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A local HNC/HNC approximation is proposed and applied to 2:2 electrolytes near a charged 

hard wall. The results are compared with Monte Carlo data and other theories such as HNC/ 

HNC, HNC/MSA, BGY, and MPB5. A remarkable improvement of the density profiles and 

ofthe diffuse layer potential is obtained. We show that the HNC closure for the ion-ion 

correlations, when used in the local scheme, always gives better results than those obtained 

from the MSA closure. The necessary algorithm for solving the local HNC/HNC equations is 

also presented. 

I. INTRODUCTION 

The electrode/electrolyte solution interface or "double 

layer," a great problem in electrochemistry, has been studied 

by statistical mechanic methods mainly with a very simple 

model, the so-called primitive model (PM). In this model 

the ions are assumed to be hard spheres with embedded point 

charges, the solvent is simulated by an inert continuum with 

a dielectric constant E and the electrode is regarded as a 

smooth impenetrable wall with a uniform charge density UJ. 

The use of the model in a Monte Carlo simulation with the 

correct choice of parameters is successful in describing the 

thermodynamic behavior of simple aqueous electrolyte solu­

tions. 1 

The theoretical investigations of the primitive model 

double layer have recently been collected by Carnie and Tor­

rie.2 The earliest approaches go back to the pioneering works 

of Gouy,3 Chapman,4 and Stern.5 They decribed the double 

layer structure using the Poisson-Boltzmann equation for 

the mean electrostatic potential and introducing the ionic 

size only to define a distance of closest approach to the 

charged surface. 

The recent approaches are instead based on the integral 

equation theories of liquid state physics. These can be classi­

fied into three broad groups: the hypernetted chain 

(HNC),6,7 the Born-Green-Yvon (BGY),8,9 and the modi­

fied Poisson Boltzmann (MPB) 10 based theories, all of 

which account for the finite ion size and for the correlations 

between the ions. These two aspects will produce, for certain 

values of the electrolyte bulk density and of the electrode 

charge density, an oscillatory behavior in the density profile 

near the surface, a feature never shown by the Stern-Gouy­

Chapmann theory. 

The Monte Carlo simulations that will constitute our 

experimental background have been performed by the group 

ofTorrie and Valleau. 2,11 The quantities usually determined 

are the ion density profiles, Pa (z), the mean electrostatic 

potential, t/J(z), and the differential capacitance, CD' 

For the 1: 1 electrolytes the agreement between the var­

ious theories and the Monte Carlo data is good only for re­

gions of small surface charge density but it even deteriorates 

gradually when decreasing the electrolyte bulk density from 

2 to 0.01 M. For the 2:2 electrolytes no theory so far was able 

to reach a quantitative success 12 and consequently this sys­

tem appears to be a severe test for any theoretical approach. 

In what follows we concentrate only on HNC-based the­

ories. The HNC theory divides into two branches, HNC/ 

MSA and HNC/HNC, according to the approximation 

scheme used to describe the particle-particle correlations 

inside the electrolyte solution. The wall-particle correla­

tions are described in both cases by the HNC closure of the 

otherwise exact Ornstein-Zernike equation for nonuniform 

systems. 

The HNC-theories for the double layer start from the 

integral equations for the ion density profiles6,7: 

Pa(z) =p!Ulk exp{ - Va (z)/kBT 

+ ~ J dr l [ Pp (r l ) - p~Ulk]CaP (r,r l ) } (l) 

in which Va (z) is the external potential due to the charged 

surface. Equation (1) can be solved iteratively, when the 

direct ion-ion correlation functions caP (r,r l ) are known. 

The caP are required throughout the strongly inhomogen­

eous region near the electrode surface. Previously these ion­

ion correlations have been approximated by those of the neu­

tral bulk electrolyte of density pB = {p!ulk}: 

(2) 

In homogeneous systems, the caP can be evaluated analyti­

cally in the mean spherical approximation (MSA) and nu­

merically in the HNC approximation. In general, the HNC 

approximation gives the better structure. 13,14 Therefore the 

expectation is that the HNC/HNC must provide a better 

description than the HNC/MSA of the double layer. How­

ever, we know that for both 1: 1 and 2:2 electrolytes this is 

never so (see Figs. 2 and 5 of Ref. 12), At elevated surface 

charge densities both procedures fail to describe the layering 

of the counterions in the 1: 1 electrolytes.2 In the 2:2 case the 

disagreement with Monte Carlo density profiles has been 

found also for low charge densities,12 At higher surface 

charges no solutions have been obtained for the HNC/HNC 

equations. 

