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Abstract: The goal of data centers in the cloud computing environment is to provision 

the workloads and the computing resources as demanded by the users without the 

intervention of the providers. To achieve this, virtualization based  server 

consolidation acts as a vital part in virtual machine placement process. 

Consolidating the Virtual Machines (VMs) on the Physical Machines (PMs) cuts 

down the unused physical servers, decreasing the energy consumption, while keeping 

the constraints for CPU and memory utilization. This technique also reduces the 

resource wastage and optimizes the available resources efficiently. Ant Colony 

Optimization (ACO) that is a well-known multi objective heuristic algorithm and 

Grey Wolf Algorithm (GWO) has been used to consolidate the servers used in the 

virtual machine placement problem. The proposed Fuzzy HAGA algorithm 

outperforms the other algorithms MMAS, ACS, FFD and Fuzzy ACS compared 

against it as the number of processors and memory utilization are lesser than these 

algorithms. 

Keywords: Virtual Machine (VM) placement, VM, power consumption, resource 
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1. Introduction  

In data centers, a number of heterogeneous workloads would run on servers at 
different times. The workloads, which are not similar, could be normally classified 
into two divisions, namely chatty workloads and non-interactive workloads. Chatty 
workloads can become aggressive at some point and return to rest at some other point. 
A web video service is an example of chatty workloads because more number of 
people work at nighttime and few people during the daytime. Non-interactive 
workload does not require people’s interaction to make progress after they are 
submitted. High performance computing is the best example of non-interactive 
workload. The requirements of resources of these workloads are dramatically 
different at different times. To make sure that the workload will always match with 
the requirement, the workload is allocated in static mode so that the highest demand 
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will also be served. Fig. 1 illustrates server virtualization in data centers.  In 
datacenters, the resource optimization is targeted on CPU, Memory and network 
interfaces. 

 
Fig. 1. Server virtualization in the Datacenter 

Since, it is usual to see that many of the servers in datacenters are underutilized. 
A large amount of resources like hardware, space, power and management costs of 
the servers are getting wasted also causing environmental pollution to the 
surroundings. By consolidating the server, the utility of those resources should be 
enhanced by the way of decreasing the quantity of the active servers. There is a 
variety of consolidation techniques such as centralized and physical consolidation. 
But consolidation based on server virtualization seems to be the best one in data 
centers. The resource management is one of the important issues to be taken seriously 
in order to optimize the resources. The functionalities are performed considering the 
full server, in which the resource management will be better. Server virtualization 
enables a part of the Physical Machine (PM) to be allocated instead of the whole. But 
this kind of allocating part of the physical machine to the requested Virtual Machines 
(VM) will increase the complexity of the resource management. So, it is considered 
as a big issue of improving the utilization of resources while guaranteeing the Quality 
of service to the end users. Here, server consolidation is an approach that improves 
availability and business continuity. The total cost of ownership is reduced. It also 
extends the lifetime of servers where there will be no need to purchase the servers 
often. Server consolidation also reduces the area of the data center, reducing the 
maintenance costs as well as power consumption thereby cutting down the cooling 
and wiring resources. 

When a group of n virtual machines should be mapped to a group of m physical 
machines, 𝑚𝑛  number of VM placement solutions are possible here. Therefore, it is 
difficult to find the best solution amongst so many numbers of feasible solutions. The 
fuzzy HAGA Algorithm efficiently finds out a good solution in such a large space of 
solutions and thereby solves the problem of Virtual Machine Placement (VMP). 

The Paper is organized in such a way that Section 2 discusses about the 
Literature review, and Section 3 speaks about the general discussions on Evolutionary 
mutiobjective algorithms. Section 4 explains what is server consolidation problem 
and the objective function of the server consolidation problem using resource wastage 
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modeling. Section 5 explains about the ACO Algorithm and GWO Algorithms which 
act as the base of the newly proposed Fuzzy HAGA Optimization Algorithm. Section 
6 explains in detail about the proposed Fuzzy HAGA Optimization Algorithm and 
the results were also discussed in the same. 

2. Literature review  

Many of the researchers have taken multiple objectives for virtual machine 
replacement. C h a m a s, L o p e z-P i r e s  and B a r a n  [1] have considered four 
objectives such as power consumption, economical revenue, resource utilization and 
reconfigurable time by implementing two phases such as online incremental VMP 
phase and offline reconfiguration phase. U d d i n, and R e h m a n  [2] introduced a 
new technique to categorize the servers for server consolidation and saved a huge 
amount of energy. Some of the methods employed for consolidation problem are 
FFD, Best Fit, Best Fit Decreasing and other methods. Many heuristic techniques 
also have been suggested by most of the researchers. A l i  and L e e  [3], proposed a 
novel heuristic of geography based optimization of VM placement which shows how 
swarm intelligence is used in solving optimization.  P a n i g r a h y et al. [4]  in their 
research paper have proved that several combinations multidimensional vectors can 
result in scalar size and this technique is used in the VM placement. A group genetic 
algorithm is proposed by A g r a w a l, B o s e  and S u n d a r r a j a n  [5], where they 
have solved the VM placement as vector packing problem. A l i  et al. [6], in their 
work have designed an approach to meet the constraints imposed by the users which 
is energy efficient by reducing the number of physical servers.  

