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Abstract

In this paper we solve two conjectures proposed by Manuel et al. (Discret. Appl. Math.
159(17): 2109–2116, 2011) to obtain exact wirelength of embedding an r-dimensional hypercube
into cylinder C2r1 × P2r2 and torus C2r1 × C2r2 , where r1 + r2 = r and r1 ≤ r2. We provide
a linear time algorithm to compute the exact wirelength of embedding hypercube into cylinder
and torus. Further we extend the result for higher dimensional cylinder and torus.
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1 Introduction

In recent years, among many interconnection networks, the hypercube has been the focus of many
researchers due to its structural regularity, potential for parallel computation of various algorithms,
and the high degree of fault tolerance [1]. Hypercubes are known to simulate other structures such
as grids and binary trees [2, 3].

Graph embedding is an important technique that maps a logical graph into a host graph, usually
an interconnection network. Many applications can be modeled as graph embedding [4, 5, 6, 7, 8].
The quality of an embedding can be measured by certain cost criteria. One of these criteria is
the wirelength. The wirelength of a graph embedding arises from VLSI designs, data structures
and data representations, networks for parallel computer systems, biological models that deal with
cloning and visual stimuli, parallel architecture, structural engineering and so on [6, 9].

Graph embeddings have been well studied for hypercubes into grids [2], meshes into crossed cubes
[10], meshes into locally twisted cubes [11], meshes into faulty crossed cubes [12], generalized ladders
into hypercubes [13], rectangular grids into hypercubes [14], rectangular grids into hypercubes [15],
grids into grids [16], binary trees into grids [17], meshes into möbius cubes [18], tori and grids into
twisted cubes [19], hypercube into n-dimensional grid [20].

Even though there are numerous results and discussions on the wirelength problem, most of them
deal with only approximate results and the estimation of lower bounds [21, 22]. But the Congestion
Lemma and the Partition Lemma [2, 7] have enabled the computation of exact wirelength for
embeddings of various architectures [2, 7, 10, 11, 20, 23]. In fact the technique focuses on specific
partitioning of the edge set of the host graph. It is interesting to note that not all host graphs can
be partitioned to apply the Partition Lemma. In this paper, we overcome this difficulty partially
by retaining a set of edges on which minimum wirelength is computed using Partition Lemma and
compute minimum congestion on the rest of the edges using various other procedures.

∗This work is supported by National Board of Higher Mathematics(NBHM), Department of Atomic Energy, Gov-
ernment of India.
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Figure 1: Wiring diagram of a cylinder G into path H with WLf (G,H) = 30

Definition 1.1. [21] Let G and H be finite graphs. An embedding f of G into H is defined as
follows:

1. f is a one-to-one map from V (G) → V (H)

2. Pf is a one-to-one map from E(G) to {Pf (u, v) : Pf (u, v) is a path in H between f(u) and
f(v) for (u, v) ∈ E(G)}.

The expansion of an embedding f is the ratio of the number of vertices of H to the number of
vertices of G. In this paper, we consider embeddings with expansion one.

Definition 1.2. [21] The edge congestion of an embedding f of G into H is the maximum number
of edges of the graph G that are embedded on any single edge of H. Let ECf (e) denote the number
of edges (u, v) of G such that e is in the path Pf (u, v) between the vertices f(u) and f(v) in H. In
other words,

ECf (e) = |{(u, v) ∈ E(G) : e ∈ Pf (u, v)}|
where Pf (u, v) denotes the path between f(u) and f(v) in H with respect to f .

If we think of G as representing the wiring diagram of an electronic circuit, with the vertices
representing components and the edges representing wires connecting them, then the edge congestion
EC(G,H) is the minimum, over all embeddings f : V (G) → V (H), of the maximum number of
wires that cross any edge of H [24]. See Figure 1.

Definition 1.3. [2] The wirelength of an embedding f of G into H is given by

WLf (G,H) =
∑

(u,v)∈E(G)

|Pf (u, v)| =
∑

e∈E(H)

ECf (e)

where |Pf (u, v)| denotes the length of the path Pf (u, v) in H.
The wirelength of G into H is defined as

WL(G,H) = minWLf (G,H)

where the minimum is taken over all embeddings f of G into H.