All these shortcomings can be traced back to the ap­

proximation of Eq. (2). An idea to improve it is provided by 

introducing a "local density" concept. 15- 17 The particle-
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particle direct correlations are evaluated for the composition 

of the system in the double layer region, where there are 

nearly only ions of one kind and the ionic surrounding is 

strongly different from that of the neutral bulk system. 

Then, the essential step in the local HNC/MSA and HNC/ 

HNC approximations is 

cap(r,rl)~ca.B( Ir - rll;p(z». (3) 

CaP ( Ir - rll;p(z», assumed spherically symmetric, is now 

taken from nonneutral homogeneous systems of local com­

position p(z) = {Pa(z)}.17.18 The densities p+(z) and 

p-(z) are evaluated averaging the density profiles Pa (z) 

around z. A similar idea has been recently used by Tara­

zona 19 and by Curtin and Ashcroft2° to describe the freezing 

transition of hard spheres, which is another example of a 

strongly varying density situation. 

In this paper we investigate a 2:2 electrolyte using the 

local HNC/HNC approximation. All the unwanted features 

(poor agreement with Monte Carlo data ofthe diffuse layer 

potential, bad description of the coion density profile near 

the electrode and break down in the solution of the HNC/ 

HNC equations) shown by the HNC/MSA and HNC/ 

HNC approximations are eliminated. We will also show de­

finitely that the local HNC/HNC scheme has to be preferred 

over the local HNC/MSA approximation, the main reason 

being the better description of the particle-particle correla­

tions in homogeneous systems by the HNC method. 

In Sec. II we give the equations of the theory and we 

define the averaged densities Pa (z), whereas the necessary 

algorithm for the solution of the equations is described in 

Sec. III. Section IV is devoted to the comparison of the 

Monte Carlo data with the local HNC/HNC results. A com­

parison with the HNC/MSA and HNC/HNC results is also 

presented. The conclusions are given in Sec. V. 

II. LOCAL HNC/HNC EQUATIONS 

The equilibrium densities, P a (r), in a nonhomogeneous 

multicomponent system in the presence of an external field 

can be expressed by the exact equation7
•
16

: 

Pa (r) = PaD (r)exp{ - [Ua (r) - UaO (r)]/kB T 

where 

+ ~f dA f drlcaP 

app(rl;A.) 
X (r,r l ; [p(A)]) ----'--­

aA 

ua(r) = Va(r) -Ita' 

(4) 

Here Va (r) is the interaction potential between the ion a 
and the external field andpa is the chemical potential. A is a 

parameter to vary the density profilepa (r;A.) from the initial 

state paO(r) (A =0) to the final state Pa(r) (A = 1). 

cap (r,rl; [p(A) 1) is the direct correlation function between 

ions of species a and{J, at position rand r l, respectively, and 

it is a functional of the density profilesp (A). kB is the Boltz­

mann constant. 

If we consider an electrolyte in front of a planar charged 

hard wall and if we choose the initial conditions: 

VaO(r) =0, paO(r) =p~ 

and a linear integration path21 

Pa(A) =p~ +A [Pa(r) -p~] 

we can rewrite Eq. (4) in the form 16 

B { Za
e 

Pa (z) = Pa exp - - t/J(z) 
kBT 

+ ~ f drl[pp(zl) -pg] 

X f dAC~~(r,rl;[p(A)])}' z>u/2 

Pa(z) =0, z<u/2 (5) 

which is still an exact equation. z is the distance from the 

wall, u is the ionic diameter, Za are the valences, e is the 

electronic charge, and r = (0,0,z). c~ (r,r l; [p(A)]) are the 

short-range direct correlation functions defined by 

c~~(r,rl;[p(A)]) =cap(r,rl;[p(A)]) 

Za Z pe
2 

+--...:.....-.--:­
kBTElr - rll 

(6) 

t/J(z) is the mean electrostatic potential and it satisfies the 

Poisson equation: 

with the boundary conditions: 

411' 
t/J'(z) = - -w, z = 0, 

E 

t/J(z)-.o, z~oo, 

(7) 

(8) 

wherew is the charge density on the electrode. The boundary 

conditions are equivalent to the overall charge neutrality 

condition: 

(9) 

Integrating Eq. (7), t/J(z) can be put also in the form 

411' 1"" t/J(z) = - dy(z - y) L Zaepa (y) 
E Z a 

( 10) 

and it is the first moment of the charge distribution in the 

double layer region. 

