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Abstract In the present study we have explored the time dependent combined convectional
flow on a rotating cone in a rotating Jeffrey fluid with the combined effects of heat and mass
transfer. The governing equations of motion, energy and mass transfer for unsteady flow are
presented and simplified using similar variables. The reduced coupled nonlinear differential
equations are solved analytically with the help of strong analytical technique homotopy
analysis method. The heat transfer analysis for prescribed wall temperature is considered.
Numerical results for Nusselt number and Sherwood number have computed and discussed.
The physical features of pertinent parameters are discussed by plotting the graphs of velocity,
heat transfer, concentration, skin friction, Nusselt number and Sherwood number.
& 2017 National Laboratory for Aeronautics and Astronautics. Production and hosting by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Recently, the study of non-Newtonian fluids has found
much importance due to their extensive use in many real
world applications. Such application include food mixing
and chyme movement in the intestine, polymer solutions,
paint, flow of plasma, flow of blood, flow of nuclear fuel
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slurries, flow of liquid metals and alloys, flow of mercury
amalgams and lubrications with heavy oils and greases. In
the history of fluid mechanics there is not a single model
which exhibits all the properties of non-Newtonian fluids
therefore, many mathematical models possessed different
physical characteristics exist. However, Jeffrey fluid model
is a simple non-Newtonian fluid model which present the
relaxation and retardation effects. Some studies on the
Jeffrey fluid models are given in the Refs. [1–7].

Mixed convection flow is another important subject which
has attracted the attention of various researchers due to its
fundamental applications. Solar central receivers exposed to
68
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70ction and hosting by Elsevier B.V. This is an open access article under the

dependent flow on a rotating cone in a rheological fluid, Propulsion and
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Figure 1 Physical model and coordinate system.

Nomenclature

T ;C;D temperature, concentration and mass diffusivity,
respectively

Cfx;Cfy local skin friction coefficients in the x and y direc-
tions, respectively

f ; g dimensionless stream function, velocity components
in x- and y-directions, respectively

Gr1;Gr2 Grashof numbers due to temperature and concentra-
tion distributions, respectively

K;L thermal conductivity and characteristic length
respectively

N ratio of the Grashof number
Nux local Nusselt number
Pr; Sc Prandtl and Schmidt numbers respectively
ReL;Rex Reynolds number based on length L and x

respectively
Shx local Sherwood number

t; t� dimensional and dimensionless times, respectively
u; v;w velocity components in the x; y and z- directions,

respectively
x; y; z distances measured along meridional section circular

section and normal to the cone surface, respectively
α� semi-vertical angle of the cone
ξ; ξ� volumetric coefficients of the thermal and concentra-

tion expansions, respectively
η similarity variable
θ;ϕ dimensionless temperature and concentration,

respectively
γ1; γ2 buoyancy parameters due to the temperature and

concentration gradients, respectively
υ; μ dynamic and kinematic viscosity respectively
ρ density
A; λ1 Deborah number and ratio of relaxation to retardation

time, respectively.

S. Saleem et al.2
wind currents, electronic devices cooled by fans, nuclear
reactors cooled during emergency shutdown, heat exchangers
placed in a low velocity environment are some of the
applications of mixed convection flow [8]. The study of
convective heat transfer in a rotating flows over a rotating
cone is also very important phenomena for the thermal design
of various types of equipment's such as rotating heat
exchanger, spin stabilized missiles, containers of nuclear waist
disposal and geothermal reservoirs. In the existing work, a
vertical cone is placed in a non-Newtonian fluid with the axis
of the cone being in line with the external flow is explored.
Initially Hering and Grosh [9] have discussed a number of

similarity solutions for cones. Himasekhar et al. [10] presented
the similarity solution of the mixed convection flow over a
vertical rotating cone in a fluid for a wide range of Prandtl
numbers. All the above mentioned works refer to steady flows.
In many practical problems the flows are unsteady due to the
angular velocity of the spinning body which varies with time
or due to the free stream angular velocity which varies with
time. Ece [11] develops the solution for small time for
unsteady boundary layer flow of an impulsively started
translating a spinning rotational symmetric body. Roy and
Anilkumar [12,13] have investigated the self and semi-similar
solutions of an unsteady mixed convection flow over a
rotating cone in a rotating viscous fluid.
Boundary layer on a rotating cones, discs and axisymmetric

