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In this paper a modified fourth order Numerov method is presented for singularly perturbed differential–

difference equation of mixed type, i.e., containing both terms having a negative shift and terms having

positive shift. Similar boundary value problems are associated with expected first exit time problems

of the membrane potential in the models for the neuron. To handle the negative and positive shift terms,

we construct a special type of mesh, so that the terms containing shift lie on nodal points after discret-

ization. The proposed finite difference method works nicely when the shift parameters are smaller or big-

ger to perturbation parameter. An extensive amount of computational work has been carried out to

demonstrate the proposed method and to show the effect of shift parameters on the boundary layer

behavior or oscillatory behavior of the solution of the problem.

Introduction

Any system involving feedback control will almost involve time

delays. These arise because a finite time is required to sense the

information and then react to it. A singularly perturbed differen-

tial–difference equation is an ordinary differential equation in

which the highest derivative is multiplied by a small parameter

and involves at least one delay term. Such problems arise fre-

quently in the mathematical modeling of various physical and bio-

logical phenomena like optically bistable devices [1], description of

the human pupil reflex [2], a variety of models for physiological

processes or diseases and variational problems in control theory

[3,4], the first exit time problem in the modeling of the activation

of neuronal variability [5]. Lange and Miura [5,6] gave an asymp-

totic approach in the study of a class of boundary value problems

for linear second order differential–difference equations in which

the highest order derivative is multiplied by a small parameter.

An extensive numerical work had been initiated by Kadalbajoo

et al. [7–11]. In [12] Ramos has presented a variety of exponential

methods for the numerical solution of linear ordinary differential–

difference equations with a small delay based on piecewise analyt-

ical solutions of advection–reaction–diffusion operators. In [13],

the authors Jugal Mohapatra, Srinivasan Natesan constructed a

numerical method for a class of singularly perturbed differential–

difference equations with small delay.

In this paper we modified the fourth order Numerov method

and applied to singularly perturbed differential–difference equa-

tions of mixed type. To handle the negative and positive shift

terms, we construct a special type of mesh, so that the terms con-

taining shift lie on nodal points after discretization. The proposed

finite difference method works nicely when the shift parameters

are smaller or bigger to perturbation parameter. An extensive

amount of computational work has been carried out to demon-

strate the proposed method and to show the effect of shift param-

eters on the boundary layer behavior and oscillatory behavior of

the solution of the problem.

Modified fourth order Numerov method

We consider a linear singularly perturbed differential–differ-

ence equation of mixed type i.e., equation containing both the neg-

ative and positive shift terms.

e2y00ðxÞ þ aðxÞyðx� dÞ þxðxÞyðxÞ þ bðxÞyðxþgÞ ¼ f ðxÞ ð1Þ

on 0 < x < 1, 0 < e << 1, subject to the interval and boundary

conditions

yðxÞ ¼ /ðxÞ for � d 6 x 6 0 and yðxÞ ¼ wðxÞ for 1 6 x 6 1þg

ð2Þ

where a(x), x(x), b(x), f(x), /(x) and w(x) are smooth functions, d

and g are the small shifting parameters. For a function y(x) to

constitute a smooth solution to the problem (1), (2) it must be

continuous in the interval [0,1] and be continuously differentiable

in the interval (0,1). For the shifts d, g equal to zero and if
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a(x) + x(x) + b(x) < 0 on the interval [0,1], then the solution exhibits

boundary layers at both the ends of the interval [0,1].

We rearrange the differential Eq. (1) and (2) as

e2y00ðxÞ ¼ gðx; yðxÞ; yðx� dÞ; yðxþgÞÞ ð3Þ

where gðx; yðxÞ; yðx� dÞ; yðxþgÞÞ ¼ f ðxÞ � aðxÞyðx� dÞ� xðxÞyðxÞ�

bðxÞyðxþgÞ

Now, we construct a special type of mesh so that the terms con-

taining the shift parameters lie on the nodal points after discretiza-

tion. We divide the interval [0, 1] into N equal parts by choosing

the mesh parameter h such that h ¼ d
k
¼ g

‘
, where k and ‘ are posi-

tive integers chosen such that 1 6 k, ‘ 6 N.