The wirelength problem [2, 17, 21, 22, 24] of a graph G into H is to find an embedding of
G into H that induces the minimum wirelength WL(G,H). The isoperimetric problem [25] has
been used as a powerful tool in the computation of exact wirelength of graph embeddings. The
problem is to determine a subset A of vertices of a graph G such that θG(A) = θG(m), where
θG(A) = {(u, v) ∈ E : u ∈ A, v /∈ A} and for a given m, θG(m) = min

B⊆V , |B|=m
|θG(B)|. Such subsets

are called optimal [25, 28].
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The maximum subgraph problem [25] is to find a subset of vertices of a given graph, such that
the number of edges in the subgraph induced by this subset is maximal among all induced subgraphs
with the same number of vertices. Mathematically, for a given m, if IG(m) = max

A⊆V , |A|=m
|IG(A)|

where IG(A) = {(u, v) ∈ E : u, v ∈ A}, then the problem is to find A ⊆ V such that |A| = m and
IG(m) = |IG(A)|. The maximum subgraph problem is NP-complete [26]. When G is regular, the
isoperimetric problem is equivalent to the maximum subgraph problem.

Lemma 1.4. (Congestion Lemma) [2, 7] Let G be an r-regular graph and f be an embedding of G
into H. Let S be an edge cut of H such that the removal of edges of S leaves H into 2 components
H1 and H2 and let G1 = f−1(H1) and G2 = f−1(H2). Also S satisfies the following conditions:

(i) For every edge (a, b) in Gi, i = 1, 2, Pf (a, b) has no edges in S.

(ii) For every edge (a, b) in G with a ∈ V (G1) and b ∈ V (G2), Pf (a, b) has exactly one edge in S.

(iii) V (G1) is an optimal set.

Then ECf (S) is minimum and ECf (S) =
∑
e∈S

ECf (e) = r |V (G1)| − 2 |E(G1)|.

Lemma 1.5. (Partition Lemma) [2, 7] Let f : G → H be an embedding. Let {S1, S2, . . . , Sp} be a
partition of E(H) such that each Si is an edge cut of H. Then

WLf (G,H) =

p∑

i=1

ECf (Si).

Definition 1.6. [6] For r ≥ 1, let Qr denote the r-dimensional hypercube. The vertex set of Qr is
formed by the collection of all r-dimensional binary strings. Two vertices x, y ∈ V (Qr) are adjacent
if and only if the corresponding binary strings differ exactly in one bit. The vertices of Qr can also
be identified with integers 0, 1, . . . , n− 1.

Definition 1.7. [27] An incomplete hypercube on i vertices of Qr is the subcube induced by {0, 1, . . . , i− 1}
and is denoted by Li, 1 ≤ i ≤ 2r.

Theorem 1.8. [28, 29, 30] Let Qr be an r-dimensional hypercube. For 1 ≤ i ≤ 2r, Li is an optimal
set on i vertices.

Lemma 1.9. [23] For i = 1, 2, ..., r− 1, NcutS2i
i = {2i, 2i +1, ..., 2i+1 − 1} is an optimal set in Qr.

Lemma 1.10. [20] For 1 ≤ j < n and i = 1, 2, ..., 2rj

Lexij = { m+ xj+1 · 2r1+r2+...+rj + xj+2 · 2r1+r2+...+rj+1 + · · ·+ xn · 2r1+r2+...+rn−1 ,

: 0 ≤ m ≤ i · 2r−(rj+...+rn) − 1, 0 ≤ xk ≤ 2rk − 1, k = j + 1, j + 2, ..., n }

is an optimal set on i× 2r−rj vertices in Qr where r1 + r2 + ...+ rn = r, r1 ≤ r2 ≤ · · · ≤ rn.

2 Main Results

In this section we compute the exact wirelength of embedding r-dimensional hypercube Qr into the
cylinder C2r1 × P2r2 and the torus C2r1 × C2r2 , where r1 + r2 = r and r1 ≤ r2.
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Figure 2: (a) Cylinder Cd1 × Pd2 and (b) Torus Cd1 × Cd2

2.1 Hypercube into Cylinder

Grid embedding plays an important role in computer architecture. VLSI Layout Problem, Crossing
Number Problem, Graph Drawing, and Edge Embedding Problem are all a part of grid embedding.
There are very few results in the literature which provide the exact wirelength of embedding grids
into other architectures [2]. Cylinder is an extension of the grid network and is defined as follows.

Definition 2.1. [7] The 2-dimensional grid is defined as Pd1 × Pd2 , where di ≥ 2 is an integer for
each i = 1, 2. The cylinder Cd1 × Pd2 , where d1, d2 ≥ 3 is a Pd1 × Pd2 grid with a wraparound edge
in each row.

