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Abstract: In this paper, we propose a mathematical model to assess the impacts of using face masks,

hospitalization of symptomatic individuals and quarantine of asymptomatic individuals in combating

the COVID-19 pandemic in India. We calibrate the proposed model to fit the four data sets, viz.

data for the states of Maharashtra, Delhi, Tamil Nadu and overall India, and estimate the rate of

infection of susceptible with symptomatic population and recovery rate of quarantined individuals.

We also estimate basic reproduction number to illustrate the epidemiological status of the regions

under study. Our simulations infer that the infective population will be on increasing curve for

Maharashtra and India, and settling for Tamil Nadu and Delhi. Sophisticated techniques of sensitivity

analysis are employed to determine the impacts of model parameters on basic reproduction number and

symptomatic infected individuals. Our results reveal that to curtail the disease burden in India, specific

control strategies should be implemented effectively so that the basic reproduction number is decreased

below unity. The three control strategies are shown to be important preventive measures to lower

disease transmission rate. The model is further extended to its stochastic counterpart to encapsulate

the variation or uncertainty observed in the disease transmissibility. We observe the variability in

the infective population and found their distribution at certain fixed time, which shows that for small

populations, the stochasticity will play an important role.

Keywords: COVID-19; deterministic and stochastic model; face mask; hospitalization; quarantine;

parameter estimation; sensitivity analysis
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1. Introduction

COVID-19 is wreaking havoc on the whole world at present, after its emergence in Wuhan in

December 2019 and then global spread since February 2020. It has been categorized as pandemic by

WHO. The disease, being caused by novel coronavirus (nCoV-SARS), is a new member of

coronavirus family. Though researchers are actively involved in exploring the virus and its

epidemiology, the knowledge about the disease is still very limited. This calls for scientific more

studies to explore and understand the mechanism behind spread of virus and examine the impact of

various pharmaceutical and non-pharmaceutical interventions. Mathematical modeling is one of the

important tool for exploring the underlying dynamics of a disease spread and proposing control

strategy when sufficient information about the disease is scarce. In an early study, Ferguson et al. [1]

explored the impacts of two different non-pharmaceutical interventions, mitigation and suppression,

and concluded that in case of mitigation, the implementation has to be for longer time period and also

is less effective than suppression.

The spread of COVID-19 cases across 216 countries has brought the world under serious threat [2].

As people patiently wait through the lockdowns imposed across different countries for the development

of an effective treatment strategy and the invention of a vaccine, it becomes imperative to forecast the

COVID-19 cases for designing effective strategies and policy to fight the pandemic, and heal the scars

that it is leaving behind on lives of the people as well as on the global economy [3].

SARS-CoV-2 is similar to the other respiratory pathogens in which airborne transmission occurs

by inhaling droplets loaded with SARS-CoV-2 particles that are emitted from infectious people when

speaking, coughing or sneezing [4, 5]. This is most likely to occur in poorly ventilated areas where

droplets or mist particles can accumulate and be inhaled [6–8]. Infection can also occur through the

mucous membranes of the head (eyes, nose and mouth), when SARS-CoV-2 particles are picked up on

the hands and then transferred to the head by face-touching behaviours. Strict adherence to physical

distancing, good hand hygiene, and trace and track have been weaponized to decrease the cumulative

number of registered COVID-19 cases. Such control measures can make significant delay to attain the

epidemic peak.

Medical or surgical face masks are associated with a higher degree of protection by blocking the

spread of respiratory droplets. This simple and inexpensive practice may significantly reduce the global

economic recession in this pandemic crisis. It is also possible that this low-level technology could

reduce the severe global economic impact of COVID-19 [9]. Stutt et al. [10] showed that use of face

masks in public could serve as a control measure to prevent inter-human transmission. The findings of

Chu et al. [11] suggested that optimum use of face masks, N95 or similar respirators, and eye protection

in public and health-care settings could confer additional benefit to decrease viral exposure.

The study of Ngonghala et al. [12] showed that the use of surgical face masks with efficacy more

than 70% in public could lead to the elimination of the pandemic if at least 70% of the residents of

New York state consistently use such masks in public. Eikenberry et al. [13] showed that broad

adoption of even relatively ineffective face masks may reduce community transmission of COVID-19

and decrease peak hospitalizations and deaths. Moreover, mask use decreases the effective

transmission rate in nearly linear proportion to the product of mask effectiveness and coverage rate,

while the impact on epidemiologic outcomes is highly nonlinear, indicating masks could synergize

with other non-pharmaceutical measures. Iboi et al. [14] showed that COVID-19 can be efficiently

Mathematical Biosciences and Engineering Volume 18, Issue 1, 182–213.



184

controlled using social-distancing measures provided its effectiveness level is at least moderate; the

use of face masks in the public can significantly reduce COVID-19 in Nigeria, its use as a sole

intervention strategy may fail to lead to the realistic elimination of the disease. The eradication of

disease requires unrealistic high compliance in face mask usage in the public, in the range of 80% to

95%. However, the findings of Okuonghae and Omame [15] showed that if at least 55% of the

population comply with the social distancing regulation and effectively making use of face masks

while in public, the disease will eventually die out. In addition, stepping up the case detection rate for

symptomatic individuals lead to a great decrease in the prevalence of COVID-19. Hand hygiene and

facemasks seemed to prevent household transmission of influenza virus when implemented within

36 hours of index patient symptom onset [16]. Public-health efforts to reduce transmission are

expected to have a substantial impact on reducing the size of COVID-19 pandemic [17]. Through an

imitating social learning process, individual-level behavioral change on taking infection prevention

actions have the potentials to significantly reduce the COVID-19 outbreak in terms of size and timing

at city-level [18]. Timely and substantially resources and supports for improving the

willingness-to-act and conducts of self-administered infection prevention actions can reduce the risks

associated with COVID-19.

Mathematical models have been proposed to explore the efficiency of hospital isolation of the

confirmed infected person, quarantine of people contacting them, and home containment of all

population to restrict mobility, lockdowns on the dynamics of COVID-19. The assumption is that all

infected individuals are isolated after the incubation period. Findings of Khoshnaw et al. [19]

suggested that healthcare programs should pay more attention to intervention strategies, and people

need to self-quarantine and that can effectively reduce the disease. Serhani and Labbardi [20] have

shown that home containment, if strictly followed, plays a crucial role in controlling the spread of

COVID-19.

In this paper, we propose a mathematical model for the dynamics of COVID-19 in India. In the

model, we also account for the natural birth and deaths in the population. We classify the infective

population into two subcategories − symptomatic and asymptomatic. We assume that as soon as

symptoms appear, an asymptomatic individual joins the class of symptomatic populations. Further,

we consider that the asymptomatic individuals will be home quarantined, an important consideration

in the modeling of COVID-19. Our model focuses on the impacts of face mask, hospitalization of

symptomatic individuals and quarantine of asymptomatic individuals on the transmission dynamics of

COVID-19 pandemic in India. We study the effectiveness of these three control measures on

flattening the disease progress curve. Our aim is to investigate whether these three control strategies

can eliminate the burden of COVID-19 in India? These epidemiological questions will be answered

by model analysis and simulation results. The basic difference between our model and existing

models is that we provide a comprehensive and robust study of impact of above mentioned

interventions on the spread of COVID-19 in India. Our study provides a mathematical model and its

analysis, estimation of parameters with help of data and then sustainable sensitivity of parameters via

stochastic extension of the model.