At x = xi, the above differential equation can be written as

e2y00ðxiÞ ¼ gðxi; yðxiÞ; yðxi � dÞ; yðxi þgÞÞ ¼ gi; ð4Þ

where gi ¼ fi � aiyi�k �xiyi � biyiþ‘;

yi ¼ yðxiÞ; fi ¼ f ðxiÞ;ai ¼ aðxiÞ;xi ¼ xðxiÞ;bi ¼ bðxiÞ:

Now, we consider the fourth order Numerov finite difference meth-

od [14] to solve the Eq. (4) and this equation is approximated by the

following finite difference scheme:

e2

h
2
ðyi�1 � 2yi þ yiþ1Þ ¼

1

12
ðgi�1 þ 10gi þ giþ1Þ ð5Þ

The boundary conditions can be written as

yi ¼ /i;�k 6 i 6 0 and yi ¼ wi;N 6 i 6 N þ ‘ ð6Þ

where /i ¼ /ðxiÞ and wi = w(xi).

Using the definition of gi in Eq. (5), we get the following fourth

order finite difference scheme.

Eiyi�1 þ F iyi þ Giyiþ1 þ E�
i yi�k�1 þ F�

i yi�k þ G�
i yi�kþ1 þ E��

i yiþ‘�1

þ F��
i yiþ‘ þ G��

i yiþ‘þ1 ¼ Ri ð7Þ

where

Ei ¼
12e2

h
2

þxi�1; F i ¼ �
24e2

h
2

þ 10xi;Gi ¼
12e2

h
2

þxiþ1;

E�
i ¼ ai�1; F

�
i ¼ 10ai;G

�
i ¼ aiþ1; E

��
i ¼ bi�1; F

��
i ¼ 10bi;

G��
i ¼ biþ1;Ri ¼ fi�1 þ 10f i þ fiþ1

Using (6), the difference scheme (7) can be written as

Eiyi�1 þ F iyi þ Giyiþ1 þ E��
i yiþ‘�1 þ F��

i yiþ‘ þ G��
i yiþ‘þ1

¼ Ri � E�
i/i�k�1 � F�

i /i�k � G�
i /i�kþ1 for 1 6 i 6 k� 1

Eiyi�1 þ F iyi þ Giyiþ1 þ E��
i yiþ‘�1 þ F��

i yiþ‘ þ G��
i yiþ‘þ1 þ G�

i yi�kþ1

¼ Ri � E�
i/i�k�1 � F�

i /i�k for i ¼ k

Eiyi�1 þ F iyi þ Giyiþ1 þ E��
i yiþ‘�1 þ F��

i yiþ‘ þ G��
i yiþ‘þ1 þ G�

i yi�kþ1

þ F�
i yi�k ¼ Ri � E�

i/i�k�1 for i ¼ kþ 1

Eiyi�1 þ F iyi þ Giyiþ1 þ E��
i yiþ‘�1 þ F��

i yiþ‘ þ G��
i yiþ‘þ1 þ G�

i yi�kþ1

þ F�
i yi�k þ E�

i yi�k�1

¼ Ri for kþ 2 6 i 6 N � ‘� 2

Eiyi�1 þ F iyi þ Giyiþ1 þ E��
i yiþ‘�1 þ F��

i yiþ‘ þ G�
i yi�kþ1 þ F�

i yi�k

þ E�
i yi�k�1 ¼ Ri � G��

i wiþ‘þ1 for i ¼ N � ‘� 1

Eiyi�1 þ F iyi þ Giyiþ1 þ E��
i yiþ‘�1 þ G�

i yi�kþ1 þ F�
i yi�k þ E�

i yi�k�1

¼ Ri � G��
i wiþ‘þ1 � F��

i wiþl for i ¼ N � ‘

Eiyi�1 þ F iyi þ Giyiþ1 þ G�
i yi�kþ1 þ F�

i yi�k þ E�
i yi�k�1

¼ Ri � G��
i wiþ‘þ1 � F��

i wiþ‘ � E��
i wiþ‘�1 for N � ‘þ 1 6 i 6 N � 1

The above system of equations along with the boundary conditions

y0 = /0 and yN = wN is solved for yi, i = 0, 1, 2,....., N by Gauss elimina-

tion method with partial pivoting. In fact, any numerical method or

analytical method can be used to solve the above system of equa-

tions for yi.

