Stop

Apply non-dominated sorting and crowding distance

Update particle and global best (pbest&gbest)

Iter>Itermax

Display results

Evaluate fitness function

Update velocity and position of each particle

Iteration   i = 1

Find particle and global best solution (pbest and gbest)

Evaluate fitness function

Generate fuzzy velocity and position of each 

Start

Initialize swarm particles

Figure 3. Flow chart of MOPSO.
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Step 1. Initialization: Initialize the algorithm parameters,

i.e., crossover probability (Pc), the mutation probability

(Pm), the vaccination probability (Pv), the elimination ratio

(Relim), renewal rate (a%), the memory set size (Memsize)

and the termination conditions (Max_Gener,

Improve_Gener).

In traditional GAs, each chromosome is generated ran-

domly during the initialization of the population. With

many experimental results, it is found that GA has a poor

performance, and the result does not always show good

solutions due to the random method. Therefore, most of

the randomly generated chromosomes have a poor com-

pletion time and thus unfavourable traits in their off-

springs. Reeves [38] presented a population initialization

method that leads to the success of the GA. In this study,

we used a similar type of initialization procedure for the

proposed problem where processing of each job on

assigning the machines may need a secondary resource

simultaneously; it is presented in figure 5. While taking

the operations into consideration, the job position value at

each row is first sorted in ascending order and then the

final sequence of jobs is obtained. If two jobs have

common machines, then the previous job is given higher

priority.

Step 2. Parent selection: Select pairs of parent chromo-

somes from the current population according to the

selection probability and then apply the Rowlett wheel

approach to generate the offsprings.

Step 3. The two-point crossover operator is used on the

selected individuals with a crossover probability Pc to

form new offsprings.

Step 4. Mutation: Perform mutation operation on the

selected offspring based on the mutation probability Pm

(we define the mutation probability not to each gene but to

each offspring).

Step 5. Vaccination: Apply the vaccination principle on

the selected offspring with the vaccination probability Pv.

The vaccination, given an individual x, works under the

principle of modifying the genes on some bits by prior

knowledge so as to gain higher fitness with greater

probability, as depicted in figure 6. This vaccination

operation should satisfy the following conditions to

increase the effectiveness of the algorithm. Firstly, the

fitness evaluation of each gene bit of x is to find whether

x is the optimal value; then the probability of transforming

from x to x is 1. The vaccination on population X = {x1,

x2,…,xn} is the operation carried out based on the

vaccination probability in which individuals are selected

Vaccina�on

STOP

Immune selec�on 

START

Popula�on 
ini�aliza�on

Evaluate fitness

Child 
popula�on

Fast non-dominated sor�ng

Calculate crowding distance

Create child popula�on using gene�c 
operator’s viz. selec�on, crossover, and 

muta�on

Combine parent popula�on of size N
with child popula�on of size N

Fast non-dominated sor�ng on combined 
popula�on

Create new popula�on of size N using 
crowding comparison operator

Last genera�on 

Next genera�on 

Yes

No

Yes

Figure 4. Flow chart of AI-NSGA-II.
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from X. Vaccination is performed with prior knowledge of

the performance of each step of the algorithm, i.e.,

operators add value in the functioning of the algorithm to a

certain extent.

Step 6. Immunity selection: Update the memory set with

the best individual of the current population. The follow-

ing two steps accomplish it. Firstly, immunity testing, i.e.,

testing the antibodies as shown in algorithm 1. A

population of individuals is optimized locally through

fitness. A parent having smaller fitness values indicates

that a series degeneration must have happened in the

process of crossover or mutation. Moreover, the selection

process is accomplished with following steps, i.e., parents

with higher fitness will participate in the next competition

to improve the performance; the second one is the

annealing selection, i.e., each individual xi in the present

offspring Eb = {x1, x2,…,xn} joins the new parents with a

new probability P(xi).

Let Mi be the best individual so far of the ith population, σ a new similarity 

threshold between two individual and d a metric distance to measure affinity 

between two cells:

For each MCj of MS

If fitness (Mi) > fitness (MCi) and d(Mi, MCi) > σ

Then if MS (Memory Set) is not empty

Then Mi will be added to MS

Else substitute (Mi, MCw) where MCw is the worst memory cell in MS

Else If d(Mi, MCi) < σ

Then substitute (Mi, MCj)

End For

Algorithm 1. The immuneselection principle.