surfaces with a concentrated heat surface has been given by
Wang [14]. Mixed convection flow about a cone in a porous
medium has been discussed by Yih [15]. Further, Chamkha
and Rashad [16] discussed unsteady heat and mass transfer by
MHD mixed convection flow from a rotating vertical cone
with chemical reaction and soret and dufour Effects.
In general it is challenging to handle nonlinear problems,

especially in an analytical way. Perturbation techniques like
Variation of iteration method (VIM) and homotopy perturba-
tion method (HPM) [17,18] were frequently used to get
solutions of such mathematical investigation. These techniques
Please cite this article as: S. Saleem, et al., A mathematical analysis of time
Power Research (2017), http://dx.doi.org/10.1016/j.jppr.2017.07.003
are dependent on the small/large constraints, the supposed
perturbation quantity. Unfortunately, many nonlinear physical
situations in real life do not always have such nature of
perturbation parameters. Additional, both of the perturbation
techniques themselves cannot give a modest approach in order
to adjust or control the region and rate of convergence series.
Liao [19] presented an influential analytic technique to solve
the nonlinear problems, explicitly the homotopy analysis
method (HAM) [17–28]. It offers a suitable approach to
control and regulate the convergence region and rate of
approximation series, once required.

The objective of the present paper is to discuss the analytical
study of unsteady mixed convection flow of a rotating Jeffrey
fluid in a rotating cone. The highly nonlinear coupled partial
differential equations of Jeffrey fluid model along with heat and
mass transfer are simplified by using suitable similarity
dependent flow on a rotating cone in a rheological fluid, Propulsion and
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transformations and then solved analytically with the help of
analytical technique, homotopy analysis method (HAM). The
physical features of pertinent parameters are seen and discussed
through various graphs. Final remarks are presented at the last.
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2. Mathematical formulation

Let us consider an unsteady non-dissipative incompressible
flow of Jeffrey fluid over a rotating cone in a rotating fluid.
The time dependent rotation of the cone as well as fluid about
the axis of cone is responsible for the unsteadiness in the flow.
The system is considered as axisymmetric and fixed. The wall
temperature Tw and wall concentration Cw are functions of x:
The geometrical model is defined as Figure 1.

In the physical model Ω1 and Ω2 are the unsteady rotations,
α� is the angle, u, v and w are velocities along x, y and z-axis,
Tw is the wall temperature, qw is the wall heat flux. The
constitutive expressions in a Jeffrey fluid satisfy

T ¼ −PI þ S:

S¼ μ

1þ λ1
ðγ ̇þ λ2γ ̈Þ

in which P denotes the pressure, I is the identity tensor, μ is
the dynamic viscosity, λ1 is the ratio of relaxation and
retardation times, λ2 is the retardation time,

γ ̇¼ gradVð Þ þ ðgradVÞT

γ ̈¼ d

dt
ðγ ̇Þ;

in which V is the fluid velocity and d=dt is the material
derivative. The boundary layer equations of momentum,
energy, temperature and concentration for an incompressi-
ble Jeffrey fluid in the presence of gravity are

x
∂u
∂x

þ uþ x
∂w
∂z

¼ 0; ð1Þ

∂u
∂t

þ u
∂u
∂x

þ w
∂u
∂z

−
v2

x
¼−

ve2

x
þ υ

1þ λ1

∂2u
∂z2

þ υλ2
1þ λ1

u ∂3u
∂z2∂x þ ∂w

∂z
∂2u
∂z2 þ ∂2u

∂x∂z
∂u
∂zþ

w ∂3u
∂z3 þ ∂3u

∂z2∂t

8<
:

9=
;

þ gξ cos α� T−T∞ð Þ þ gξ� cos α� C−C∞ð Þ ð2Þ

∂v
∂t

þ u
∂v
∂x

þ w
∂v
∂z

þ uv

x
¼ ∂ve

∂t
þ υ

1þ λ1

∂2v
∂z2

þ υλ2
1þ λ1

∂3v
∂z2∂t þ u ∂3v

∂z2∂xþ
∂u
∂z

∂2v
∂x∂z þ w ∂3v

∂z3 þ ∂w
∂z

∂2v
∂z2

8<
:

9=
;; ð3Þ

∂T
∂t

þ u
∂T
∂x

þ w
∂T
∂z

¼ α
∂2T
∂z2

; ð4Þ

∂C
∂t

þ u
∂C
∂x

þ w
∂C
∂z

¼D
∂2C
∂z2

: ð5Þ
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In the above equations u, v and w are velocity compo-
nents along x, y and z-axis respectively, T is the tempera-
ture, C is the concentration, gβ cos α comes due to effects of
gravity, k is the thermal diffusivity and D represents mass
diffusivity, α� is the semi-vertical angle of the cone, ν is the
kinematic viscosity, ρ is the density, β and β� are the
volumetric co-efficient of expansion for temperature and
concentration respectively, C∞ and T∞ are the free stream
concentration and temperature, ve is the free stream
velocity. The initial conditions and the boundary conditions
for this problem are given by Ref. [13].