Provided there is a scheme for the evaluation of the ion­

ion direct correlation functions [Eq. (6)], Eqs. (5) and (7) 

form a closed set of equations which in principle can be 

solved. In practice the behavior of 

f dA c!~ (r,r l ;[ p(A)]) (11) 

is unknown and we need some approximation for it. 

Previously this integral has been approximated by the 

direct correlation function determined at the homogeneous 

bulk densities pB, c~ (Ir - rll; pB). Knowing that near the 

charged wall the "local" composition of the electrolyte, 

Pa (z), is different from that in the bulk, p!, and that the 
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direct correlation functions depend on the density, we ap­

proximate the integral (11) in the following way: 

f dA. c!~(r,rl;[ p(A.) ])~c!~( Ir - r11;p(z». (12) 

Herep(z) = {oa (z)} are averaged densities around z. The 

ion-ion direct correlation functions are now evaluated for 

the homogeneous system of composition p + (z) and p _ (z). 

Pa (z) is defined by the equationl6 

- dy dx Pa (x), 
_ 2I:J.u Z - .1 Y - al2 

{

liZ + .1 fY + al2 

Pa (z) = 1 lZ+ .1 fY+ al2 

dy dXPa (x), 
(z+ l:J.)u 0 y-a12 

z<l:J.. 

(13) 

The first integration (integration over x) determines the lo­

cal mean density and the second averages it around the posi­

tionz. The criteria for the choice of the averaging range I:J. are 

discussed in the next section. 

Using in Eq. (5) the local approximation (12) and car­

rying out the integration parallel to the wall, the local HNC 

equations for the density profile then take the form 16.17 

B { Za e 
Pa (z) = Pa exp - - ",(z) 

kBT 

+21T~f_+0000 dy[pp(y) -P:J 

X (+00 dSSC!~(S;P+(Z)'P_(Z»}' z>u/2 
J1z- yl 

Pa (z) = 0, z < u/2. 

III. THE ALGORITHM FOR THE LOCAL HNC/HNC 
METHOD 

(14) 

For the numerical solution of the local HNC/HNC 

equations we proceed as follows. We define a grid of densi­

ties: 

(15) 

p_ =pl_ , ... ,p":.. . 

Typical chosen values for the density grid lie between zero 

and the close packed density for the counterion profile and 

between zero and two times the bulk density for the coion 

profile. 

We solve the bulk HNC equations for the homogeneous 

but nonneutral systems specified by all the pairs of densities 

in the grid. The method used by us is the mixing procedure of 

Ng22 which is one ofthe most reliable in our range of densi­

ties. 

The outputs obtained from the solution of the HNC 

equations are the short range direct correlation functions 

c!~ (z; pk+ 'P~ ) and from these we construct the integrated 

version needed in Eq. (14): 

CaP (Iz - YI; pk+ ,pL_ ) = 21T (+ 00 ds S cS; (S;pk+ ,r!:- ). 
J1Z- YI 

(16) 

We perform the calculation of CaP ( Iz - y I; pk+ ,p~ ) once 

and for all and store all the results in a matrix indexed by the 

density grid (15). By linear interpolation between the grid 

points, we will find Cap(lz - yl;p+(z),p_(z» for a given 

composition,p+ (z), p_ (z), of the system in the double lay­

er. Now, the iteration procedure to solve Eqs. (14) starts 

and we proceed as follows. 