Remainder of the paper is organized in the following way: section 2 contains model formulation

and underlying assumptions. In the following section, we obtain disease-free and endemic equilibria

of the system. Analytical expression for the basic reproduction number is obtained using the next

generation matrix method. Further, sufficient conditions are derived for the global stability of the
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endemic equilibrium. We simulate our model in Section 4. The model is calibrated using daily

COVID-19 cases of three states of India, namely Maharshtra, Delhi and Tamil Nadu, and the whole

country. Sensitivity analysis is performed to identify parameters having crucial roles in disease

control. In Section 5, we extend our deterministic model to a corresponding stochastic model. The

stochastic system is analyzed and simulated, and the obtained results are compared with the

corresponding deterministic system. Finally, the results are compiled and discussed in closing

section, conclusion.

2. The mathematical model

Here, we formulate a compartmental model for dynamics of COVID-19 in India by considering

human-to-human transmission of the disease [21]. We divide the total human population N, into

seven compartments: susceptible individuals S , exposed individuals E, symptomatic individuals Is,

asymptomatic individuals Ia, hospitalized individuals H, home quarantined asymptomatic individuals

Qh and recovered individuals R. Thus, we have N = S + E + Is + Ia + H + Qh + R. It should be

emphasized that the compartment Ia also contains individuals who may show mild symptoms of the

disease but are not recognized as COVID-19 infected individuals. Furthermore, the compartment H

for hospitalization also includes those with clinical symptoms of COVID-19 who are self-isolating at

home. Descriptions of all the dynamical variables of the considered model are given in Table 1.

Table 1. Descriptions of variables used in the model system (2.1).

Variables Descriptions

S Number of susceptible human population

E Number of exposed human population

Is Number of symptomatic human population

Ia Number of asymptomatic human population

H Number of hospitalized and/or notified human population

Qh Number of quarantined human population

R Number of recovered human population

For developing the mathematical model, we make the following assumptions.

1. The individuals are recruited in the region at a constant rate Λ and join the susceptible class.

2. The susceptible individuals become exposed to the infection and join the exposed class on

effective contacts with symptomatic and asymptomatic infectious human population at the rates

β1 and β2, respectively.

3. A proportion cm of population wear face masks correctly and consistently in public places. Let

ǫm be the efficacy of the face masks. The proper use of face masks reduces disease transmission

effectively [14]. So, the above effective disease transmission rates β1 and β2 modify to β1(1−ǫmcm)

and β2(1 − ǫmcm), respectively.

4. A fraction of exposed individuals show clinical symptoms and join the symptomatic class while

the remaining move to the asymptomatic class. Some of the asymptomatic individuals show

clinical symptoms with passage of time and join the symptomatic class at the rate αa.
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Figure 1. Schematic diagram of the model (2.1). Here, black dashed arrow represents new

infection term, one sided arrow indicates progression to other compartments, and red color

stands for the impacts of face masks in reducing transmission rates from symptomatic and

asymptomatic humans to susceptible individuals.

5. The symptomatic individuals are hospitalized at the rate φs while the individuals in asymptomatic

class move to the quarantined compartment at the rate γa.

6. The hospitalized and quarantined individuals recover from COVID-19 at the rates γh and αh,

respectively.

7. The symptomatic and hospitalized individuals can proceed to severe complications of COVID-19

and experience COVID-19-induced mortality at the rates µs and µh, respectively. Humans in each

class have natural mortality.

8. The recovered individuals do not acquire the infection again and are not going to infect others.

In view of these assumptions, a schematic diagram is given in Figure 1, and the corresponding model

equations are as follows:

dS

dt
= Λ − β1(1 − ǫmcm)S Is − β2(1 − ǫmcm)S Ia − µS ,

dE

dt
= β1(1 − ǫmcm)S Is + β2(1 − ǫmcm)S Ia − σE − µE,

dIs

dt
= (1 − a)σE + αaIa − (µs + µ)Is − φsIs,

dIa

dt
= aσE − γaIa − αaIa − µIa, (2.1)

dH

dt
= φsIs − (γh + µh + µ)H,

dQh

dt
= γaIa − αhQh − µQh,
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dR

dt
= αhQh + γhH − µR.

System (2.1) is analyzed with positive initial conditions. Here, 0 ≤ a, ǫm, cm ≤ 1. The effects of wearing

face masks in public can be measured by the overall reduction in the baseline values of the community

contact rate parameters β1 and β2. Note that β1 , β2 represents the possible heterogeneity in the contact

rates of infectious with or without clinical symptoms of COVID-19. Also, we assume that β1 ≥ β2. All

the parameters involved in system (2.1) are assumed to be constants and have non-negative real values.

The descriptions of model’s parameters are given in Table 2.

Table 2. Descriptions of parameters involved in the system (2.1).

Parameters Descriptions Units

Λ Recruitment rate in the susceptible class persons day−1

β1 Rate of infection of susceptible with symptomatic human person−1day−1

β2 Rate of infection of susceptible with asymptomatic human person−1day−1

ǫm Efficacy of face masks —

cm Masks compliance —

σ Rate of incubation day−1

a Fraction of exposed individuals not showing clinical symptoms —

αa Rate of progression from asymptomatic to symptomatic class day−1

φs Rate of hospitalization of symptomatic individuals day−1

γa Quarantine rate of asymptomatic individuals day−1

γh Recovery rate of hospitalized individuals day−1

αh Recovery rate of quarantined individuals day−1

µ Natural death rate of humans day−1

µs Disease induced mortality rate for symptomatic individuals day−1

µh Disease induced mortality rate for hospitalized individuals day−1

3. Mathematical analysis of the system (2.1)

3.1. Positivity and boundedness of the solutions

From the model system (2.1), we have

dS

dt

∣∣∣∣∣
S=0

= Λ > 0,
dE

dt

∣∣∣∣∣
E=0

= β1(1 − ǫmcm)S Is + β2(1 − ǫmcm)S Ia > 0,

dIs

dt

∣∣∣∣∣
Is=0

= (1 − a)σE + αaIa ≥ 0,
dIa

dt

∣∣∣∣∣
Ia=0

= aσE ≥ 0,
dH

dt

∣∣∣∣∣
H=0

= φsIs ≥ 0,

dQh

dt

∣∣∣∣∣
Qh=0

= γaIa ≥ 0,
dR

dt

∣∣∣∣∣
R=0

= αhQh + γhH ≥ 0.

Here, all the rates are non-negative on the bounding planes. So, if we start in the interior of the 7-

dimensional closed hyperoctant R7
+, we will always remain there, in view of the fact that the direction

of the vector field is inward on all the bounding planes. Thus, non-negativity of all the solutions of the

model system (2.1) is guaranteed.
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Further, from the model system (2.1), we note that the total human population N satisfies,

dN

dt
= Λ − µN − µsIs − µhH.

This gives,

lim sup
t→∞

N ≤ Λ
µ
.

Therefore, all the solutions S (t), E(t), Is(t), Ia(t), H(t), Qh(t) and R(t) are bounded by Λ/µ. Hence, the

biologically feasible region for the system (2.1) is given by the following positively invariant set:

Ω1 = {(S , E, Is, Ia,H,Qh,R) ∈ R7
+ : 0 ≤ S , E, Is, Ia,H,Qh,R ≤ Λ/µ}.

3.1.1. Disease-free equilibrium and its stability

The model system (2.1) has the disease-free equilibrium E0 = (Λ/µ, 0, 0, 0, 0, 0, 0), which is always

feasible.