It is clear that the vertex set of Pd1 × Pd2 is V = {x1x2 : 0 ≤ xi ≤ di − 1, i = 1, 2} and two
vertices x = x1x2 and y = y1y2 are linked by an edge, if |x1 − y1|+ |x2 − y2| = 1.

Remark 2.2. The cylinder Cd1 × Pd2 has d1d2 vertices and 2d1d2 − d1 edges. See Figure 2(a).

Manuel et al. [7] obtained the exact wirelength of embedding an r-dimensional hypercube into
the cylinder C4 × P2r−2 , where r1 + r2 = r and r1 ≤ r2. Now, we compute the exact wirelength
of embedding an r-dimensional hypercube Qr into the cylinder C2r1 × P2r2 , where r1 + r2 = r and
r1 ≤ r2, thereby proving the conjecture proposed in [7].

Lemma 2.3. Let G be the r-dimensional hypercube Qr and H be the cylinder C2r1 × P2r2 , where
r1 + r2 = r and r1 ≤ r2. Let Sj be an edge cut of H consisting of edges between the columns j and
j + 1 of H, 1 ≤ j ≤ 2r2 − 1. Then

2r2−1∑

j=1

EC(Sj) = 2r1(22r2−1 − 2r2−1).

Proof. Let Cj denote the cycle induced by the vertices in column j of Cd1 × Pd2 , where 1 ≤ j ≤ d2
and d1, d2 ≥ 3. Label the vertices of hypercube Qr using Gray code labeling [3] and label the
vertices of Cj , 1 ≤ j ≤ 2r2 in H as (j − 1)2r1 , (j − 1)2r1 + 1, . . . , j 2r1 − 1 from top to bottom and
map f : Qr → H by f(x) = x. See Figure 3.
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Figure 3: Labeling of Q5 and C8 × P4

Now, Sj disconnects H into two components Hj1 and Hj2 where V (Hj1) = {0, 1, . . . , j 2r1 − 1}.
See Figure 4. Let Gj1 and Gj2 be the inverse images ofHj1 andHj2 respectively under f . By Lemma
1.8, V (Gj1) is an optimal set in Qr. By Congestion Lemma, ECf (Sj) is minimum, 1 ≤ j ≤ 2r2 − 1.
Thus by Partition Lemma,

2r2−1∑

j=1

EC(Sj) =
2r2−1∑

j=1

ECf (Sj) =
2r2−1∑

j=1

θG(j · 2r1) = 2r1(22r2−1 − 2r2−1). �

Lemma 2.4. Let G be the r-dimensional hypercube Qr and H be the cylinder C2r1 × P2r2 , where
r1 + r2 = r and r1 ≤ r2. Let f : G → H be an embedding. If A ⊆ V (H) and ECf (θH(A)) is
minimum, then f−1(A) is a maximum subgraph of Qr.

Proof. Suppose ECf (θH(A)) is minimum with |A| = m. To prove that B = f−1(A) is a maximum
subgraph of Qr on m vertices. Suppose not, there exist C ⊆ V (Qr) such that |IG(B)| < |IG(C)|.
Since Qr is r-regular, by Congestion Lemma,

ECf (θH(A)) = r m− 2|IG(B)|
> r m− 2|IG(C)|
= ECf (θH(f(C)))

which is a contradiction to our assumption that ECf (θH(A)) is minimum. Therefore f−1(A) is a
maximum subgraph of Qr.

For an embedding of Qr into C2r , the cyclic wirelength of Qr into C2r has been obtained in [31]
and is equal to 3 · 22r−3 − 2r−1. We have the following result by choosing A = Cj , 1 ≤ j ≤ 2r2 in
Lemma 2.4.

Lemma 2.5. The congestion on the edges of Cj in C2r1 × P2r2 is 3 · 22r1−3 − 2r1−1, 1 ≤ j ≤ 2r2,

r1 + r2 = r and r1 ≤ r2. Thus
2r2∑
j=1

EC(Cj) = 2r2(3 · 22r1−3 − 2r1−1). �

The edge set of cylinder is partitioned into S1, S2, . . . , S2r2−1, E(C1), E(C2), . . . , E(C2r2 ). There-
fore by Lemmas 2.3 and 2.5, we have the following result.
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Figure 4: Edge cut of C8 × P8

Theorem 2.6. Let G be an r-dimensional hypercube Qr and H be the cylinder C2r1×P2r2 , r1+r2 = r
and r1 ≤ r2. Then the minimum wirelength of embedding G into H satisfies

WL(G,H) ≥ 2r1(22r2−1 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1). �
We now proceed to prove that the lower bound obtained in Theorem 2.6 is sharp.