Step 7. Population renewal: Update the population with

the best fitness chromosome to avoid entrapment in local

optimal and to obtain a global optimum.

Step 8. Non-dominated sorting: Set of optimal solutions

where the Pareto front is the best, so no front can dominate

the existing one.

Step 9. Crowding distance: Calculation of the distance

(closeness) between the members of each front to form the

optimal Pareto front.

Step 10. Receptor editing: Replace Relim worst individuals

in the current population with the highest makespan with

new random individuals.

Step 11. Termination test: The algorithm terminates if a

solution archives Max_gener generations or until the

optimal solution is reached. If pre-specified iteration is

satisfied, stop this algorithm. Otherwise, return to Step 2.

Chromosome    

Secondary resources

1

(1, 5)

2

(2, 4)

3

(3, 6)

Machine
sJobs

1

(1, 6) 2

2 3

(3, 5)

4

4

Assignment

Number of 
machines

1 2 3 4 1 2 3

Assignment 
of jobs

1 2 3 4 1 2 3

6 5 5 4 6

Figure 5. Illustration of chromosomes.

MC1 14 25 9 32 22 18 1 3 2

MC2 25 9 27 22 18 26 3 2 1

(a) 

MC1 14 25 9 32 22 18 1 3 2

MC2 25 9 27 22 18 26 3 2 1

(b) 

Before 9 22 27 25 18 26 1 2 3

After      25 27 22 9 18 26 1 3 2

(c) 

Offspring

Figure 6. The vaccination principle. (a) The randomly selected memory cells. (b) The longest common sub-sequence is 25-9-22-18,

3-2. (c) The selected offspring before and after the vaccination.
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4. Illustrative example

To solve the presented problem, some test problem

instances, both small and large sizes of benchmark instan-

ces, and randomly generated instances following the uni-

form distribution for generating processing times, set-up

times, job ready times and due date values, have been

considered [4, 39].

Table 2 shows the detailed data of the considered 24 dif-

ferent problem instances with possibility triangular distri-

butions, and it is denoted asC0 = (Cp,Cm,Co), whereCp,Cm,

and Co are, respectively, the most pessimistic, the most

possibilistic and the most optimistic values of C0. These
values are applied for considering processing times and due

dates. A possible value for processing times is generated

using a continuous uniform distribution ranging from 5 to 50.

For due dates, a possible value is generated using a contin-

uous distribution dj ¼ rj þ Uð0; bÞminMr¼1ðminNi¼1 AP
r
ijÞ

ranging in the interval 1–7. The b values in table 3 allow us to

control the tightness and ready times APk
ij ¼ Pjk þ

Sij; ði; j ¼ 1; 2; . . .; nÞ and r ¼ Uðo; aÞ, while a makes it

possible to control the arrival of the jobs. 5. Computational results

Owing to the complexity of the problem, to generate the

near-optimal solutions for multi-objectives more efficiently

and effectively, AI-NSGA-II population-based random

search algorithm is proposed to find the Pareto efficient

solution. Hence, the input parameters of the considered

three algorithms and their values are considered and they

are presented in table 3. To evaluate the performance of the

proposed algorithm, different benchmark instances are

adopted. Figure 7 shows comparison results of different

performance measures with the proposed algorithm and

other adopted algorithms. For example, we have taken

scenario 3 to detail the obtained results, where plots in

figure 7a–c depict the performance measures of solutions

with proper convergence and diversity. The X-axis indi-

cates makespan as a performance measure and the Y-axis

indicates flow time, tardiness and machine load variation as

a performance measure, where the Pareto optimal curves

for three different algorithms are shown with three different

symbols. The dotted curve in figure 7 indicates Pareto

optimal solutions for CNSGA-II; the triangular curve for

MOPSO and the star symbol curve indicate AI-NSGA-II. It

is evident from the Pareto optimal curves of shown fig-

ures that AI-NSGA-II shows better performance on both

convergence and diversity compared with other algorithms.