L i u  et al. [7], used the ACS based approach which is coupled with order 
exchange and migration technique to bring out a new algorithm for VM placement. 
It has been an effective approach compared to similar works. S. D o r t e r l e r,  
M. D o r t e r l e r  and S. O z d e m i r  [8] have analyzed four multiobjective 
evolutionary algorithms for optimizing CPU utilization and reducing energy 
consumption. They have compared the heuristics of the four papers using cloudsim 
simulator and planet lab dataset. 

S o t o m a y o r  [9] introduced a lease-based model, FirstCome-FirstServe 
(FCFS) and back-filling algorithms for scheduling of three kinds of jobs classified 
into best-effort, immediate and advanced reservation jobs. To improve the 
performance, the scheduling algorithms always choose free servers (i.e., with 
minimum load) then allocate a new VM where energy efficiency is not at all 
considered K a n s a l  and C h a n a  [10]. The decisions which are energy aware are 
taken by analyzing past resource utilization and energy consumption details. It moves 
a heavily loaded VM from a physical machine satisfying the minimum criteria for 
power consumption, to another physical machine which consumes least energy. 
49.39% of energy has been saved by using FF-EVMM Algorithm over the baseline 
algorithms taken. 

Z h o u  et al. [11] improved the reliability of cloud services by virtual machine 
optimization approach using three algorithms using maximum weight matching in 
bipartite graphs. F u  and Z h o u  [12] have introduced VM placement that predicts 
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the accurate estimation of the use of resources. By predicting the affinity between the 
host and the VMs the placement has been done by placing the VM which has high 
affinity towards a PM. PAVMP Algorithm has been developed to reduce the VM 
migrations and SLA violations thereby reducing the energy consumption works 
better then Power Aware Best fit algorithm. K h o s r a v i, A n d r e w  and 
R a j k u m a r  B u y y a  [13] proposed a dynamic VM placement algorithm to 
approximate the cost based on different constraints, considering four data centers. 
They have considered access to renewable energy sources apart from off-site grid 
sources. The result proves to save the energy cost by 10.03 % when compared to its 
competitive algorithm CRA-DP. Cloud service reliability has been enhanced by 
placing i-th virtual machine on to the optimal host by reducing the consumption of 
network resources thereby reducing the energy cost. G a o  et al. [14] have used 
dominance based Multi Objective Evolutionary Algorithm to find the optimal server 
for a VM. 

D i l i p  K u m a r  and D r. T a r n i  M a n d a l  [15] used an hybrid Genetic 
algorithm and Particle Swarm Optimization (PSO) based Algorithm for bi objective 
VM placement. B. B. Jacinth et al. has proposed ACO-PSO optimization, which 
lessen the power consumption and resource wastage through load balancing, also 
providing fault tolerance. Z h a n g  et al. [16] have suggested a clustering based 2 
approximation algorithm to decrease the distance between data centers that 
minimizes communication latency and increases availability. B a r l a s k a r  et al. [17] 
made a decision to place the VMs based of gilt edged solution of stochastic integer 
programming.  

T a w f e e k  et al. [18] has cut down the wastage of memory and processor. 
They have shown a method to apply the ACO Algorithm in order to find out a good 
solution in a large space. The proposed algorithm is designed where multi-objective 
VM placement is required. A l b o a n e e n, T i a n f i e l d  and G l a s g o w  [19] have 
designed a meta-heuristic optimization algorithm based on glow-worm swarm to 
solve energy and SLA aware VMP problem. S p e i t k a m p  and  B i c h l e r  [20] have 
discussed about server consolidation using the linear programming formulations of 
problems. 

S a i t, B a l a  and E l-M a l e h  [21] have given a fitness function for cuckoo 
search based resource optimization for VM placement. It finds a better placement for 
incoming and existing VMs using fuzzy rules. R i q u e l m e, L u c k e n  and B a r a n  
[22] have narrated 54 performance metrics for multiobjective optimization. W u  et 
al. [23] considered both the energy consumption in servers and bandwidth, 
through Genetic Algorithm. Z h a o  et al. [24] have developed two algorithms for 
VM placement with VM migration, namely Harmonic Algorithm and DDG 
Algorithm. DDG Algorithm is applicable when penalty based on SLA is high while 
job arrival rate is lesser and migration cost too is lesser. Harmonic Algorithm works 
well than First fit when the arriving rate of the job is high and VM placement without 
VM migration is more than 1.0. 

S h a b e e r a  et al. [25] selected the PMs in close proximity and jobs executed 
on allocated VMs works better. G a g w e r o  and C a v i g l i o n e  [26] considered the 
reduced effects of churn, mitigated collocation interference, minimize power 
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consumption and enforced security requirements through MPC placement algorithm, 
which performs better than classic heuristics in datacenters. J i n g  et al. [27] 
investigated a similarity between CPU utilization and power consumption to build 
a nonlinear power model where bi-objective optimization was done by improving 
the performance of VM and reducing the power consumption of server based on 
ACO.  