Using next-generation matrix method [22], we determine the expression for basic reproduction

number (R0), an index worldwide commonly used by public health organizations as a key estimator of

the severity of a given epidemic. The new infection terms and transition terms of the system (2.1) are

respectively given by

F =



β1(1 − ǫmcm)S Is + β2(1 − ǫmcm)S Ia

0

0

 ,

V =



(σ + µ)E

−(1 − a)σE − αaIa + (φs + µs + µ)Is

−aσE + (γa + αa + µ)Ia

 .

Now, we find the matrices F (of new infection terms) and V (of the transition terms) as

F =



0 β2(1 − ǫmcm)Λ
µ
β1(1 − ǫmcm)Λ

µ

0 0 0

0 0 0

 ,

V =



σ + µ 0 0

−(1 − a)σ −αa φs + µs + µ

−aσ γa + αa + µ 0

 .

It follows that

FV−1 =



â11 â12 â13

0 0 0

0 0 0

 ,

where

â11 =
β1Λ(1 − ǫmcm){αaσ + σ(1 − a)(γa + µ)}
µ(µ + σ)(αa + γa + µ)(µ + µs + φs)

+
β2aσΛ(1 − ǫmcm)

µ(µ + σ)(αa + γa + µ)
,
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â12 =
β1Λ(1 − ǫmcm)

µ(µ + µs + φs)
, â13 =

β2Λ(1 − ǫmcm)

µ(γa + αa + µ)
+

β1αaΛ(1 − ǫmcm)

µ(γa + αa + µ)(µ + µs + φs)
.

The basic reproduction number is same as the spectral radius of the next-generation matrix FV−1. Thus,

from above, we obtain the expression for R0 as

R0 =
Λσ(1 − ǫmcm)

µ(µ + σ)(αa + γa + µ)

[
β1{αa + (1 − a)(γa + µ)}

µ + µs + φs

+ β2a

]
.

The quantity R0 is known as basic reproduction number, the expected number of secondary cases

produced in completely susceptible population, by a typical infective individual for the system (2.1).

From the expression of basic reproduction number, it is apparent that the value of R0 decreases with

increase in the efficacy and compliance of face masks. Instead, the immigration of people and

transmission rates of COVID-19 from symptomatic/asymptomatic individuals to susceptible

individuals boost up the value of R0. Moreover, if the face masks are 100% efficient to control disease

transmission and are supplied in sufficiently large quantity, i.e., ǫm = cm = 1, the value of R0 becomes

zero and in that case the disease will not be transmitted from one person to another person.

The following local stability result of the disease-free equilibrium E0 follows from [22].

Theorem 3.1. For model system (2.1), the disease-free equilibrium E0 is locally asymptotically stable

if R0 < 1 and unstable if R0 > 1.

3.2. Endemic equilibrium and its stability

Theorem 3.2. The model system (2.1) has a unique endemic equilibrium

E1 = (S ∗, E∗, I∗s , I
∗
a,H

∗,Q∗
h
,R∗) which exists only if R0 > 1. The components of E1 are:

S ∗ =
Λ

β1(1 − ǫmcm)I∗s + β2(1 − ǫmcm)I∗a + µ
, I∗a =

aσE∗

γa + αa + µ
, I∗s =

(1 − a)σE∗ + αa ∗ I∗a
φs + µs + µ

,

H∗ =
φsI
∗
s

γh + µh + µ
, Q∗h =

γaI∗a
αh + µ

, R∗ =
αhQ∗

h
+ γhH∗

µ
,

E∗ =

[
(φs + µs + µ)(γa + αa + µ)

σ(σ + µ)(1 − ǫmcm)[β1{(1 − a)(γa + µ) + αa} + β2a(φs + µs + µ)]

]

×
[
Λσ(1 − ǫmcm)[β1{(1 − a)(γa + µ) + αa} + β2a(φs + µs + µ)]

(φs + µs + µ)(γa + αa + µ)
− (σ + µ)µ

]

=
(R0 − 1)(γa + αa + µ)(φs + µs + µ)

σ(σ + µ)(1 − ǫmcm)[β1{(1 − a)(γa + µ) + αa} + β2a(φs + µs + µ)]
.

Proof. The proof follows by equating the right hand side of differential equations in system (2.1) to

zero and solving these algebraic equations. �

In the following, we establish global stability of the unique endemic equilibrium E1.

Theorem 3.3. The endemic equilibrium E1 exists if R0 > 1, and is globally asymptotically stable inside

the region of attraction Ω1 if the following conditions are satisfied:

β1S ∗

µs + µ + φs

<
ǫmcm(σ + µ)

3σ(1 − a)
, (3.1)
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β2S ∗

γa + αa + µ
<
ǫmcm(σ + µ)

3σa
, (3.2)

β1α
2
a

1 − a
<
β2(γa + αa + µ)(µs + µ + φs)

a
, (3.3)

σ(1 − ǫmcm)2S ∗

ǫmcmµ
max

{
1 − a

µs + µ + φs

,
a

γa + αa + µ

}
<

4µ(σ + µ)

27

[
µ

Λ(β1 + β2)(1 − ǫmcm)

]2
. (3.4)

Proof. To establish the global stability of endemic equilibrium E1, we consider the following positive

definite function

U =
1

2
(S − S ∗)2 +

1

2
m1(E − E∗)2 +

1

2
m2(Is − I∗s )2 +

1

2
m3(Ia − I∗a)2 +

1

2
m4(H − H∗)2

+
1

2
m5(Qh − Q∗h)2 +

1

2
m6(R − R∗)2, (3.5)

where mi’s (i = 1−6) are positive constants to be chosen appropriately.

Differentiating Eq (3.5) with respect to time along the solutions of system (2.1), and choosing

m2 = m1

β1ǫmcmS ∗

σ(1 − a)
and m3 = m1

β2ǫmcmS ∗

σa
, we have

dU

dt
= −[β1(1 − ǫmcm)Is + β2(1 − ǫmcm)Ia + µ](S − S ∗)2 − m1(σ + µ)(E − E∗)2

−m1

β1ǫmcmS ∗

(1 − a)σ
(µs + µ + φs)(Is − I∗s )2 − m1

β2ǫmcmS ∗

aσ
(γa + µ + αa)(Ia − I∗a)2

−m4(γh + µh + µ)(H − H∗)2 − m5(αh + µ)(Qh − Q∗h)2 − m6µ(R − R∗)2

+m1β1S ∗(Is − I∗s )(E − E∗) + m1β2S ∗(Ia − I∗a)(E − E∗) − β1(1 − ǫmcm)S ∗(Is − I∗s )(S − S ∗)

−β2(1 − ǫmcm)S ∗(Ia − I∗a)(S − S ∗) + m1[β1(1 − ǫmcm)Is + β2(1 − ǫmcm)Ia](S − S ∗)(E − E∗)

+m1

β1ǫmcmS ∗αa

(1 − a)σ
(Ia − I∗a)(Is − I∗s ) + m4φs(Is − I∗s )(H − H∗) + m5γa(Ia − I∗a)(Qh − Q∗h)

+m6αh(R − R∗)(Qh − Q∗h) + m6γh(R − R∗)(H − H∗).