We begin solving the modified Gouy Chapman (MGC) 

equations to get the input Pa (z) densities. We evaluate 

Pa (z) from Eq. (13). For each z, we select 

Cap (Iz - YI; p+ (z),p_ (z» by linear interpolation between 

the grid points of the stored matrix Cap ( Iz _ y I; pk+ ,p~ ) 

and determine the convolution integrals in Eq. (14). The 

mean potential ",(z) is evaluated from Poisson's equation 

(7) by Runge-Kutta method satisfying the boundary condi­

tions (8) and it is added to the convolution integrals. New 

values of p a (z) are obtained from Eq. ( 14) and they become 

the input of the next iteration step. More precisely the iter­

ation scheme is 

{

liZ + .1 fY + al2 

-- dy dxp~")(x) 
-en) 2I:J.u z-b. y-al2 

Pa (z) = 1 lZ+b. fY +al2 ' 

dy dxp~n)(x) 
(z+l:J.)u 0 y-a/2 

CaP(lz-yl;p~)(z),p~)(z» from a linear interpolation 

procedure between the grid points of the matrix 

Cap ( Iz _ yl;pk+ ,p~ ), 

q; ~n) (z) = ~ f-+ 0000 dy[ p~n)( y) - P: J 

X Cap (Iz - YI; p~) (z), p~) (z», 

",(n) (z) from the Poisson's equation 

","(n)(z) = - 41T I Zaep~n)(z), 
E a 

p~n+l)(z) =p! exp{ _ ~:;",(n)(z) +q;~n)(z)}. 

For an electrolyte of given bulk density, the I:J. parameter 

is determined only by fitting the diffuse layer potential to the 

Monte Carlo data at the highest surface charge. This value is 

used along the whole OJ range. For the 0.5 and 0.05 M 2:2 

electrolytes we have found, respectively, I:J. = 1.5u and 

I:J. = 4u. We note that these values scale proportional to the 

Debye-Hiickellength as has been proposed in Refs. 16 and 

17. 

The algorithm is quickly performed and after::::: 10 iter­

ations we reach a convergence of 

{
I SaL I p~ut(z) p:!'(z) 12} 112 -I dz ----- <lOS 
LaO p! p! 

in which L is the maximum distance from the wall up to 

which all functions have been evaluated. We have chosen L 

equal to 10 Debye-Hiickellengths. The total charge neutra­

lity [Eq. (9)] is satisfied within 1 %. The contact value of 

the density, given in the HNC/HNC approximation by7 
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xL" dt t 2C~~ (t; pB) 

has generally a deviation less than 1 %. 

IV. RESULTS 

We now present the application of the local HNC/HNC 

approximation to 2:2 electrolytes and test the accuracy of 

our scheme by comparing the theoretical results with the 

Monte Carlo simulations for the 0.5 and 0.05 M systems. 

The values of the fixed parameters used in both the Monte 

Carlo simulations and our calculations are: T = 298 K, 

E = 78.5, u = 4.25 A. All the results will be expressed by the 

dimensionless units "p*(z)=e"p(z)/kB T and w*=~w/e. 

The distances from the wall are in units of u with the origin 

at the wall. 

In Fig. 1 are shown the theoretical results of the local 

HNC/HNC, local HNC/MSA, HNC/HNC, and HNC/ 

MSA schemes and the Monte Carlo data for the diffuse layer 

potential "p*(u/2) vs the surface charge density w* for two 

bulk concentrations. The good agreement of the local HNC/ 

HNC results with those from the simulation data is evident, 

especially for the 0.05 M case. In contrast to the HNC/HNC 

we do not obtain any break down in the solution of the equa­

tions at elevated w*. 

From Fig. 1 we also see that the local HNC/HNC re­

sults are always in better agreement with simulation data 

than the local HNC/MSA results, the trend being verified 

for the 1: 1 and 2: 1 electrolytes, too (see Refs. 16 and 17). 

With the introduction of the proper local densitiesPa (z) for 

the evaluation of the homogeneous direct correlation func­

tions, the different results of the local HNC/HNC and local 

HNC/MSA approximations are simply reflecting the differ­

ent ability of c;;}r and c~:c to describe the ion-ion correla­

tions in nonneutral homogeneous systems. We conclude that 

the local scheme eliminates any fortuitous cancellation of 

errors, which previously produced HNC/MSA results bet­

ter than HNC/HNC. 12 

1.6 

1.2 

0.8 

~: ... : .. " .~.--/' .... ~ ' ..... . / .... , .......... 

'/ ". 
V \". . , .... 