Defining the following transformations for prescribed
wall temperature (PWT) case:

υe ¼Ω2x sin α
� 1−st�ð Þ−1;

η¼ Ω sin α�

υ

� �1
2

1−st�ð Þ−12 z;

α1 ¼
Ω1

Ω
t� ¼ Ω sin α�ð Þt;
u t; x; zð Þ ¼ −2−1Ωx sin α� 1−st�ð Þ−1f ′ ηð Þ;
v t; x; zð Þ ¼Ωx sin α� 1−st�ð Þ−1g ηð Þ;
w t; x; zð Þ ¼ υΩ sin α�ð Þ12 1−st�ð Þ−12 f ηð Þ;
T t; x; zð Þ−T∞ ¼ Tw−T∞ð Þθ ηð Þ;
Tw−T∞ð Þ ¼ T0−T∞ð Þ x

L
1−st�ð Þ−2;

C t; x; zð Þ−C∞ ¼ Cw−C∞ð Þϕ ηð Þ;
Cw−C∞ð Þ ¼ C0−C∞ð Þ x

L
1−st�ð Þ−2;

Gr1 ¼ gβ cos α� T0−T∞ð Þ L
3

υ2
;

ReL ¼Ω sin α�
L2

υ
;

γ1 ¼
Gr1
ReL2

; Pr ¼ υ

α
; Sc¼ υ

D
; N1 ¼

γ2
γ1

;

Gr2 ¼ gβ cos α� C0−C∞ð ÞL
3

υ2
; γ2 ¼

Gr2
ReL2

;

A¼ λ2Ω sin α� 1−st�ð Þ−1; ð6Þ

Where γ1 and γ2 are the buoyancy parameters, A is the
Deborah number. The continuity Eq. (1) is identically
satisfied and Eqs. (2) and (5) with boundary conditions
for PWT case are

1
1þ λ1

f ′′′− f þ 1
2
sη

� �
f ′′ þ 1

2
f ′−s

� �
f ′−2ðg2−ð1−α1Þ2Þ−2γ1 θ þ N1ϕð Þ

þ A

1þ λ1

1
2
f ′f ′′′ þ 1

2
sηf iv−

1
2
f ′′

2 þ f f iv þ 2sf ′′′
� �

¼ 0 ð7Þ

1
1þ λ1

g′′− f g′−gf ′
� �þ s 1−α1−g−

1
2
ηg′

� �

−
A

1þ λ1
2sg′′ þ 1

2
sηg′′′ þ 1

2
g′′f ′−

1
2
f ′′gþ f g′′′

� �
¼ 0;

ð8Þ
dependent flow on a rotating cone in a rheological fluid, Propulsion and
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Figure 2 ℏ-curve of −f ′′ð0Þ, −g′ 0ð Þ;−θ′ 0ð Þ and −ϕ′ 0ð Þ at 20th approximation (PWT case).

Table 1 Convergence of HAM solution for different order of
approximations.

Order of convergence −f ″ð0Þ −g′ð0Þ −θ′ð0Þ −ϕ′ð0Þ

1 2.768 0.264 1.6444 1.53333
5 2.82153 0.5467 1.76784 1.53577
10 2.82719 0.5417 1.76802 1.53565
12 2.82654 0.5413 1.7679 1.53556
15 2.82656 0.5411 1.7679 1.53556
20 2.82644 0.5410 1.76789 1.53556
25 2.82644 0.5410 1.76789 1.53556

S. Saleem et al.4
1
Pr

θ′′− f θ′−f ′
θ

2

� �
−2sθ þ 2−1sηθ′ ¼ 0; ð9Þ

1
Sc

ϕ′′− fϕ′−f ′
ϕ

2

� �
−2sϕþ 2−1sηϕ′ ¼ 0: ð10Þ

f 0ð Þ ¼ 0¼ f ′ 0ð Þ; g 0ð Þ ¼ α1; θ′ 0ð Þ ¼ ϕ′ 0ð Þ ¼ −1;
f ′ ∞ð Þ ¼ 0¼ f ″ ∞ð Þ; g ∞ð Þ ¼ 1−α1; g′ ∞ð Þ ¼ 0;
θ ∞ð Þ ¼ ϕ ∞ð Þ ¼ 0: ð11Þ