H u n g  et al. [28] have solved a static virtual machine allocation problem which 
is applicable in universities and researching by taking one lab hours of one working 
day in a university. S a r v e s h  K u m a r  [29] in his paper has found that Meta 
Heuristic Algorithm which is population based on laws of gravity and motion for 
solving non-linear problems named as Gravitational Search Algorithm. Fitness 
calculation is based on number of physical machines utilized. The results were 
compared against FFD, LL (Least Loaded) and ACO Algorithm. The results showed 
that it outperforms all other methods.  

B o o m i n a t h a n, A r a m u d a n  and S a r a v a n a g u r u  [30] in his work has 
applied fuzzy hybrid bio inspired technique to solve the VM placement problem 
through server consolidation technique. Fuzzy rules were generated to choose the 
next VMs for the current server. Cuckoo search is applied to find the new optimal 
solution. So by combining ACS and cuckoo search, they have developed an algorithm 
and by combining ACS and firefly colony, they have developed another algorithm. 
Both of them have proved to give the best results when compared with the similar 
algorithms like firefly colony, ACS, MMAS, and FFD. S. M i r j a l i l i, S. M. 
M i r j a l i l i  and A. L e w i s  [31] proposed Grey wolf optimization algorithm 
followed  by  the attacking nature of the prey by wolves. J o s h i  and B a n s a l  [32] 
in his research has combined grey wolf optimization which is a population based 
optimization technique with gravitational search to find a new optimization technique 
which proved to give better result when compared against its base algorithms like 
gravitational search optimization and grey wolf optimization algorithms. 

In the proposed work, we have planned to combine ACS which is a well known 
optimization technique and Grey Wolf Optimization (GWO) Algorithm for a better 
server consolidation and it is proven that the proposed fuzzy HAGA algorithm saves 
the power consumption and also reduces the number of active servers compared 
against the other algorithms taken for comparison.  

3. Evolutionary multiobjective optimization 

Evolutionary multi-objective algorithms generally use a population based approach 
while finding out a Pareto optimal solution. Pareto optimal solutions are the solutions 
that may be improved not simply in one objective function, but more than one 
objective functions should be optimized simultaneously. The performance will 
certainly get affected in any other one of the rest of the functions. Most of the 
algorithms use dominance concept during the selection process. A multiobjective 
minimization problem could be stated as 

Minimize 𝑓o⃗⃗  ⃗(𝑥d⃗⃗⃗⃗ ) =[𝑓1(𝑥d1 …𝑥d𝑚),… , 𝑓𝑛(𝑥o1 …𝑥o𝑛)], 
where 
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𝑥d⃗⃗⃗⃗  = (𝑥d1 …𝑥d𝑚)  ∈ 𝑋, 𝑓o⃗⃗  ⃗= (𝑥o1 …𝑥o𝑛)  ∈ 𝑌, 

m and n are  decision variables and objectives, respectively, 𝑥d⃗⃗⃗⃗  denotes the decision 

vector, where X denotes the variable space and 𝑓o⃗⃗  ⃗ is the objective vector, Y denotes 
the objective area. 

The dominating points are those in which the decision vector 𝑥 1 has better 
objective than any other decision vector. Find all the non-dominated solution set 
[multi objective]. Start with first decision variable. Compare first variable with all 
other remaining variables for domination. Mark the dominating solution and all the 
solution except the marked one are non-dominated solutions 

Consider we have some n number of physical machines running applications on 
them. In case assume that, all the applications need VMs to be executed. So mapping 
a VM to a PM is a multidimensional vector packing problem. Various resource 
utilizations represent the various dimensions. Let us take for example, a request for a 
VM containing 20% CPU and 30% memory and another request of VM having 35% 
and 40%.Then the usage of server shall be calculated as 55% and 70%. We need to 
impose a boundary say, 90% which is less than 100% utilization in order to avoid the 
performance degradation of the server otherwise, which may lead to migration of 
VMs. 

4. Server consolidation  

In an organization, it is essential to reduce the number of servers that it requires in 
order to reduce the server sprawl which means that the underutilized servers consume 
more space, resources and power. So, server consolidation is widely used to cut down 
the energy consumption. 

The main objective of the server consolidation problem is to reduce the number 
of active server machines needed for placing the virtual machines which are requested 
by the users. Consider n VMs to be placed on m Physical Machines (PMs). No VM 

is larger than any PM in capacity. 𝐷proc represents the CPU requirement of each VM 

and 𝐷memory represents the memory demand of a single VM. Let 𝑇proc   and 𝑇memory represent the full capacity of a single physical machine. The proposed 

algorithm is going to reduce the wastage of resources and wastage of CPU. When the 
physical machine is utilized fully, then the performance of the physical machine may 
get degraded. So we have an upper bound of 90% (fuzzy). We define two decision 
variables allocation matrix and binary variables. If a VM is allocated to a particular 
server j, then allocation matrix is set to 1 or it is set to 0, otherwise. A binary variable 
is used to denote whether a server is busy or not. 