0 0.2 0.4 0.6 0.8 1
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

x

N
u

m
e
ri

c
a
l 

S
o

lu
ti

o
n

η = 0.003

η = 0.006

η = 0.009

Fig. 1. The numerical solution of example 1 with e = 0.01 and d = 0.005 for different values of g.

Table 1

Numerical solution of example 1 for d = 0.03, g = 0.07.

N? 100 200 300 400 500

e;

2�1 6.1000e�007 1.6000e�007 7.0000e�008 4.0000e�008 3.0000e�008

2�2 6.7400e�006 1.6900e�006 7.5000e�007 4.2000e�007 2.7000e�007

2�3 5.0780e�005 1.2710e�005 5.6500e�006 3.1800e�006 2.0300e�006

2�4 2.9686e�004 7.4640e�005 3.3200e�005 1.8690e�005 1.1960e�005

2�5 1.6272e�003 4.1624e�004 1.8578e�004 1.0466e�004 6.7020e�005

2�6 6.6542e�003 1.8089e�003 8.1653e�004 4.6180e�004 2.9629e�004

Table 2

Numerical solution of example 2 for d = 0.07, g = 0.03.

N? 100 200 300 400 500

e;

2�1 1.4510e�005 3.6300e�006 1.6100e�006 9.0000e�007 5.8000e�007

2�2 9.3650e�005 2.3420e�005 1.0410e�005 5.8600e�006 3.7500e�006

2�3 5.2693e�004 1.3196e�004 5.8660e�005 3.3000e�005 2.1130e�005

2�4 2.5668e�003 6.4570e�004 2.8731e�004 1.6168e�004 1.0349e�004

2�5 9.9696e�003 2.5626e�003 1.1448e�003 6.4511e�004 4.1321e�004

2�6 3.1132e�002 8.7328e�003 3.9629e�003 2.2454e�003 1.4419e�003
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Numerical results

To demonstrate the applicability of the method we consider

boundary value problems of singularly perturbed linear differen-

tial–difference equations exhibiting boundary layers at both sides

of the underlying interval [0, 1]. These examples were discussed

in [5,6,9]. Since the exact solutions of the problems for different

values of d and g are not known, the maximum absolute errors

for the examples are calculated using the following double mesh

principle [15].

eN ¼ max
06i6N

jyNi � y2N2i j:

The maximum absolute error is tabulated in the form of Tables 1

and 2 for the considered examples. The corresponding graphs of

the solution for different values of the shift parameters d and g
are plotted in Figs. 1–4 to examine the effect of the shifts on the

boundary layer behavior of the solution.

Example 1 [5, p 265] e2y00ðxÞ þ 0:25yðx� dÞ � yðxÞ þ 0:25yðxþ

gÞ ¼ 1, subject to the interval conditions yðxÞ ¼ 1;�d 6 x 6 0;

yðxÞ ¼ 0;1 6 x 6 1þg.

Example 2[5, p 265] e2y00ðxÞ � 2yðx� dÞ � yðxÞ � 2yðxþgÞ ¼ 1

subject to the interval conditions yðxÞ ¼ 1;�d 6 x 6 0; yðxÞ ¼

0;1 6 x 6 1þg.

Conclusions

A modified fourth order Numerov method is presented for solv-

ing singularly perturbed differential–difference equations of mixed

type. To handle the shift parameters, we construct a special type of

mesh, so that the terms containing shift lie on nodal points after

discretization. The proposed finite difference method works nicely

when the delay parameter is smaller or bigger to perturbation

parameter. It has been observed that the layer behavior is main-

tained when the shift parameters are smaller than perturbation

parameter. It is also observed that the layer behavior of the solu-
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Fig. 3. The numerical solution of example 2 with e = 0.01 and d = 0.015, g = 0.007.
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Fig. 4. The numerical solution of example 2 with e = 0.01 and d = 0.007, g = 0.015.
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Fig. 2. The numerical solution of example 1 with e = 0.01 and g = 0.005 for different values of d.
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tion is no longer maintained and the solution exhibits oscillatory

behavior when shift parameters are larger than perturbation

parameter. From the results, it can be observed that as the grid size

h decreases, the maximum absolute errors decrease, which shows

the convergence to the computed solution. On the basis of the

extensive numerical work, it is concluded that the present method

offers significant advantage for the linear singularly perturbed dif-

ferential–difference equations of mixed type.
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