0.4 

O+--r-.-.--.-~~~··~ 

o 0.1 0.2 0.3 w' 

FIG. 1. Diffuse layer potentiall/J*(u/2) as a function of the surface charge 

density w* for 2:2 electrolytes.- local HNC/HNC, --- HNC/HNC, -.-.­

local HNC/MSA, ... HNC/MSA, .. MC data from Ref. 12. 

ljJ.(~) -.----------

2.5 

2.0 

1.5 

1.0 

0.5 

o 

- 0.5 +-.---,----.--,---,---.----r-~ 
o 0.5 1.0 1.5 w· 

FIG. 2. Diffuse layer potentiall/J* (u/2) as a function of the surface charge 

density w* for 2:2, O.S M electrolyte in the local HNC/HNC scheme for 

extremely high charges ... MC data from Ref. 12. 

In the relatively small w* region explored, the excluded 

volume effects such as layering in the counterion profile are 

playing no role because the ions (doubly charged) are very 

effective in screening the electrical charge on the wall. The 

only gross visible feature in the region of small w* in Fig. 1 is 

a maximum in the "p*(u/2) functions. As w* is gradually 

increased from the zero value, the electrolyte system first of 

all builds a plane of ions with a charge opposite to that on the 

electrode (counterions) (Fig. 6). Increasing w* towards the 

maximum in "p* (0/2), it builds an inversely charged region 

(Fig. 3). As w* continues to increase, so does the extent of 

this charge inversion (Fig. 4), leading to a decrease of"p* (u / 

2). The charge inversion is very evident in the 2:2 electro­

lytes because the strong correlation between the doubly 

charged ions drags into the double layer more ions with the 

same charge as the electrode (co-ions), than in the 1: 1 case. 

At very high surface charge density (Fig. 2), the pack­

ing effects will come into the play. The first layer gets filled 

with counterions, the double layer region will expand and 

3 

2 

2:2/0.5M 
w· = 0.17 
- loco I HNC/HNC 
---- HNC/HNC 
...... HNC/MSA 
•••• Me 

OT--T~r-.--.--.-.--'--

o 2 3 z/o 

FIG. 3. Ion density profiles Pa (z)/p! for the 2:2 electrolyte at 0.5 M and 

w* = 0.17. MC data from Ref. 2. 
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~~--~~~~----~ 
nB 2 :2/0.5M 
.., w·= 0.24 

- local HNC/HNC 
2.5 ---- HNC/HNC 

...... HNC/MSA 

····Me 

2.0 

1.5 

10 

0.5 

o.+--F~~--~~~~~ 

0. 2 3 z/a 

FIG. 4. Ion density profiles Pa (z)/p! for the 2:2 electrolyte at 0.5 M and 

w* = 0.24. MC data from Ref. 12. 

t/!*«(7/2) will rise again. This behavior is predicted only by 

the local HNC/HNC method and it would be desirable to 

have MC data for these extreme surface charge densities. 

The density profiles for two 0.5 M systems are shown in 

Figs. 3 and 4. In Fig. 3 the electrode charge density w* is 

0.17, whereas in Fig. 4 it is 0.24, the highest charge for which 

there are Monte Carlo data. From Fig. 3 we see that the local 

HNC/HNC is decreasing the height of the coion profile that 

is usually overestimated by the HNC/HNC approach. This 

behavior is more evident in Fig. 4. Here, the first maximum 

in the coion profile is strongly reduced with respect to the 

HNC/HNC and the minimum in the counterion profile is a 

little depressed. As a result, good agreement with the Monte 

Carlo data is obtained also for the potential t/!* (z). Thus, the 

local HNC/HNC scheme recognizes that fewer coions are 

near the counterions compared to the bulk situation. In Figs. 

3 and 4 are also shown the HNC/MSA results. In this case it 

is evident that the introduction of a local HNC/MSA ap­

proximation, with its decreased ( + - ) correlations, will 

move the density profiles in the wrong direction.23 

In Fig. 5 we show the mean electrostatic potential pro-

'+'*(z),,.------------. 