The balance resources on each physical machine may vary based on the virtual 
machine placement algorithm. For all the resources to be utilized efficiently, the total 
cost of the wasted resources should be calculated thoroughly. 
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4.1. Server resource wastage modeling 

There are many VM placement solutions which vary in the number of resources 
remaining on each server. Multidimensional resources should be completely utilized. 
Therefore the cost of wasted resource is evaluated by the below equation: 

(1)    Wastej =   | 𝐿proc𝑗        −  𝐿memory𝑗               |+ ∆  | 𝑈proc𝑗       −  𝑈memory𝑗                 | . 

Wastej represents the resource wastage in j-th server. 𝑈proc𝑗        − 𝑈memory𝑗                 represents 

the CPU and memory usage normalized in a physical machine. It is the ratio between 

used resources to the total resources available. 𝐿proc𝑗        − 𝐿memory𝑗                represents 

remaining resources in terms of CPU and memory.  ∆ is a small positive integer to 
avoid the capacity of the physical machine coming down to zero and it is set to 
0.0001. 

4.2. Objective function of server consolidation 

The objective function is designed to reduce the quantity of physical machines as 
well as not violating the capacity of the physical server. Consider that we are assigned 
n number of VMs where (i ∈  I). Here VMs are applications which are need to be 
assigned to m servers (j ∈  J). VM𝑖𝑗 and  PM𝑗 are the two binary variables used to 

represent the placement of VM. The first binary variable VM𝑖𝑗 denotes if VM𝑖  is 

assigned to serverj  and the binary variable PM𝑗 represents if server is active. 

Minimizing the power consumption while minimizing the resource wastage should 
be done which were taken as our objective for virtual Machine Placement. Therefore, 
the VMP problem can be mathematically formulated as 
(2)   Minimize  ∑ PM𝑗𝑚𝑗=1 .   

The limits on constraints are:   
(3)   ∑ all𝑖𝑗 𝑚𝑗=1  = 1, i ∈I,   

(4)   ∑  𝐷proc𝑖 all𝑖𝑗  𝑛𝑖=1 ≤   𝑇proc𝑗  PM𝑗, j ∈J, 

(5)   ∑  𝐷memory𝑖 all𝑖𝑗 𝑛𝑖=1 ≤ 𝑇memory𝑗  PM𝑗, j ∈ J, 

(6)   PM𝑗,   all𝑖𝑗 ∈{0, 1}, i ∈ I, and j ∈ J. 

According to constraint (3), one VM is allocated to only one PM. Constraint (4) 
and (5) is related to the capacity constraints of the PMs. The binary decision variables 
states whether a server is active or not as shown in (6). 

5. Basics of ACO Algorithm and GWO Algorithm 

5.1. Ant colony optimization 

Ant colony optimization is an optimization technique learnt from the behavior of the 
ants in searching their food by finding the nearest path from their habitat to the food 
source. Ants find their path by choosing random decision taken by the amount of 
Pheromone (a kind of saliva like substance) secreted by the ants on the way to the 
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food source. The information passed by the other ants also is used to find the optimal 
solution. The information to assign VMi to PMj is   

(7)   ηij  = 
 |𝐷proc  𝑖 + 𝐷memory|𝑖 |𝐿proc  𝑖 + 𝐿memory|+∈ 𝑖 .  

The Pheromone trail update:  

(8)   𝜏𝑖𝑗  = {∑ τ𝑢𝑖𝑢∈Ω𝑘(𝑗)|Ω𝑘(𝑗)|   if  Ω𝑘(𝑗) − {𝑖} ≠ 0 ,
1                                    otherwise.        

The solution is constructed using Pseudo random proportional rule as given  
in the next equation: 

(9)    I = { argmax𝑢∈Ω𝑘(𝑗){∝p × 𝜏𝑢𝑗(−∝p) × 𝜂𝑢𝑗}  if  𝑐 < 𝑐0,explore 𝑏               otherwise,                                                 
where c is a probabilistic parameter, which is distributed uniformly in the range of 
[0, 1]; c0 is a variable which has value in the range of 0 and 1. If c is lesser than or 
equal to c0, then exploitation process takes place, and if it is greater than c0, it is called 

exploration of new solutions. ∝p is the variable through which the user can control 
the pheromone trail. Using the roulette wheel selection method we select the random 
variable b, and using the proportional rule random probability distribution [30]: 

(10)    𝑃𝑖,𝑗𝑘   =   ∝𝑝 × 𝜏𝑢𝑗+ (1− ∝𝑝)×𝜂𝑗∑ (𝑢∈Ω𝑘(𝑗) ∝𝑝 × 𝜏𝑖𝑗+( (1− ∝𝑝)×𝜂𝑗, i∈ Ω𝑘(𝑗), 
(11)  Ω𝑘(𝑗)= {𝑖 ∈ {1,… , 𝑛}(∑ all𝑖𝑢 = 0𝑚𝑢=1 )^ ((∑ (all𝑢𝑗  × 𝐷 𝑖      proc) + 𝐷 𝑖      proc𝑛𝑢=1 ) ≤ 𝑇 𝑗      proc) ^          ^ ((∑ ( all𝑢𝑗 × 𝐷 𝑖               memory)𝑛𝑢=1 + 𝐷 𝑖               memory) ≤ 𝑇 𝑗               memory) .  