Thus,
dU

dt
will be negative definite inside the region of attraction Ω1, if the following inequalities hold:

β1S ∗

µs + µ + φs

<
1

3

ǫmcm(σ + µ)

(1 − a)σ
, (3.6)

β2S ∗

γa + αa + µ
<

1

3

ǫmcm(σ + µ)

aσ
, (3.7)

β1α
2
a

1 − a
<
β2

a
(γa + αa + µ)(µs + µ + φs), (3.8)

β1(1 − ǫmcm)2S ∗ <
m1

3

ǫmcmµ

(1 − a)σ
(µs + µ + φs), (3.9)

β2(1 − ǫmcm)2S ∗ <
m1

3

ǫmcmµ

aσ
(γa + αa + µ), (3.10)

m1

[
(β1 + β2)(1 − ǫmcm)Λ

µ

]2
<

4

9
(σ + µ)µ, (3.11)
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m4φ
2
s <

m1

2

β1ǫmcmS ∗

(1 − a)σ
(γh + µh + µ), (3.12)

m5γ
2
a <

m1

2

β2ǫmcmS ∗

aσ
(γa + αa + µ)(αh + µ), (3.13)

m6α
2
h <

2m5

3
µ(αh + µ), (3.14)

m6γ
2
h < µm4(γh + µh + µ). (3.15)

From inequalities (3.9)−(3.11), we have

3σ(1 − ǫmcm)2S ∗

ǫmcmµ
max

{
1 − a

µs + µ + φs

,
a

γa + αa + µ

}
<

4µ(σ + µ)

9

[
µ

(β1 + β2)(1 − ǫmcm)Λ

]2
.

From inequality (3.12), we obtain

0 < m4 <
m1

2φ2
s

β1ǫmcmS ∗

(1 − a)σ
(γh + µh + µ).

From inequality (3.13), we obtain

0 < m5 <
m1

2γ2
a

β2ǫmcmS ∗

aσ
(γa + αa + µ)(αh + µ).

From inequalities (3.14) and (3.15), we have

0 < m6 < min

{
2m5µ(αh + µ)

3α2
h

,
µm4(γh + µh + µ)

γ2
h

}
.

We note that
dU

dt
is negative definite inside the region of attraction Ω1 if the inequalities (3.1)−(3.4)

hold.

�

4. Numerical simulation

4.1. Data and model calibration

For the purpose of parameter estimation, we have used data of COVID-19 active cases from India

and its three states, Maharashtra, Delhi and Tamil Nadu for the time period March to June, 2020. The

choice of these three states is motivated by the fact that these are among the most affected regions in

India. The different time stamp data are used. For example, we used 10th March 2020 to 25th June

2020 for Maharashtra, 5th March 2020 to 25th June 2020 for Delhi, 17th March 2020 to 25th June

2020 for Tamil Nadu, and 1st March 2020 to 25th June 2020 for India for our study. These COVID-19

active cases data was collected from [23]. The daily data pattern of total active cases for Maharastra,

Delhi, Tamil Nadu and India during the study period are provided in Figure 2. Here, it should be noted

that day one in each plot match with first date of the data. For example, day one for Maharashtra is

10th March while for Delhi it is 5th March.
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We now estimate the infection rate of COVID-19 of susceptible with symptomatic population (β1)

and the recovery rate of self-quarantined humans (αh) for these three states and the whole country. In

addition, we also estimate the basic reproduction number for these four data sets. For the purpose of

parameter estimation, we use the values of rest of parameters either from available sources or they are

suitably assumed. The values of these parameters are provided in Table 3.

Table 3. Values of parameters in model system (2.1).

Parameters Values References

Λ Varies

β2 0.000513 Assumed

ǫm 0.5 [25]

cm 0.1 [26]

σ [0.071,0.33] [27, 28]

a [0.15,0.7] [1, 28]

γa 0.2 [12]

γh 1/14 [29, 30]

µ 0.000425 Demographic

µh 0.0042 Assumed

αa [0.01,0.08] [31]

φs [0.02,0.1] [1, 28]

µs 0.0052 Assumed

The R−software is used to fit the simulated and observed COVID-19 active cases for all these four

data sets during the mentioned time period using maximum likelihood method. A detailed discussion

on this model fitting technique is provided in [24]. The estimated values of parameters and the basic

reproduction number for all these four data sets are given in Table 4. From the table, we note that the

estimated value of the transmission of disease between symptomatic and susceptible individuals (β1)

is highest in Maharashtra along with the largest value of the basic reproduction number (R0). The

reason behind this could be high population density, improper lock-down, lack of social distancing

and inefficient use of preventive measures in the state. On the other hand, β1 is low for overall

population of India. We also observe that the basic reproduction number is least for Tamil Nadu. This

will lead to relatively slow progression of the disease. The table also shows that Delhi has relatively

highest recovery rate for quarantine population. The estimated values of R0 for France, UK,

Singapore, Germany, Spain and Japan were found to be 3.5, 2.9, 1.7, 3.5, 3.5 and 1.7, respectively

during the initial phase of disease transmission [32]. Note that the estimated value of R0 for India is

greater than Singapore and Japan, but lower than those of France, UK, Germany and Spain. The

model fitting is provided in Figure 3 with real COVID-19 data for all four data sets. In the figure, red

dots represent the observed active COVID-19 case data and solid curve stands for the corresponding

fitted curve from the proposed model system; the shaded regions indicate 95% confidence intervals.

Further, we are interested to know how the disease will progress as time passes, i.e., we are

interested in short term prediction. For this purpose, we use the estimated parameters for respective

data sets, keeping other parameters at the same values as in Table 3, and simulated our model for

160 days. The observed active COVID-19 case data for all four data sets is plotted with red dots and
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a b

c d

Figure 2. Active COVID-19 cases for (a) Maharastra, (b) Delhi, (c) Tamil Nadu and (d)

India during study period.

Table 4. Mean values of estimated parameters β1 and αh, and the basic reproduction number

(R0) in 95% confidence interval.

States Estimated values of parameters Estimated values of R0

Maharastra β1 = 0.065 2.568

αh = 0.0019

Delhi β1 = 0.054 2.315

αh = 0.0025

Tamil Nadu β1 = 0.049 1.892

αh = 0.00022

India β1 = 0.037 2.183

αh = 0.00145
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a b

c d

Figure 3. Plots of the output of the fitted model (2.1) and the observed active COVID-19

cases for (a) Maharastra, (b) Delhi, (c) Tamil Nadu and (d) India. Red dotted line shows

real data points and the blue line stands for model solution. Shaded regions indicate 95%

confidence interval.

the solid curve shows the model prediction, Figure 4. It can be noted from Figures 4(a) & 4(d), that

our model predicts increase in number of active COVID-19 positive cases for the state of Maharashtra

and overall India. However, from Figures 4(b) & 4(c), we can note that the predicted curve is bending,

which means that the active cases will start to saturate and may further reduce after the last date of

data for these data sets. We must underline that these predictions solely depend on current practices

and will be valid provided there is no sudden control measure adopted by the respective state

governments or central government. The prediction for long term is neither feasible nor appropriate

given the dynamic and ever evolving nature of disease and interventions.

4.2. Impacts of parameters on basic reproduction number

We establish the normalized forward sensitivity indices of the basic reproduction number with

respect to model parameters [33]. The normalized forward sensitivity index of a variable to a

parameter describes the ratio of the relative change in the variable to the relative change in the

parameter. In Figure 5, we plot the sensitivity indices of R0 with respect to the parameters of interest.