α1 is the ratio of the angular velocity of the cone and the
angular velocity of the fluid. α1 ¼ 0; implies that the fluid is
rotating and the cone is at rest, besides the fluid and the
cone are rotating with equal angular velocity in the same
direction for α1 ¼ 0:5: For α1 ¼ 1, the fluid is at rest and the
cone is in rotation. s is the unsteady parameter. The flow is
assisting if s is positive and the flow is opposing if s is
negative, N is the ratio of the grashof numbers. It has no
contribution for chemical diffusion, goes to infinity for the
thermal diffusion and shows a positive behavior when the
buoyancy forces due to temperature and concentration
difference act in the identical pattern and vice versa.
The local skin friction coefficients in tangential and

azimuthal directions for the PWT case are, respectively
given by

Cfx ¼
2τxz½ �z ¼ 0

ρ Ωx sin α� 1−st�ð Þ−1� �2 ; ð12Þ

Cfy ¼
2τyz
� �

z ¼ 0

ρ Ωx sin α� 1−st�ð Þ−1� �2 ; ð13Þ

Where

τxz ¼ μ

1þ λ1
½∂u
∂z

þ λ2 u
∂2u
∂x∂z

þ w
∂2u
∂z2

þ ∂2u
∂t∂z

� �
�z ¼ 0 ð14Þ

τyz ¼ μ

1þ λ1
½∂v
∂z

þ λ2 u
∂2v
∂x∂z

þ w
∂2v
∂z2

þ ∂2v
∂t∂z

� �
�z ¼ 0 ð15Þ

Invoking Eqs. (14) and (15) into Eqs. (12) and (13) and
then non-dimensionlizing, we obtain
Please cite this article as: S. Saleem, et al., A mathematical analysis of time
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Cf xRe
1
2
x ¼ 1

1þλ1
½−f ″þ A

2 f ′f ″−3sf ″þ 2f f ″′þ ηsf ″′ð Þ�η ¼ 0;

Cf yRe
1
2
x ¼ 1

1þλ1
½−g′− A

2 3sg′−f ′g′þ 2g″f þ sηg″ð Þ�η ¼ 0:

ð16Þ
The local Nusselt number and local Sherwood number

for the PWT case are as follow

NuxRe
−1
2

x ¼ −θ′ 0ð Þ;
ShxRe

−1
2

x ¼ −ϕ′ 0ð Þ:
ð17Þ

Where Rex ¼ x2Ω sin α�ð1−st�Þ−1
υ is the Reynolds number.
3. Homotopy analysis method

Eqs. (7)–(11) are solved by using homotopy analysis
method (HAM). This method was developed by Shijun
Liao in 1992. It is always valid no matter, whether there
exist small physical parameters or not (a requirement for
perturbation techniques). It is applicable for both weakly as
well as strongly nonlinear problems. It provides great
choice to select the base functions of solutions and
flexibility in determining the linear operators. Also it offers
a convenient way to guarantee the convergence of series
solutions. In this way HAM distinguishes itself from other
analytical techniques such as Adomain decomposition
dependent flow on a rotating cone in a rheological fluid, Propulsion and
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Figure 3 Residual errors for velocities, temperature and concentration, respectively.

A mathematical analysis of time dependent flow on a rotating cone 5
method, delta expansion method. Some studies on the
method are presented in Refs. [15–23].

We have chosen the following initial guesses and linear
operators respectively:

f 0 ηð Þ ¼ 0 ð18Þ
g0 ηð Þ ¼ exp −ηð Þ ð19Þ
θ0 ηð Þ ¼ exp −ηð Þ ð20Þ
ϕ0 ηð Þ ¼ exp −ηð Þ ð21Þ

The auxiliary linear operators are

ζf ηð Þ ¼ f ′′′−f ′ ð22Þ

ζg ηð Þ ¼ g′′−g ð23Þ

ζθ ηð Þ ¼ θ′′−θ ð24Þ

ζϕ ηð Þ ¼ ϕ′′−ϕ ð25Þ
To avoid the repetition just discussion is presented in the

coming section.
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110
111
112
4. Convergence of the analytical solutions