The local updating of the Pheromone is done using the following relation: 

(12)   τ𝑖𝑗 = (1 − 𝜑𝑔)𝜏𝑖𝑗(𝑡 − 1) + 𝜑1. 𝜏0,  

Here, the pheromone decay coefficient is equal to 𝜑1 ∈ {0, 1}, and 𝜏0 indicates 
the initial value of the pheromone. 

Fitness function of the derived solutions is evaluated using the cost function 
designed by M. Sadique and other authors according to the fitness of the VM, which 
will be packed in the PM as given below: 

(13)  
𝐷𝑖proc+𝐷𝑖memory (𝑇𝑖proc− ∑ 𝐷𝑘proc𝑛𝑘=1,𝑘≠𝑖 )+(𝑇𝑖memory− ∑ 𝐷𝑘memory𝑛𝑘=1,𝑘≠𝑖 ), 

based on best solution, the global pheromone update is given by  𝜏𝑖𝑗(𝑡) =  (1 − 𝜑𝑔)𝜏𝑖𝑗𝜏𝑖𝑗(𝑡 − 1) +  𝜑𝛿𝜏𝑖𝑗best. 
Here 𝜑𝑔  ∈ {0, 1} represents the evaporation rate and  

(14)   𝛿𝜏𝑖𝑗best={𝑓𝑠𝑛(𝑆𝑔𝑏) if  VM𝑖 is placed in server 𝑗,
0  otherwwise ,                                        

where 𝑓𝑠𝑛  indicates the fitness of the solution which is identified by finding out the 
average fitness of already placed VMs. This average fitness of VMs are computed by 
the VM fitness equation given in (13).  

5.2. Grey Wolf Algorithm [31] 

Inspired by the behavior of grey wolves attacking on the prey in groups, the algorithm 
has been designed to find the optimal solution. Assume the first fittest solution are  
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∝ wolves and next consecutive fittest are  and  and the remaining solutions are  
wolves. The order of the fittest in the hunting process is shown in the Fig. (2). 

The important phases of Grey wolf hunting process are as given in [34]: 
1. “Tracking, chasing and approaching the prey. 
2. Pursuing, encircling and harassing till it stops its movement. 

3. Finally, making an attack on the prey.” 
 

 
Fig. 2. Hierarchy of Grey wolves in the process of hunting 

 

The mathematical notation of encircling is given as 

(15)    D=|𝐶𝑉𝑋𝑝𝑣(𝑡) − 𝑋𝐺𝑣(𝑡)|, 
(16)   𝑋𝐺𝑣(𝑡 + 1) = 𝑋𝑝𝑣(t) – 𝐴𝑉D, 

t is the iteration; 𝐴𝑉  and 𝐶𝑉 indicates the coefficient vectors; 𝑋𝑝𝑣 gives the position 

vector of the prey and 𝑋𝐺𝑣(𝑡) indicates the position vector of the Grey wolf. 
The calculation of the values of vectors 𝐴𝑉  and 𝐶𝑉 are: 

(17)   𝐴𝑉 =2b𝑟𝑣1   – b, 

(18)   𝐶𝑉=2𝑟𝑣2, 

where the values of b are linearly decreased from 2 to 0 during the process of iteration 
and  rv1

, rv2
 are any random vectors between the values [0, 1]. 

5.2.1. Hunting 

The best search agents, Alpha, Beta, Gamma and all the other Omega agents are 
updated using the following equations: 

(19)   𝐷𝛼  = |𝐶𝑣1 . 𝑋𝐺𝑣𝛼 − 𝑋𝐺𝑣(𝑡)|, 
(20)   𝐷𝛽   = |𝐶𝑣2 . 𝑋𝐺𝑣𝛽 − 𝑋𝐺𝑣(𝑡)|, 
(21)   𝐷𝛿   = |𝐶𝑣3 . 𝑋𝐺𝑣𝛿 − 𝑋𝐺𝑣(𝑡)|, 
(22)    𝑋𝐺𝑣1  = 𝑋𝐺𝑣𝛼 − 𝐴𝑣1 . (𝐷𝛼), 
(23)   𝑋𝐺𝑣2  = 𝑋𝐺𝑣𝛽 − 𝐴𝑣1 . (𝐷𝛽), 

(24)   𝑋𝐺𝑣3  = 𝑋𝐺𝑣𝛿 − 𝐴𝑣1 . (𝐷𝛿), 

(25)   𝑋𝐺𝑣(𝑡 + 1) =   𝑋𝐺𝑣1+𝑋𝐺𝑣2+𝑋𝐺𝑣33 . 

5.2.2.  Attacking the prey 

The value of b is decreased to show that the agents goes near the prey. The variations 
in the value of A also depends on b.When random values lies in between [–1, 1], the 
next position of the search agent can be located in any place from its current position 
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and the prey’s position when |𝐴𝑣| <1, it attacks the prey, it means exploitation and if 
it is greater than 1 means exploration. 

5.2.3. Searching for prey 

Wolves generally go apart for searching the prey and they come towards the prey to 
attack it. This is called as divergence and convergence respectively.  𝐴𝑣  is applied 
with random numbers which are in the range between 1 and –1 so as to force the 
search agent to get away from the prey. When |𝐴𝑣| >1, it diverges from the prey to 
get a better prey. 