Evidently, Figure 5 suggests that the magnitude of R0 increases with increase in the values of

parameters Λ, β1, β2 and σ as these parameters possess positive indices with R0. Similarly, the

parameters having negative indices with R0 are ǫm, cm, αa, γa, µ, µs, a and φs. Hence, increments in

these parameters cause decline in the value of R0. We find that for the parameter Λ, the sensitivity
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Figure 4. Plots of the output of the fitted model (2.1) and the observed active COVID-19

cases with prediction for (a) Maharastra, (b) Delhi, (c) Tamil Nadu and (d) India. Red dotted

line shows data points and blue line shows model solution.

index of R0 is 1. It means that 1% increase in the value of Λ will result in 1% increase in the value of

R0. It is clear that occurrence of a lower value of R0 helps to prevent the disease prevalence. Thus, to

wipe out the disease from the system, we must control the increase of the parameters having positive

indices with basic reproduction number whereas parameters which have negative indices should be

sustained. Therefore, any prevention measure which can reduce the disease burden must be seriously

considered by the health-care officials to control the subsequent outbreaks. We find that the control

parameters such as use of protective masks, quarantine and hospitalization efficacy etc., which are

negatively correlated with R0 should be implemented by means of proper hygiene and efficient

health-care services.

As pointed out in the introduction, now, we are interested to see the impacts of masks compliance

and efficacy of face masks (cm and ǫm) on the basic reproduction number (R0) for India and its three

most affected states: Maharastra, Delhi and Tamil Nadu. For this, we plot the values of R0 with respect

to ǫm and cm (see Figure 6). The contour plots show that the epidemic potential can be drawn below

unity for higher efficacy and compliance of face masks. For lower transmission rates of COVID-19

infection of susceptible with symptomatic population, the values of R0 remain below unity and rise

in rate of hospitalization of symptomatic individuals lead to further reductions in the values of R0,

Figure 7. The quarantine of asymptomatic individuals also significantly reduces the epidemic potential

R0, Figure 8. The public health implications of these are that, COVID-19 can be controlled effectively

and will be eventually die out from the Indian states by compulsory face masks wearing in public,

hospitalization of symptomatic individuals and quarantine of asymptomatic individuals.
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Figure 5. Normalized forward sensitivity indices of R0 with respect to model parameters.

Parameter values: β1 = 0.03, β2 = 0.003, Λ = 50000, ǫm = 0.5, cm = 0.6, µ = 0.00042,

σ = 0.00019, µs = 0.06, αa = 0.004, αh = 0.0002, γa = 0.002, φs = 0.025, γh = 0.071,

µh = 0.05, a = 0.4.

4.3. Impacts of parameters on disease prevalence

By using the method of [34, 35], we perform global sensitivity analysis of system (2.1). We pick

some epidemiologically important controllable parameters: Λ, β1, β2, ǫm, cm, γa, αh, γh and φs as input

parameters and symptomatic infective population, Is, as response function. Two statistical techniques

are applied in the process: Latin Hypercube Sampling (LHS) and Partial Rank Correlation

Coefficients (PRCCs). The former supports to vary several parameters together in a systematic way

while the latter interlink the input parameters and response function allocating values between −1

and 1. Notably, the sign of PRCC describes the type of correlations between input parameters and the

response function whereas its values mean strength. Nonlinear and monotone relationships were

recognized between symptomatic infective population and the input parameters, which is an essential

condition for computing PRCCs. We consider an uniform distribution for each input parameter and

run 200 simulations per LHS. The parameters are supposed to deviate ±25% from their nominal

values. The PRCC values are plotted in Figure 9, which depicts that the parameters Λ, β1 and β2 have

positive correlations with symptomatic infective population whereas the parameters having negative

impacts on symptomatic infective population are ǫm, cm, γa, αh, γh and φs. Out of these parameters,

only Λ, γa and φs show significant correlations with the symptomatic infective population

characterized by having p−value less than 0.05. Determination of the correlation between input

parameters and the response function helps to develop effective control strategies to declutter the

COVID-19 burden. The sensitivity results suggest that the prevention measures of COVID-19 should

be: prompted hospitalization of symptomatic individuals and proper quarantine of asymptomatic

individuals to reduce the spread of COVID-19. Also, making the habit of using face mask sincerely,

can minimize the risk of disease transmission. Growing density of the recovery class is also important

for excising the disease from the environment.
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Figure 6. Contour plots of the basic reproduction number (R0) with respect ǫm and cm for

(a) Maharashtra, (b) Delhi, (c) Tamil Nadu and (d) India. The dashed green line represents

R0 = 1. Parameter values: β2 = 0.00003, µ = 0.0042, σ = 0.000019, µs = 0.06, αa = 0.0004,

γa = 0.2, φs = 0.025, γh = 0.071, µh = 0.05, a = 0.4; in (a) β1 = 0.065, Λ = 7, αh = 0.0019,

(b) β1 = 0.054, Λ = 9, αh = 0.0025, (c) β1 = 0.049, Λ = 9, αh = 0.00029, (d) β1 = 0.037,

Λ = 9, αh = 0.00145.

Time series behavior of system (2.1) for the symptomatic and asymptomatic population for the three

Indian states and the whole country is depicted in Figure 10. We fix the parameters as in Figure 6, where

the epidemic threshold is shown to be below unity for higher compliance of face masks of good quality.

It is apparent from Figure 10 that if the face masks of higher quality are used in the public, then it will

take almost three years to completely eradicate the disease from the nation. It is also evident from

these plots that using face masks in public is very useful in minimizing community transmission and

burden of COVID-19, provided their coverage level is high. Now, we see the combined effects of face

masks and hospitalization of symptomatic individuals on the symptomatic population, Figure 11. The

plots show that the symptomatic individuals completely disappear in a lesser time if the face masks

of high quality are used together with hospitalization of confirmed infected individuals. Similarly, the

combined effects of usage of face masks of higher quality and quarantine of asymptomatic individuals

help to eradicate the asymptomatic infections in India, Figure 12. India is the third most affected

country in the world by COVID-19. Almost all Indian states are affected by COVID-19 with leading

cases in Maharastra, Tamil Nadu and Delhi. As currently no vaccine is available for the disease,
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Figure 7. Contour plots of the basic reproduction number (R0) with respect β1 and φs for (a)

Maharashtra, (b) Delhi, (c) Tamil Nadu and (d) India. The dashed red line represents R0 = 1.

Parameter values: β2 = 0.00003, µ = 0.0042, σ = 0.000019, µs = 0.06, αa = 0.0004,

γa = 0.2, γh = 0.071, µh = 0.05, a = 0.4, cm = ǫm = 0.99; in (a) Λ = 7, αh = 0.0019, (b)

Λ = 9, αh = 0.0025, (c) Λ = 9, αh = 0.00029, (d) Λ = 9, αh = 0.00145.

the ways of prevention include social distancing, using face masks, regular hand sanitization, proper

lockdown. Imperfect lockdown in the country couldn’t stop the rising number of cases. However, the

pandemic can be effectively controlled or even eradicated if the masks-based intervention is combined

with the hospitalization of symptomatic individuals and quarantine of asymptomatic individuals. In

Figure 13, we have portrayed the global asymptotic stability of the endemic equilibrium E1 in Is−Ia−H

space. The figure depicts that all the solution trajectories originating from four different initial densities

ultimately converge to the equilibrium (I∗s , I
∗
a,H

∗). The global asymptotic stability of the endemic

equilibrium E1 can also be extrapolated in other spaces.