Embedding Algorithm A

Input : The r-dimensional hypercube Qr and the cylinder C2r1 × P2r2 , r1 + r2 = r and r1 ≤ r2.

Algorithm : Label the vertices of hypercube Qr using Gray code labeling [3] and label the vertices
of Cj , 1 ≤ j ≤ 2r2 in C2r1 × P2r2 as (j − 1)2r1 , (j − 1)2r1 + 1, . . . , j 2r1 − 1 from top to bottom.

Output : An embedding f of Qr into C2r1 × P2r2 given by f(x) = x with minimum wirelength.

Theorem 2.7. Let G be an r-dimensional hypercube Qr and H be the cylinder C2r1×P2r2 , r1+r2 = r
and r1 ≤ r2. Then the minimum wirelength of embedding G into H is given by

WL(G,H) = 2r1(22r2−1 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1).

Proof. Label the vertices of Qr and C2r1 × P2r2 using Embedding Algorithm A. We assume that
the labels represent the vertices to which they are assigned. By Lemmas 2.3 and 2.5, we have

(i) ECf (Cj) = θG(j · 2r1), 1 ≤ j ≤ 2r2 − 1 and

(ii) ECf (Ck) = 3 · 22r1−3 − 2r1−1, 1 ≤ k ≤ 2r2

Then by Partition Lemma,

WL(G,H) = 2
2r2−1∑

j=1

θG(j · 2r1) +
2r2∑

k=1

(3 · 22r1−3 − 2r1−1)

= 2r1(22r2−1 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1). �
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Figure 5: Snake-wise labeling of C4 × C5

2.2 Hypercube into Torus

The family of tori is one of the most popular interconnection networks due to its desirable properties
such as regular structure, ease of implementation and good scalability. In recent years, the theory
of torus embedding has found many applications and has been used in many practical systems such
as Cray T3D, Cray T3E, Fujitsu AP3000, Ametak 2010, Intel Touchstone and so on [32].

Definition 2.8. [12] The torus Cd1 ×Cd2 , where d1, d2 ≥ 3 is a Pd1 × Pd2 grid with a wraparound
edge in each row and column.

Remark 2.9. The torus Cd1 × Cd2 has d1d2 vertices and 2d1d2 edges. See Figure 2(b).

Notation : Let Ci and Cj denote the cycles induced by the vertices in row i and column j
respectively of Cd1 × Cd2 , where 1 ≤ i ≤ d1, 1 ≤ j ≤ d2 and d1, d2 ≥ 3.

Now, we compute the exact wirelength of embedding an r-dimensional hypercube Qr into the
torus C2r1 × C2r2 , where r1 + r2 = r and r1 ≤ r2 respectively.

Lemmas 2.4 and 2.5 yield the following result.

Lemma 2.10. The congestion on the edges of Ci and Cj of C2r1 × C2r2 are 3 · 22r2−3 − 2r2−1 and
3 · 22r1−3 − 2r1−1, 1 ≤ i ≤ 2r1, 1 ≤ j ≤ 2r2, r1 + r2 = r and r1 ≤ r2.

From Lemma 2.10, we have the following result.

Theorem 2.11. Let G be an r-dimensional hypercube Qr and H be the torus C2r1 ×C2r2 , r1+r2 = r
and r1 ≤ r2. Then the minimum wirelength of embedding G into H satisfies

WL(G,H) ≥ 2r1(3 · 22r2−3 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1). �

Embedding Algorithm B

Input : The r-dimensional hypercube Qr and the torus C2r1 × C2r2 , r1 + r2 = r and r1 ≤ r2.

Algorithm : Label the vertices of hypercube Qr using Gray code labeling [3] and label the vertices
of Ci, 1 ≤ i ≤ 2r1 in H as (j−1)2r1 , (j−1)2r1 +1, . . . , j 2r1 −1 using snake-wise labeling beginning
with the left most vertex as shown in Figure 5.
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Output : An embedding f of Qr into C2r1 × C2r2 given by f(x) = x with minimum wirelength.

The proof of the following theorem is an easy consequence of Theorem 2.11 and Embedding
Algorithm B.