Table 4 shows the results of performance measures such

as makespan, flow time, tardiness and machine load vari-

ation with three different algorithms. In this work, the

algorithms have been coded in MATLAB software, the

problem is executed on a personal computer with Intel�

CoreTM2 Duo CPU T7250 @2.00 GHz, 1.99 GB RAM,

and the number of iterations is 300 for each algorithm to

meet the termination criteria. The algorithm that can

Table 2. The performance measure of all methods with at dif-

ferent instances.

Problem instances jJobs mMachines Card (g) a b

Problem information

Scenario 1 6 4 2 1 3

Scenario 2 6 3 3 1 3

Scenario 3 6 2 2 1 3

Scenario 4 6 3 2 1 3

Scenario 5 8 3 3 1 3

Scenario 6 8 3 2 0.5 5

Scenario 7 8 4 3 0.5 5

Scenario 8 8 4 4 0.5 5

Scenario 9 8 5 3 0.5 5

Scenario 10 10 4 3 0.5 5

Scenario 11 10 3 3 0.5 5

Scenario 12 10 4 4 0.5 5

Scenario 13 25 8 4 0.5 3

Scenario 14 25 9 5 0.5 3

Scenario 15 25 10 6 0.5 3

Scenario 16 40 8 5 0.5 3

Scenario 17 40 9 5 0.5 3

Scenario 18 40 10 6 1 3

Scenario 19 50 12 6 1 3

Scenario 20 50 13 7 1 5

Scenario 21 70 12 6 1 5

Scenario 22 70 13 7 1 5

Scenario 23 90 15 6 1 5

Scenario 24 90 17 8 1 5

Table 3. The input parameters for NSGA-II, MOPSO and AI-

NSGA-IIS.

Parameter Value

NSGA II

Population size 100 to –200

Total number of generations 150 to –300

Crossover probability 0.6 to –0.9

Mutation probability 0.01 to –0.1

MOPSO

Cognitive factor (c1) 0.5 to –2

Social factor (c2) 0.5 to –2

Swarm size (N) 100 to –200

Number of iterations (K) 150 to –300

AI-NSGA II

Population size 100 to -200

Total number of generations 150 to -300

Crossover probability 0.6 to -0.9

Mutation probability 0.01 to -0.1

Vaccination probability 0.8 to -0.9

Immuniszation probability 0.001 to -0.009

A hybrid multi-objective evolutionary algorithm approach



Figure 7. Performance measures. (a) (Mmakespan vs flowtime) results for proposed AI-NSGA-II, MOPSO and CNSGA-II algorithms

for scenario 3. (b) (Mmakespan vs tardiness) results for proposed AI-NSGA-II, MOPSO and CNSGA-II algorithms for scenario 3.

(c) (Mmakespan vs machine load variation) results for proposed AI-NSGA-II, MOPSO and CNSGA-II algorithms for scenario 3.

V K Manupati et al
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converge quickly compared with other algorithms can be

considered as good. Finally, from the experimental results,

we find that the proposed AI-NSGA-II performs better than

MNSGA-II and MOPSO.

6. Conclusions and recommendations for future
studies

This paper addressed a multi-objective-based unrelated

PMSP with machine-dependent and job-sequence-depen-

dent set-up times. With objectives such as makespan, flow

time, tardiness and machine load variation the behaviour of

the system is analysed to improve the systems performance.

A fuzzy mixed-integer non-linear programming model is

developed to solve the problem optimally. To deal with the

above-mentioned multi-objective mixed-integer non-linear

programming problem and to find the quality solutions, a

multi-objective-based evolutionary algorithm (MOEA)

approach is adopted and an effective AI-NSGA-II algo-

rithm is proposed to find the Pareto-optimal frontier.

Dominance and un-dominance method is critical for

MOEA to find the Pareto optimal fronts; for obtaining

better solutions and to cater to fuzzy environment a cen-

troid-based distance method is used. Several benchmark

instances are presented to validate the proposed method.

The performance of the proposed algorithm AI-NSGA-II is

compared to those of adopted conventional MNSGA-II and

MPSO algorithms. Experimental results demonstrated the

effectiveness of the proposed AI-NSGA-II in the compar-

ison with the existing MNSGA-II and MPSO algorithms in

overall performance indicators while solving benchmark

instances. The future studies may include consideration of

many objectives that involve different performance criteria

to predict the real-time behaviour of a system since existing

research efforts are directed at solving only single and

multi-objective criterion problems.
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