5. Stochastic model

As all natural and man made systems are prone to stochastic perturbations. Here, we extend our

deterministic model (2.1) to corresponding stochastic model. The motivation for the study of the

stochastic model lies in the fact that when populations are small, the dynamics can be severely affected

by small changes in the parameters. Thus, for initial phase of the disease outbreak, such as COVID-19,

the stochastic model setup looks appropriate as at most of the places the infection is confined to small

localities or geographic regions. Hence, a relevant and important information can be extracted from

the stochastic model.
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Figure 8. Contour plots of the basic reproduction number (R0) with respect β2 and γa for

(a) Maharashtra, (b) Delhi, (c) Tamil Nadu and (d) India. Parameter values: µ = 0.0042,

σ = 0.000019, µs = 0.06, αa = 0.0004, φs = 0.025, γh = 0.071, µh = 0.05, a = 0.4,

cm = ǫm = 0.99; in (a) β1 = 0.065, Λ = 7, αh = 0.0019, (b) β1 = 0.054, Λ = 9, αh = 0.0025,

(c) β1 = 0.049, Λ = 9, αh = 0.00029, (d) β1 = 0.037, Λ = 9, αh = 0.00145.

The derivation of an stochastic differential equation (SDE) model is based on the idea developed

by Yuan et al. [36]. Let X(t) = (X1(t), X2(t), X3(t), X4(t), X5(t), X6(t), X7(t))T be a continuous random

variable for (S (t), E(t), Is(t), Ia(t),H(t),Qh(t),R(t))T , where T denotes the transpose of the matrix.

Further, let ∆X = X(t + ∆t) − X(t) = (∆X1(t),∆X2(t),∆X3(t),∆X4(t),∆X5(t),∆X6(t),∆X7(t))T denotes

the random vector for the change in random variables during time interval ∆t. Here, we will write the

transition maps which define all possible changes between states in the SDE model. Based on our

deterministic model (2.1), we see that there exist 19 possible changes between states in a small time

interval ∆t (see Table 5). Here, it is emphasized that one and only one change is possible in the time

∆t. For example, let us consider the case when one uninfected individual being infected by

COVID-19. This will be given by the state change ∆X = (−1, 1, 0, 0, 0, 0, 0), and the change in its

probability is given by

prob(∆X1,∆X2,∆X3,∆X4,∆X5,∆X6,∆X7)

= (−1, 1, 0, 0, 0, 0, 0)|(X1, X2, X3, X4, X5, X6, X7) = P1 = βX1X2∆t + O(∆t).

One can easily determine the expectation change E(∆X) and its covariance matrix V(∆X) associated

with ∆X by neglecting the terms higher than O(∆t). The expectation of ∆X is given by
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Figure 9. Effect of uncertainty of the model (2.1) on symptomatic infected population.

Baseline values of parameters are chosen as β1 = 0.6, β2 = 0.00053, Λ = 1000, ǫm = 0.5,

cm = 0.1, µ = 0.00004, σ = 0.19, µs = 0.005, αa = 0.05, αh = 0.002, γa = 0.2, φs = 0.025,
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0 200 400 600 800 1000 1200 1400
Time

0

10

20

30

40

50

60

S
ym

pt
om

at
ic

/a
sy

m
pt

om
at

ic
po

pu
la

tio
n

I
s

I
a

a
0 200 400 600 800 1000 1200 1400

Time

0

10

20

30

40

50

60

S
ym

p
to

m
a
tic

/a
sy

m
p
to

m
a
tic

p
o
p
u
la

tio
n

I
s

I
a

b

0 200 400 600 800 1000 1200 1400
Time

0

10

20

30

40

50

60

S
ym

p
to

m
a
tic

/a
sy

m
p
to

m
a
tic

 
p
o
p
u
la

tio
n

I
s

I
a

c
0 200 400 600 800 1000 1200 1400

Time

0

10

20

30

40

50

60

S
ym

pt
om

at
ic

/a
sy

m
pt

om
at

ic
po

pu
la

tio
n

I
s

I
a

d

Figure 10. Time series of system (2.1) showing the impacts of high efficacy and compliance

of face masks on the control of COVID-19 in (a) Maharashtra, (b) Delhi, (c) Tamil Nadu and

(d) India. Parameters are at the same values as in Figure 6, and ǫm = cm = 0.99.
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Figure 11. Time series of system (2.1) showing the impacts of efficacy of face masks and

hospitalization of symptomatic individuals on the control of COVID-19 in (a) Maharashtra,

(b) Delhi, (c) Tamil Nadu and (d) India. Rest of the parameters are at the same values as in

Figure 6, and cm = 0.99.
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Figure 12. Time series of system (2.1) showing the impacts of efficacy of face masks and

quarantine of asymptomatic individuals on the control of COVID-19 in (a) Maharashtra, (b)

Delhi, (c) Tamil Nadu and (d) India. Rest of the parameters are at the same values as in

Figure 6, and cm = 0.99.

660

670

680

690

185

190

195

200
0

50

100

150

200

I
s

I
a

H

(I
s
* , I

a
* ,H* )

Figure 13. Global stability of the endemic equilibrium E1 of system (2.1). Values of

parameters are chosen as β1 = 0.037, β2 = 0.05, Λ = 100, ǫm = 0.005, cm = 0.001,

µ = 0.0042, σ = 0.19, µs = 0.06, αa = 0.004, αh = 0.145, γa = 0.2, φs = 0.025, γh = 0.071,

µh = 0.05, a = 0.4. Figure shows that solution trajectories starting from four different initial

points ultimately converge to the components of equilibrium E1.
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E(∆X) =

20∑

i=1

Pi(∆X)i∆t

=



Λ − β1(1 − ǫmcm)X1X3 − β2(1 − ǫmcm)X1X4 − µX1

β1(1 − ǫmcm)X1X3 − β2(1 − ǫmcm)X1X4 − (1 − a)σX2 − aσX2 − µX2

(1 − a)σX2 + αaX4 − (µs + µ)X3 − φsX3

aσX2 − γaX4 − αaX4 − µX4

φsX3 − (γh + µh + µ)X5

γaX4 − αhX6 − µX6

αhX6 + γhX5 − µX7



∆t

= f (X1, X2, X3, X4, X5, X6, X7)∆t.

Here, it can be noted that the expectation vector and the function f are in the same form as those in

deterministic system (2.1). Since the covariance matrix

V(∆X) = E((∆X)(∆X)T ) − E(∆X)E((∆X)T ), E(∆X)E((∆X)T ) = f (X)( f (X)T ).