Theorem 2.12. Let G be an r-dimensional hypercube Qr and H be the torus C2r1 ×C2r2 , r1+r2 = r
and r1 ≤ r2. Then the minimum wirelength of embedding G into H is given by

WL(G,H) = 2r1(3 · 22r2−3 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1).

Proof. Label the vertices of Qr and C2r1 × C2r2 using Embedding Algorithm B. We assume that
the labels represent the vertices to which they are assigned. By Lemma 2.5, we have

(i) ECf (C
i) = 3 · 22r2−3 − 2r2−1, 1 ≤ i ≤ 2r1 and

(ii) ECf (Cj) = 3 · 22r1−3 − 2r1−1, 1 ≤ j ≤ 2r2

Then by Partition Lemma,

WL(G,H) = 2

2r2−1∑

j=1

ECf (C
i) +

2r2∑

k=1

ECf (Cj)

= 2r1(3 · 22r2−3 − 2r2−1) + 2r2(3 · 22r1−3 − 2r1−1). �

3 Time Complexity

In computer science, the time complexity of an algorithm quantifies the amount of time taken by
an algorithm to run as a function of the size of the input to the problem. An algorithm is said to
take linear time, or O(n) time, if its time complexity is O(n). Informally, this means that for large
enough input sizes the running time increases linearly with the size of the input [34].

Linear time is often viewed as a desirable attribute for an algorithm. Much research has been
invested into creating algorithms exhibiting (nearly) linear time or better. This research includes
both software and hardware methods. In the case of hardware, some algorithms which, mathemat-
ically speaking, can never achieve linear time with standard computation models are able to run
in linear time. There are several hardware technologies which exploit parallelism to provide this.
An example is content-addressable memory. This concept of linear time is used in string matching
algorithms such as the Boyer-Moore Algorithm and Ukkonen’s Algorithm [35, 36].

In this Section, we compute the time complexity of finding the exact wirelength of embedding
hypercube into cylinder using Embedding Algorithm B. The algorithm is formally presented as
follows.

Time Complexity Algorithm

Input : The r-dimensional hypercube Qr and the cylinder C2r1 × P2r2 , r1 + r2 = r and r1 ≤ r2.

Algorithm : Embedding Algorithm A.

Output : The time taken to compute the minimum wirelength of embedding Qr into C2r1 ×P2r2

is O(n), which is linear.

8



Method : We know that Qr contains n = 2r vertices. For assigning the labels of n vertices, we
spend n time units. By Embedding Algorithm A, we have 2r2 − 1 edge cuts. For each cut, we need
one unit of time and hence we need 2r2 −1 time units. Again for finding the edge congestion on Ck,
1 ≤ k ≤ 2r2 we need one unit of time. Further, we need 2r2 units of time for finding the wirelength
by using Partition Lemma.

Hence the total time taken is = n+ 2r2 − 1 + 1 + 2r2

≤ 2n

Hence, the time taken to compute the exact wirelength of embedding Qr into C2r1 × P2r2 is O(n),
which is linear. �

Proceeding along the same lines, we can compute the exact wirelength of embedding Qr into
torus C2r1 × C2r2 , r1 + r2 = r and r1 ≤ r2 in linear time.

4 Concluding Remarks

In this paper, we prove the conjectures proposed by Manuel et al. [7] on exact wirelength of
embedding Qr into cylinder and torus. We provide a linear time algorithm to compute the exact
wirelength of embedding hypercube into cylinder and torus. We extend the results obtained for
2-dimensional cylinder and torus to n-dimensional cylinder [20] and n-dimensional torus [33] and
obtain the following results.

Theorem 4.1. Let G be an r-dimensional hypercube Qr and H be the n-dimensional cylinder
C2r1 ×P2r2 ×· · ·×P2rn , r1+r2+ . . .+rn = r and r1 ≤ r2 ≤ · · · ≤ rn. Then the minimum wirelength
of embedding G into H is given by

WL(G,H) =

n∑

i=1

2r−ri(22ri−1 − 2ri−1) +
n∑

i=1

2r−ri(3 · 22ri−3 − 2ri−1). �

Theorem 4.2. Let G be an r-dimensional hypercube Qr and H be the n-dimensional torus C2r1 ×
C2r2 × · · · × C2rn , r1 + r2 + . . .+ rn = r and r1 ≤ r2 ≤ · · · ≤ rn. Then the minimum wirelength of
embedding G into H is given by

WL(G,H) =

n∑

i=1

2r−ri+1(3 · 22ri−3 − 2ri−1). �
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