5.2.4. Dynamic update of parameter b 

As we see that the parameter b directly affects 𝐴𝑣, and (1) and (2) gets affected 
because of b. When the coefficient 𝐴𝑣’s values are in the range [–1, 1], the 
exploitation process is been simulated. The next position of the wolves can be 
anywhere between the present position and the prey. Therefore, b plays a vital role in 
exploitation as well as exploration. 

The ranges for the parameter b are b [0, 2], b [0, 3], and b [0, 0.5]. A fuzzy 
Inference System rules are taken from [34] to increase and decrease b; 𝐶𝑣 is also taken 
as important as b in decision making of the movement of the wolves. This 𝐶𝑣 
parameter catalyzes exploration process. It does not linearly decrease but decreases 
randomly. 

GWO saves the best solution so far over several iterations. The parameters 𝐴𝑣 
and 𝐶𝑣 help the solutions generated to find out where is the prey located. Exploration 
process and exploitation process are done using the values of b and 𝐴𝑣 . There is no 
direct relation between the search agents and fitness function. The fitness value of the 
i-th agent is denoted by fit(𝑖). The formula for calculating the fitness is given in (25). 
A set of fuzzy rules were used for the variables b and 𝐶𝑣. The rules are taken from 
[34] and used to increase or decrease the values of b. GWO Algorithm is used for 
exploring the solutions obtained by the ACO. 

GWO Algorithm [35] 

Table 1. GWO Algorithm 
Initialize the grey wolf population X(i) = (1, 2, …, n) 

Initialize b, 𝐴𝑣 and 𝐶𝑣 

Calculate the fitness of each search agent  𝛼, 𝛽, 𝛿  

Loop: 

While t< maximum number of iterations 

     For each search agent  

           update the position of the current search agent by (19)-(25). 

      Endfor   

    Update 𝑋𝛼 , 𝑋𝛽   and 𝑋𝛿  

Increment  t 

End while 

Return 𝑋𝛼  and  𝑋𝛽  

Add   the non dominated sollutions to the archive  

repeat  the loop until number of iterations 
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6. Proposed hybrid optimization 

6.1. Fuzzy HAGA optimization 

Now, we should decide about the next VMi to be placed in the currently chosen 
server as given in [29]. 
“If βij is low and ηij is low then the efficacy eij of choosing VMi is very very low. 
If βij is medium and ηij is low then the efficacy eij of choosing VMi is very low. 
If βij  is high and ηij is low then the efficacy eij of choosing VMi is low. 
If βij  is low and ηij is medium then the efficacy eij of choosing VMi is low. 
If βij  is medium and ηij is medium then the efficacy eij of choosing VMi is medium. 
If βij  is high and ηij is medium then the efficacy eij of choosing VMi is high. 
If βij  is low and ηij is high then the efficacy eij of choosing VMi is high. 
If βij  is medium and ηij  is high then the efficacy eij of choosing VMi is very high. 
If βij  is high and ηij  is high then the efficacy eij of choosing VMi is very high.” 

This Fuzzy HAGA technique uses the minimal and max-min operations in 
implication and composition respectively. Subsequently, the maximum efficiency  𝑒𝑖𝑗𝑘   is obtained for every virtual machine i. The rule given below has been used which 

is stated in (12) to decide which VMi  should be assigned for an individual server j, 

I={ Fuzzy strategy, 𝑞 ≤ 𝑞0,               Fuzzy probable strategy, 𝑞 > 𝑞0. 
The fuzzy probable strategy is derived from (25), as given in the GWO 

Algorithm. In the output, we will get the number of virtual machine to be placed in 
that corresponding server. 

To implement the exploitation process, a fuzzy technique is used as in [29]. 𝐅𝐮𝐳𝐳𝐲 𝐬𝐭𝐫𝐚𝐭𝐞𝐠𝐲:  

(26)   ⌊𝑒u∗𝑗⌋ = sup𝑢∈ Ω𝑘(𝑗)  {𝑒u𝑗}, 

where i = 𝐮∗. 
 𝐅𝐮𝐳𝐳𝐲 𝐩𝐫𝐨𝐛𝐚𝐛𝐚𝐥𝐞 𝐬𝐭𝐫𝐚𝐭𝐞𝐠𝐲: 

(27)   𝑋𝑖𝑗𝑘 =
𝑒𝑖𝑗𝑘∑ (𝑗) 𝑒u𝑗𝑘𝑢∈𝜔𝑘 . 

We have used GWO Algorithm for exploitation process, on the solutions 
generated by the ACO for exploration process. The procedure for updating the 
positions of the wolf is same as given in [34]. GWO Algorithm is used for the 
exploration process while ACO is used for exploitation process of the solutions. The 
processor and memory instances are created using algorithm from [14] (Table 2). 