An approximation of the covariance matrix of ∆X to order ∆t leads to product of the diffusion matrix

(Ω) and ∆t. Thus, we get

E((∆X)(∆X)T ) =

20∑

i=1

Pi((∆X)i(∆X)T
i )∆t

=



V11 V12 0 0 0 0 0

0 V22 V23 V24 0 0 0

0 V32 V33 V34 V35 0 0

0 V42 V43 V44 0 V46 0

0 0 V53 0 V55 0 V57

0 0 0 V64 0 V66 V67

0 0 0 0 V75 V76 V77



.∆t = Ω.∆t,

where

V11 = P1 + P2 + P3 + P4 = Λ + β1(1 − ǫmcm)X1X3 + β2(1 − ǫmcm)X1X4 + µX1,

V12 = V21 = −P2 − P3 = −β1(1 − ǫmcm)X1X3 − β2(1 − ǫmcm)X1X4,

V22 = P2 + P3 + P5 + P6 + P7

= β1(1 − ǫmcm)X1X3 + β2(1 − ǫmcm)X1X4 + (1 − a)σX2 + aσX2 + µX2,

V23 = V32 = −P5 = −(1 − a)σX2, V24 = V42 = −P6 = −aσX2,

V33 = P5 + P8 + P9 + P10 + P11 = (1 − a)σX2 + αaX4 + φsX3 + µsX3 + µX3,

V34 = V43 = −P8 = −αaX4, V35 = V53 = −P9 = −φsX3,

V44 = P6 + P8 + P12 + P13 = aσX2 + αaX4 + γaX4 + µX4,

V46 = V64 = −P12 = −γaX4, V55 = P9 + P14 + P15 + P16 = φsX3 + γhX5 + µX5 + µhX5,
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V57 = V75 = −P14 = −γhX4, V66 = P12 + P17 + P19 = γaX4 + αhX6 + µX6,

V66 = P10 + P18 + P19 = νX3 + γX6 + µX7, V67 = V76 = −P17 = −αhX6,

V77 = P17 + P14 + P18 = αhX6 + γhX5 + µX7.

The diffusion matrix Ω is symmetric and positive definite.

Using the approach of [36], we construct a matrix M such that Ω = MMT , where M is a 7 × 15

matrix given as

M =



M1
1

M2
1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 M2
2

M3
2

M4
2

M5
2

0 0 0 0 0 0 0 0 0 0

0 0 0 M4
3

0 M6
3

M7
3

M8
3

M9
3

0 0 0 0 0 0

0 0 0 0 M5
4

0 M7
4

0 M9
4

M10
4

0 0 0 0 0

0 0 0 0 0 0 0 M8
5

0 0 M11
5

M12
5

0 0 0

0 0 0 0 0 0 0 0 0 M10
6

0 0 M13
6

M14
6

0

0 0 0 0 0 0 0 0 0 0 0 M12
7

0 M14
7

M15
7



,

where

M1
1 =
√

P1 + P4,M
2
1 =
√

P2 + P3,M
2
2 = −

√
P2 + P3,M

3
2 =
√

P7,M
4
2 =
√

P5,M
5
2 =
√

P6,

M4
3 = −

√
P5,M

6
3 = −

√
P10 + P11,M

7
3 =
√

P8,M
8
3 =
√

P9,M
5
4 = −

√
P6,M

7
4 = −

√
P8,

M9
4 =
√

P13,M
10
4 =

√
P12,M

8
5 = −

√
P9,M

11
5 =

√
P15 + P16,M

12
5 =

√
P14,M

10
6 = −

√
P12,

M13
6 =

√
P19,M

14
6 =

√
P17,M

12
7 = −

√
P14,M

14
7 = −

√
P17,M

15
7 =

√
P18.

Then, Ito stochastic differential model has the form,

d(X(t)) = f (X1, X2, X3, X4, X5, X6, X7)dt + M.dW(t)

with initial condition

X(0) = (X1(0), X2(0), X3(0), X4(0), X5(0), X6(0), X7(0))T

and a Wiener process,

W(t) = (W1(t),W2(t),W3(t),W4(t),W5(t),W6(t),W7(t),W8(t),W9(t),W10(t),W11(t),W12(t),

W13(t),W14(t),W15(t))T .

In view of the above facts, we construct the stochastic differential equation model as,

dS = (Λ − β1(1 − ǫmcm)S Is − β2(1 − ǫmcm)S Ia − µS )dt +
√
Λ + µS dW1

+
√
β1(1 − ǫmcm)S Is + β2(1 − ǫmcm)S IadW2,

dE = [β1(1 − ǫmcm)S Is + β2(1 − ǫmcm)S Ia − σE − µE]dt

−
√
β1(1 − ǫmcm)S Is + β2(1 − ǫmcm)S IadW2 +

√
µEdW3 +

√
(1 − a)σEdW4 +

√
aσEdW5,

dIs = [(1 − a)σE + αaIa − (µs + µ)Is − φsIs]dt −
√

(1 − a)σEdW4 +
√

(µs + µ)IsdW6

+
√
αaIadW7 +

√
φsIsdW8,
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dIa = [aσE − γaIa − αaIa − µIa]dt −
√

aσEdW5 −
√
αaIadW7 +

√
γaIadW9 +

√
µIadW10, (5.1)

dH = [φsIs − (γh + µh + µ)H]dt −
√
φsIsdW8 +

√
(µh + µ)HdW11 +

√
γhHdW12,

dQh = [γaIa − αhQh − µQh]dt −
√
γaIadW9 +

√
µQhdW13 +

√
αhQhdW14,

dR = [αhQh + γhH − µR]dt −
√
γhHdW12 −

√
αhQhdW14 +

√
µRdW15.

5.1. Stochastic simulation results

To emphasise the impact of stochasticity in the model system, we simulate the stochastic model

(5.1) by using Euler-Maruyama method [36]. For this purpose, we use the following set of parameter

values:

β1 = 0.03, β2 = 0.00003, Λ = 10, ǫm = 0.5, cm = 0.1, µ = 0.000042, σ = 0.19, µs = 0.06,

αa = 0.01, αh = 0.0002, γa = 0.02, φs = 0.025, γh = 0.071, µh = 0.05, a = 0.4. (5.2)

We perform simulations of system (5.1) for 120 days and 100 simulation runs fixing ∆t = 0.5. First,

we compare the mean of 100 runs of stochastic model simulation with the results of corresponding

deterministic model, and plot time series of all the variables (see Figure 14). From the figures, it can

be inferred that the mean of 100 runs of stochastic simulation is very close to the simulation results

of deterministic model for the susceptible population (S ) whereas for other populations, a little bit

deviations between stochastic and deterministic simulations results are apparent. To further see the

impact of stochasticity on infective population, we plot the 100 simulation runs of the symptomatic

(Is) and asymptomatic (Ia) infected populations in Figure 15. It may be noted that due to presence of

noise, the Is and Ia populations do not approach to their respective equilibrium components I∗s and I∗a;

rather they are distributed near the equilibrium values.

In order to understand these results better, we also plot the distributions of both the populations

at 80th, 100th and 120th days. The results for distribution of symptomatic infected population (Is)

are provided in Figure 16. One can easily see the change in distribution of the population as time

progresses. Importantly, we note that the distribution of trajectories become close to range 85-90

at 120th day from more distributed range 75–90 on 80th day. Thus, the trajectories become more

concentrated around 85–90 with passage of time. In Figure 17, we plot the distribution of asymptomatic

infected population (Is). It may be noted from the figure that the distribution of trajectories clearly shift

from left to right of 120 level and on day 120 they concentrate in range 120–130. These distributions of

Is and Ia provide insightful information about the behaviors of trajectories when the system is allowed

to have stochastic influence.

6. Conclusion and discussion

COVID-19 is now one of the deadliest pandemic in human history and has had tragic consequences

affecting millions of people worldwide. In India, the outbreak of COVID-19 started on 2nd March

2020 and after that, the cases are on an ever-increasing trajectory. With very high population density,

the unavailability of specific medication or vaccine and insufficient information about the transmission

mechanism of the disease makes it extremely difficult to fight against the disease effectively. Designing

an efficient control strategy is one of the crucial factors to curb the disease spread in an outbreak

Mathematical Biosciences and Engineering Volume 18, Issue 1, 182–213.
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Table 5. Possible changes of states and their probabilities.