0.5 

0..3 

0..1 

-0.1 

2 :2/0..5M 
w* =0.17 
- local HNC/HNC 

---- HNC I HNC 
.. ····HNC/MSA 
••• Me 

-o..3H---.--.--,-.---.---,--.,-----1 
0. 2 3 z/a 

FIG. 5. Mean potential profile r{!*(z) for the case of Fig. 3. MC data from 

Ref. 2. 

file, t/!*(z), for the 0.5 M andw* = 0.17 case. Thenonmono­

tonic behavior of the mean potential due to the charge inver­

sion (Fig. 3) is reproduced. 

The density profiles for the 0.05 M cases are shown in 

Figs. 6 and 7. In Fig. 6 w* = 0.0975. For this small charge 

density there is no charge inversion. The agreement of the 

local scheme with the simulation data is remarkable. In Fig. 

7 are presented the density profiles for the increased charge 

density w* = 0.284. The MC data show a maximum in the 

co-ion profile around z = 2(7 and from this point on the pro­

files for both kinds of ions are very close to each other. This 

means that beyond two ionic diameters from the wall the 

system is locally neutral. The mean potential profile (Fig. 8) 

is reflecting this curious behavior and it reaches a value of 

almost zero at this same z distance. The local HNC/HNC 

approximation again follows closely the Monte Carlo data. 

In the literature, for the 2:2 systems there are also some 

results coming from the MPB5 theorylO and the BGY the­

ory.9 The MPB5 theory fails in describing the maximum in 

the diffuse layer potential vs w* and the agreement of the 

BGY theory with the Monte Carlo data is also not as good as 

in our calculations. 

We conclude that in the local HNC/HNC approxima­

tion all three quantities, t/!:12 (w*), t/!* (z), and P a (z), are, at 

the same time, following closely the Monte Carlo data as 

they indeed must. 

V. CONCLUSIONS 

In this paper we have developed and extensively applied 

the local HNC/HNC approximation to 2:2 electrolytes near 

a charged wall. The results are accurate for the range of 

parameters explored, i.e., for the reduced electrode charge 

density w* lying in the interval 0-0.4 and for the 0.5 and 0.05 

M densities. The published Monte Carlo simulations avail­

able for comparison are in this range. 

The Monte Carlo density profiles are well reproduced 

by the theory. No over or under estimation of the coion pro­

file and no break down in the solution of the equations are 

present. The diffuse layer potential results plotted against 

the surface charge correctly describe the maximum shown 

by the simulation, which, from the structural point of view, 

indicates the presence of an inversely charged region. The 

q(z) -r-----;-;-r---,----------, 
~4 2:210.05M 

3 

2 , , 
I \ 

2 

w· = 0.0975 
-- local HNC/HNC 
---- HNC/HNC 
...... HNC/MSA 

3 4 z/a 

FIG. 6. Ion density profilespa (z)/p! for the 2:2 electrolyte at 0.05 M and 

w* = 0.0975. Me data from Ref. 12. 
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3 

2 

2:210.05M 
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FIG. 7. Ion density profilespa (z)/p! for the 2:2 electrolyte at 0.05 M and 

w· = 0.284. MC data from Ref. 2. 

good performance of the local approximation is also reflect­

ed in the mean potential results. 

The success of the method is due to the evaluation of the 

direct correlation functions at averaged densitiesPa (z) that 

in the double layer are different from the bulk densities. This 

improvement becomes more and more effective for higher 

values of the charge density on the electrode. In the low (i)* 

region, the deviation ofPa (z) from the bulk densitiesp! is 

small, and we recover the already good results of the stan­

dard schemes. 

The local HNC/HNC results are better than the local 

HNC/MSA results, as has also been verified for the 1: 1 and 

1:2 electrolytes. 16,17 This systematic analysis of the three sys­

tems indicates, in our opinion, the absence of any accidental 

error compensation. 

The averaging parameter Il. is the only parameter intro­

duced into the theory. At each bulk concentration, Il. is fixed 

by fitting the Monte Carlo result for the diffuse layer poten­

tial at the highest surface charge. The values so obtained 

agree with an empirical scaling rule based on the Debye-­

Huckel screening length (see Refs. 16 and 17), which allows 

a systematic extension of the averaging procedure to systems 

where no MC data are available. 

We note that other averaging procedures leading to 

Pa (z) have been suggested for simple liquids (see Refs. 19 

and 20). Work in this direction for the double layer is in 

progress. 
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