Table 2. Algorithm to create the processor and memory instances in random 
for i = 0 to (n – 1) do 𝑫𝐩𝐫𝐨𝐜(𝑖) = 𝐫𝐚𝐧𝐝 (2𝑫𝐩𝐫𝐨𝐜̅̅ ̅̅ ̅̅ ̅) 𝑫𝐦𝐞𝐦𝐨𝐫𝐲(𝑖) = 𝐫𝐚𝐧𝐝 (2𝑫𝐦𝐞𝐦𝐨𝐫𝐲̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅) 

S= Numbers are generated in random using function rand(1.0) 

If (S  < P      𝑫𝐩𝐫𝐨𝐜(𝑖)  ≥  𝑫𝐩𝐫𝐨𝐜)   (S  ≥  P   𝑫𝐩𝐫𝐨𝐜(𝑖)  < 𝑫𝐩𝐫𝐨𝐜) then 𝑫𝐦𝐞𝐦𝐨𝐫𝐲(𝑖)  = 𝑫𝐦𝐞𝐦𝐨𝐫𝐲(𝑖) + 𝑫𝐦𝐞𝐦𝐨𝐫𝐲 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

Endif 
Endfor 
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6.2. Fuzzy HAGA Algorithm Table 3. Fuzzy HAGA Algorithm 
1. Initialize the required quantity of Physical Machines (PMs), and the requested quantity of 

Virtual Machines (VMs). 
2. The capacity constraint is set for the Physical Machines. 
3. The requirement demands of VMs are initialized. 
4. The maximum number for the iteration is fixed. 
5. Initialize the Pheromone matrix 𝝉𝒋 and the total number of ants 

6. Use procedure given in GWO algorithm to generate server consolidation problem instances 
as in Table. 1 

7. Loop1: 

               Repeat for  k=0 

               Loop2: 
 Take   a server which is not used so far from a set of Physical  
 servers. 
 Loop3: 

For Number of VMs =1 to n 
Determine the desirable heuristic data from (7) 
Determine the probabilistic movement from (10) 
End for 

  Pick a VM from the list of VMs for replacing using Fuzzy state  
  transition rule applying (23) and (24). 
  If there are any remaining VM that could be fit in the server, 
  Go to Loop3 
  Go to Loop2       

            Upgrade the pheromones to the best solution using the     
            Upgrade rule for local solution given in (12). 
           Do until total number of ants (TNA) – 1 

8. The Objective function value is set using the (2). 
9. Apply HAGA Algorithm to obtain new optimal solutions. 
10. Modify the values of Pheromones applying updating rule globally as stated in (14). 
11. Goto Loop1. 
12. Display the global best solution along with the fitness value 

6.3. Results and discussion 

Using (14), the VM demand instances are generated in Java platform using ACO 
Algorithm [14]. The mapping is done in such a way that one VM is assigned to a 
single PM as the worst case complexity. 200 VMs are taken for performing our 
experiment. The no. of VMs are scalable as it is given in [14]. The initialization of 
the variables are done as follows: 𝒒𝟎 = 0.8. NA=10, M=100, 𝜶 = 𝟎. 𝟒𝟓, 𝝆𝒍 =𝝆𝒈=0.35, 𝝉𝒑𝒈=𝝉𝒎𝒋=90%, η =0.0001. 

20 runs per instance has been performed and the results are taken for an average of 
20 runs. LB is the Lower Bound and defined as: 

(28)   {⌈(∑ 𝐷proc𝑖𝑛𝑖=1 ) 𝑇proc𝑗⁄ ⌉, ⌈(∑ 𝐷memory𝑖𝑛𝑖=1 ) 𝑇memory𝑗⁄ ⌉}. 
When the number of non-dominated solutions is more than one, a non-

dominated solution is chosen in random. The demand set of CPU and the memory 
utilization were the problem instances generated. The reference values of CPU and 
memory were set to 25% and 45% for experiment. The threshold of utilization of both 
CPU and memory is set to 90%. The demand for CPU and memory are taken as 
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references and it is noticed that the lower bound of servers taken for replacement has 
come down in our experiment. 
 

Table 4. VM requirements of Server consolidation (reference values = 25% and 45%) 

Algorithm 

𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=25% 𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=45% 

Probability Value = –0.754 Probability Value = –0.755 

Count of PMs, m m/LB Time, s Count of PMs, m m/LB Time, s 

Fuzzy HAGA 94 1.04 7.13 191 1.19 8.53 

Fuzzy ACS 95 1.05 7.16 191 1.20 8.56 

FFD 125 1.38 8.34 218 1.36 24.61 

ACS 97 1.07 5.31 194 1.21 6.47 

MMAS 101 1.12 5.26 195 1.21 6.53 
 

The average power consumption and resource wastage of virtual machine 
requirements having reference value as 25% and probability value as –0.754 and  
–0.755. It is observed that the count of Physical machines is decreased in our 
algorithm by one when compared to that of Fuzzy ACS and also the lower bound of 
the count of the servers has also come down in our proposed algorithm. 