Possible state change Probability of state change

(∆X)1 = (1, 0, 0, 0, 0, 0, 0)T P1 = Λ∆t + O(∆t)

Rate of recruitment in human population

(∆X)2 = (−1, 1, 0, 0, 0, 0, 0)T P2 = β1(1 − ǫmcm)X1X3∆t + O(∆t)

Change when people meet symptomatic infective (Is)

and become exposed

(∆X)2 = (−1, 1, 0, 0, 0, 0, 0)T P3 = β1(1 − ǫmcm)X1X4∆t + O(∆t)

Change when people meet asymptomatic infective (Ia)

and become exposed

(∆X)4 = (−1, 0, 0, 0, 0, 0, 0)T P4 = µX1∆t + O(∆t)

Natural death rate of susceptible population

(∆X)5 = (0,−1, 1, 0, 0, 0, 0)T P5 = (1 − a)σX2∆t + O(∆t)

Change when fraction of exposed people move

to symptomatic infected class (Is)

(∆X)6 = (0,−1, 0, 1, 0, 0, 0)T P6 = aσX2∆t + O(∆t)

Change when fraction of exposed people move

to asymptomatic infected class (Ia)

(∆X)7 = (0 − 1, 0, 0, 0, 0, 0, 0)T P7 = µX2∆t + O(∆t)

Natural death rate of exposed population

(∆X)8 = (0, 0, 1,−1, 0, 0, 0)T P8 = αaX4∆t + O(∆t)

Change when asymptomatic population join symptomatic class

(∆X)9 = (0, 0,−1, 0, 1, 0, 0)T P9 = φsX3∆t + O(∆t)

Change when symptomatic people move to hospitalized class

(∆X)10 = (0, 0,−1, 0, 0, 0, 0)T P10 = µsX3∆t + O(∆t)

Disease related death rate of symptomatic population

(∆X)11 = (0, 0,−1, 0, 0, 0, 0)T P11 = µX3∆t + O(∆t)

Natural death rate of symptomatic population

(∆X)12 = (0, 0, 0,−1, 0, 1, 0)T P12 = γaX4∆t + O(∆t)

Change when asymptomatic people move to home quarantined class

(∆X)13 = (0, 0, 0,−1, 0, 0, 0)T P13 = µX4∆t + O(∆t)

Natural death rate of asymptomatic population

(∆X)14 = (0, 0, 0, 0,−1, 0, 1)T P14 = γhX5∆t + O(∆t)

Change when hospitalized infected with COVID-19 will join the recovered class

(∆X)15 = (0, 0, 0, 0,−1, 0, 0)T P15 = νX3∆t + O(∆t)

Natural death rate of hospitalized population

(∆X)16 = (0, 0, 0, 0,−1, 0, 0)T P11 = µX3∆t + O(∆t)

Disease related death rate of hospitalized people with COVID-19

(∆X)17 = (0, 0, 0, 0, 0,−1, 1)T P17 = αhX6∆t + O(∆t)

Change when self-quarantined people will join the recovered class

(∆X)18 = (0, 0, 0, 0, 0, 0,−1)T P18 = µX7∆t + O(∆t)

Natural death rate of recovered individuals

(∆X)19 = (0, 0, 0, 0, 0,−1, 0)T P19 = µX6∆t + O(∆t)

Natural death rate of self-quarantined individuals

(∆X)20 = (0, 0, 0, 0, 0, 0, 0, 0, 0)T P20 = 1 −∑19
i=1 Pi∆t + O(∆t)

No change
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Figure 14. Time evolutions of (a) S , (b) E, (c) Is, (d) Ia, (e) H, (f) Qh and (g) R for

deterministic and stochastic systems.
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Figure 15. Trajectories of (a) symptomatic (Is) and (b) asymptomatic (Ia) infected

populations for 100 simulation runs.

Figure 16. Distributions of symptomatic infected population (Is) on days 80, 100 and 120.
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Figure 17. Distributions of asymptomatic infected population (Ia) on days 60, 80 and 100.

situation. In this study, we first proposed a deterministic compartmental model to describe the disease

transmission mechanism in the population. Our first goal was to incorporate the effect of asymptomatic

infective on the dynamics of the disease whereas another aim was to see the impacts of the proper use

of face masks, hospitalization of symptomatic individuals and quarantine of asymptomatic individuals

on the disease control. Our study focusses on the outbreak of COVID-19 in India and hence we

have used the four data sets consisting of three states of the high incidences of COVID-19 in India

(Maharashtra, Delhi and Tamil Nadu) and overall country data. These data sets are for the cumulative

active cases of the disease. The purpose of selecting the active cases is inspired by the fact that this

data is real representative of the actual disease load and also reflects the need for preparedness from the

public health and policymakers. Our proposed model is then fitted to these data sets and we estimated

the transmission rate of disease between symptomatic individuals and susceptibles, and the recovery

rate of quarantined individuals. By looking at the estimated parameters, it is observed that the rate

of disease transmission is quite high in Maharastra which basically implies the high infectiousness of

the disease. Based on the estimated parameters and actual COVID-19 incidence data, we estimated

the basic reproduction number to get an overview of this phase of the outbreak. This suggests that

the rate of disease transmission needs to be controlled otherwise a large proportion will be affected

within a very short period of time. Our study also underlines short term predictions for the three states

and India. It is concluded that the infective population will be on increasing curve for Maharashtra

and India whereas we can see the settling of active cases for Tamil Nadu and Delhi. Sophisticated

techniques of sensitivity analysis are employed to determine the impacts of model parameters on the

basic reproduction number and symptomatic infected individuals.
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Further, a comprehensive analysis of the impact of parameters associated with the interventions

(use of face masks, hospitalizations of symptomatic individuals and quarantine of asymptomatic

individuals) is performed numerically. Our results suggest that higher intervention efforts are needed

to control the disease outbreak within a shorter period of time in India. Our analysis also reveals that

the strength of the interventions should be increased over time to eradicate the disease effectively.

Although the use of face masks in the public can significantly reduce COVID-19 in India, its use as a

sole intervention strategy may fail to lead to the realistic elimination of the disease, as such

elimination requires unrealistic high compliance in face masks usage in the public. COVID-19

elimination is feasible in India if the public face masks use strategy (using the masks with moderate

efficacy, and moderate compliance in its usage) is complemented with hospitalization of symptomatic

individuals and quarantine of asymptomatic individuals. Similar impact of face masks on the control

of COVID-19 in Nigeria was observed by Iboi et al. [14]. COVID-19 can be effectively controlled

using social-distancing measures provided its effectiveness level is at least moderate. The lockdown

measures implemented in India on March 25, 2020, need to be maintained for effective containment

of COVID-19 outbreaks in the country. Relaxing, or fully lifting, the lockdown measures sooner, in

an effort to re-open the economy or the country, may trigger a deadly wave of the pandemic.

We also analyzed our model for the stability of the equilibrium points, and the corresponding

results indicate that disease can be eradicated if the basic reproduction number is below unity that can

be maintained by proper use of face masks of high quality. Motivated by the fact that when

populations are small, the dynamics can be severely affected by small changes in the parameters, the

deterministic model is extended to its stochastic counterpart. A numerical simulation is provided for

the stochastic model. It is noted that the solution trajectories of the populations do not approach their

equilibrium levels, rather, these trajectories are distributed near the equilibrium values. The

distributions of symptomatic and asymptomatic infected populations are provided to show the

behaviors of trajectories when the model system is affected by stochastic perturbations.
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