Obviously the series solutions obtained by homotopy
analysis method contain the convergence control parameter ℏ.
Please cite this article as: S. Saleem, et al., A mathematical analysis of time
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This parameter controls the convergence region and the rate of
approximation of the HAM solution. As pointed out by Liao
[17] to ensure the convergence of the solutions in the
admissible range of the values of the auxiliary parameters
ℏf ;ℏg;ℏθ and ℏϕ, one can draw the ℏ−curve for 20th order
approximations. It is evident from Figure 2(a) and (b) that the
admissible range of values of ℏf ;ℏg;ℏθ and ℏϕ are −1:2r
ℏf r−0:3;−1:3rℏgr−0:4; −1:4rℏθr−0:3; −1:1r
ℏϕr−0:3: The convergence Table 1 is prepared for each of
the function up to 25th order of approximations. Residual
errors for velocity, temperature and concentration are also
shown in Figure 3(a), (b), (c) and (d).
5. Results and discussion

The main purpose of this section is to present the
solutions of the governing problem. For this the results
for PWT case are presented in Figures 4 to 9. Compar-
ison of present results with previous available results
[13] is presented in Table 2. The variation of Nusselt
number and Sherwood number for different parameters
is computed in Table 3. The influences of ratio of
angular velocities α1, ratio of the relaxation to the
retardation time λ1; buoyancy parameter γ1 and Deborah
number A on tangential velocity −f ′ðηÞ are plotted in
Figure 4(a)–(d), respectively. It is observed that
dependent flow on a rotating cone in a rheological fluid, Propulsion and
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Figure 4 (a) Influence of α1 on −f ′; (b) influence of λ1 on −f ′; (c) influence of γ1 on −f ′; and (d) influence of A on −f ′:

Figure 5 (a) Influence of N1 on −f ′′ð0Þ; (b) influence of λ1 on −f ′′ð0Þ; and (c) influence of A on −f ′′ð0Þ:

S. Saleem et al.6
tangential velocity decreases for A while it increases for
all other parameters. It is establish from Figure 4(a) that
when γ ¼ 0:5 the fluid and the cone are in rotation with
compatible angular velocity in the similar direction and
Please cite this article as: S. Saleem, et al., A mathematical analysis of time
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the flow is only due to the favorable pressure gradient
i.e. γ1¼1. For α140:5, the magnitude of velocity −f ′ðηÞ
increases on the other hand the variation reduces for
α1o0:5. It is found that for α1o0 the velocity field
dependent flow on a rotating cone in a rheological fluid, Propulsion and
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Figure 6 (a) Influence of A on g, (b) influence of α1 on g, (c) influence of γ1 on g, and (d) influence of λ1 on g:

Figure 7 (a) Influence of A on −g′ð0Þ, (b) influence of λ1 on −g′ð0Þ, and (c) influence of N1 on −g′ð0Þ:

A mathematical analysis of time dependent flow on a rotating cone 7
−f ′ðηÞ reaches asymptotically at the edge of the bound-
ary layer in an oscillatory style. Actually such oscilla-
tions occur due to the surplus convection of angular
momentum seems in the region of boundary layer.

In Figure 5(a)–(c) the variation of ratio of the buoy-
ancy forces N1, Deborah number A and ratio of the
Please cite this article as: S. Saleem, et al., A mathematical analysis of time
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relaxation to the retardation time λ1 on tangential skin
friction coefficient has been discussed. It is depicted from
the Figure 5(a) and (b), that tangential skin friction
coefficient increases by increasing N1 and Arespectively.
Physically, we can say that near the boundaries of cone
the temperature of the wall is greater than the temperature
dependent flow on a rotating cone in a rheological fluid, Propulsion and
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S. Saleem et al.8
of the fluid which ultimately increases the Gr2 as
compared to Gr1, thus larger N1 gives the larger skin
friction values. It is found that tangential skin friction
coefficient decreases as λ1 increases (see Figure 5(c)).
Figure 6(a)–(d) are devoted to see the variation of

Deborah number A, ratio of angular velocities α1, buoyancy
parameter γ1 and ratio of the relaxation to the retardation
time λ1 on azimuthal velocity gðηÞ, respectively. The
behavior of A, α1, γ1 and λ1 on azimuthal velocity gðηÞ
are opposite to that of tangential velocity −f ′ðηÞ: It is
observed from Figure 7(a)–(c) that with the increase in A
and N1, azimuthal skin friction coefficients increases, but
the behavior is opposite for λ1. Since the effects of Pr and
Sc on the velocity profiles in tangential and azimuthal
71
72
73
74
75

Figure 8 Influence of Pr on θ.