 
Table. 5. VM requirements of Server consolidation (reference values = 25% and 45%) 

Algorithm 

𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=25% 𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory=̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅45% 

Probability Value = –0.348 Probability Value = –0.374 
Count of PMs, m m/LB Time, s Count of PMs, m m/LB Time, s 

Fuzzy HAGA 93 1.03 7.14 186 1.11 8.51 
Fuzzy ACS 94 1.04 7.16 189 1.12 8.53 
FFD 121 1.34 8.33 207 1.21 24.69 
ACS 96 1.05 5.32 191 1.15 6.24 
MMAS 98 1.06 5.21 192 1.15 6.47 

 

The average power consumption and resource wastage of virtual machine 
requirements having reference value as 25% and probability value as –0.754 and  
–0.755. It is observed that the count of Physical machines is decreased in our 
algorithm by one when compared to that of Fuzzy ACS and also the lower bound of 
the count of the servers has also come down in our proposed algorithm. 
 

Table 6. VM requirements of Server consolidation (reference values = 25% and 45%) 

Algorithm 
Dproc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=25% 𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=45% 

Probability Value = –0.072 Probability Value = –0.052 
Count of PMs, m m/LB Time, s Count of PMs, m m/LB Time, s 

Fuzzy HAGA 92 1.02 7.08 178 1.12 8.44 
Fuzzy ACS 93 1.03 7.12 180 1.14 8.48 
FFD 112 1.24 8.21 195 1.21 24.61 
ACS 94 1.04 5.29 184 1.15 6.27 
MMAS 96 1.06 5.21 185 1.15 6.49 

 

The average power consumption and resource wastage of VM requirements 
having reference value as 25% and probability value as –0.072 and  
–0.052. It is observed that  the count of PMs is decreased in our algorithm by one 
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when compared to that of Fuzzy ACS and also the lower bound of the count of the 
servers has also come down in our proposed algorithm. 
 

Table. 7. VM requirements of Server consolidation (reference values = 25% and 45% ) 

Algorithm 
𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=25% 𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅=45% 

Probability Value = 0.371 Probability Value = 0.398 
Count of PMs, m m/LB Time, s Count of PMs, m m/LB Time, s 

Fuzzy AG 92 1.02 7.08 178 1.10 8.40 
Fuzzy ACS 93 1.03 7.12 180 1.12 8.43 
       
FFD 112 1.24 8.21 195 1.21 24.54 
ACS 94 1.04 5.29 184 1.15 6.24 
MMAS 96 1.06 5.21 185 1.15 6.47 

 

The average power consumption and resource wastage of virtual machine 
requirements having reference value as 25% and probability value as0.371and 0.398. 
It is observed that the count of Physical machines is decreased in our algorithm by 
one when compared to that of Fuzzy ACS and also the lower bound  of the count of 
the servers which are used for replacement has also come down in our proposed 
algorithm. 
 

Table. 8. VM requirements of Server Consolidation (reference values = 25% and 45% ) 

Algorithm 
𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅25% 𝐷proc̅̅ ̅̅ ̅̅ ̅=𝐷memory̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅45% 

Probability Value = 0.755 Probability Value = 0.751 
Count of PMs, m m/LB Time, s Count of PMs, m m/LB Time, s 

Fuzzy HAGA 90 1.00 7.03 171 1.06 8.36 
Fuzzy ACS 91 1.01 7.09 172 1.08 8.41 
FFD 105 1.16 8.19 190 1.18 24.23 
ACS 93 1.03 5.28 176 1.10 6.23 
MMAS 95 1.05 5.18 181 1.13 6.42 

 

  

 
Fig. 4. Number of servers initialized when Dproc = Dmemory = 25%   and   45% 
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The average power consumption  and resource wastage of virtual machine 
requirements having reference value as 25% and probability value as = 0.775 and 
0.751. It is observed that the count of PMs is decreased in our algorithm  by one when 
compared to that of Fuzzy ACS and also the lower bound of the count of the servers 
has also come down in our proposed algorithm. 

From the above results, we can see in the graph that our Fuzzy HAGA algorithm 
performs better server consolidation when compared with other approaches in terms 
of the number of PMs. The number of PMs were reduced by implementing our 
proposed algorithm when compared to other algorithms like Fuzzy ACS and ACS. 
The lower bound on it also has been decreased when compared to other given 
algorithms. It is also noted that the time taken for consolidating the physical machines 
are also decreased. 

7. Conclusion  

With the growing advancement in cloud computing environment, a research problem 
that needs an attention is the Virtual Machine Placement Problem (VMPP), which 
needs server consolidation as its strategy. It targets the optimal placement of VM to 
a suitable PM to obtain an optimal solution that minimizes the total power 
consumption and resource wastage. To achieve this, server consolidation helps to 
pack maximum number of VMs that could be packed in one server so as to reduce 
the power consumption and resource wastage. The proposed Fuzzy HAGA 
Algorithm has been tested against some of the algorithms given above. In our 
experiment, GWO Algorithm has been used to optimize the solutions got through 
using ACO Algorithm. The results prove that our Fuzzy HAGA Algorithm performs 
better server consolidation than the Fuzzy ACS, FFD, ACS and MMAS. Server 
consolidation problem is a problem with high complexity and Fuzzy HAGA 
Algorithm has been designed efficiently to handle this problem. In future, a better 
optimal solution will be explored using some other hybrid optimization techniques to 
reduce the number of PMs and decrease the lower bound value of the physical 
machines. 
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