Figure 9 Influence of Sc on ϕ.

Table 2 Comparison of the results
�
−f ′′ 0ð Þ; −g′ 0ð Þ; −θ′ 0ð Þ; −ϕ′ 0ð Þ

	

HAM

λ1 α1 −f ′′ 0ð Þ −g′ 0ð Þ −θ′ 0ð Þ −ϕ′ð

1.0 0.0 0.63243 -0.63948 0.81920 0.95
0.25 1.31337 -0.22764 0.89010 1.02
0.50 1.84795 0.19805 0.93706 1.07
0.75 2.24658 0.62679 0.96560 0.11

3.0 0.0 3.79524 -0.59651 1.02862 1.18
0.25 4.31853 -0.13694 1.06525 1.22
0.50 4.73959 0.33554 1.09111 1.25
0.75 5.05950 0.81200 1.10711 1.27
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directions are comparatively small, the profiles are therefore
neglected.

Here Figure 8 is displayed for different values Pr on
temperature field θ. It is indicated that thermal boundary
layer thickness decreases for increasing values of Pr. This is
due to the fact that higher Prandtl number fluid has a lower
thermal conductivity which results in thinner thermal bound-
ary layer. The concentration profile ϕ is predicted to decrease
with increase in the values of Sc as shown in Figure 9.

It is depicted that our series solutions are in good
agreement with the numerical results reported by Anilkumar
[13] for viscous fluid (see Table 2). Table 3 presents the
numerical values of Nusselt number −θ′ð0Þ and Sherwood
number −ϕ′ð0Þ for various values of A, λ1; Pr and Sc
respectively. From the Table 3 it is clear that the Nusselt
number increases by increasing λ1 and Pr and decreasing by
an increase in A and Sc: Further we noted that the Sherwood
number is a decreasing function of A; Pr and Sc but
increases with an increase in λ1:
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with those of Anilkumar [13].

Numerical [13]

0Þ −f ′′ 0ð Þ −g′ 0ð Þ −θ′ 0ð Þ −ϕ′ 0ð Þ

066 0.63241 -0.63949 0.81922 0.95065
811 1.31339 -0.22765 0.89011 1.02812
977 1.84798 0.19806 0.93700 1.07977
130 2.24659 0.62679 0.96563 0.11132

645 3.79522 -0.59651 1.02869 1.18645
640 4.31854 -0.13691 1.06539 1.22639
442 4.73958 0.33552 1.09111 1.25444
224 5.05951 0.81201 1.10712 1.27223

Table 3 Values of Nusselt number and Sherwood number for
different parameters.

A λ1 Pr Sc −θ′ 0ð Þ −ϕ′ 0ð Þ

0 0.1 0.7 0.8 0.98151 1.04188
0.3 0.96159 1.0226
0.6 0.94601 1.00705
0.9 0.93327 0.99430
0.1 0 0.95890 1.01926

0.2 0.97211 1.03322
0.4 0.98289 1.04459
0.6 0.99176 1.05394

0.4 0.96984 1.28445
0.8 1.26921 1.26374
1.2 1.50904 1.25355
1.6 1.69413 1.24753

0.4 1.30587 1.23219
0.8 1.26921 1.19703
1.2 1.25023 1.17877
1.6 1.23869 1.16766

dependent flow on a rotating cone in a rheological fluid, Propulsion and
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A mathematical analysis of time dependent flow on a rotating cone 9
6. Conclusions

Unsteady mixed convection flow on a rotating cone
in a rotating non-Newtonian fluid has been investigated.
Homotopy analysis method is employed for the solutions of
the governing ordinary differential equations. The newly
calculated results are acknowledged to be in conventional
agreement with the formerly published results accessible in
the literature. The acquired results have promising applica-
tions in engineering and will now be available for
experimental verification to give confidence for the
well-posedness of this nonlinear boundary value problem.
The main points of the above study are as follow.

• The behavior of α1; γ1; A and λ1 on velocities
ð−f ′ðηÞ; gðηÞÞ are opposite.

• The effects of Pr is to reduces the thermal boundary layer.
• The influence of Sc is to decrease the concentration field ϕ.
• The local skin friction coefficients is an increasing

function of N1; A and γ1:
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