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Abstract: Co-location pattern analysis represents the subsets of spatial events whose instances 
are found in close geographic proximity. Given a collection of Boolean spatial features, the  
co-location pattern discovery process finds the subsets of features frequently located together. 
Key challenges in co-location pattern analysis are modelling of neighbourhood in spatial domain, 
minimum prevalent threshold to generate collocation patterns and analysing extended spatial 
objects. We discuss the above key challenges using event centric approach and N-most prevalent 
co-location patterns approach. We propose a window-based model to find the neighbourhood for 
point spatial datasets and the multiple window model for extended spatial data objects. We also 
use N-most prevalent co-location patterns approach to filter the number of co-location pattern 
generation. We propose a more generic and efficient window-based model algorithm to find co-
location patterns. Towards the end, we have done a comparative study of the existing approaches 
with our proposed approach. 
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1 Introduction 

Spatial co-location pattern analysis is an important area in 
the spatial domain. Given collection of Boolean spatial 
features, the co-location pattern discovery process finds the 
subsets of features frequently located together. Co-location 
pattern analysis are used in many numbers of applications 
like e-services, ecology, real estate and disaster 
management like flood, landslide and earthquake…. 
Highways in large metropolitan area often have frontage 
roads nearby. Identification of such co-locations is useful in 
selecting test-sites for evaluating in-vehicle navigation 

technology. In flood analysis, areas which are near to river 
are useful to find the flood affected areas. 

Co-location patterns represent subsets of Boolean spatial 
features whose instances are often located in close 
geographic proximity. Boolean spatial features describe the 
presence or absence of geographic object types at different 
locations in a two dimensional or three-dimensional metric 
space, such as the surface of the earth. Examples of Boolean 
spatial features include plant species, animal species, road 
types, cancers, crime, and business types. Figure 1 shows a 
dataset consisting of instances of several Boolean spatial 
features, each represented by a distinct shape. 
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Figure 1 Point spatial co-location pattern 

 

 
A careful review reveals from the above figure that there are  
two co-location patterns as {‘+’, ‘x’} and {‘o’, ‘*’}.  
Co-location rules (Shekhar and Chawala, 2003) are models 
to infer the presence of spatial features in the 
neighbourhood of instances of other spatial features. For 
example, ‘HighwayRoad -> House’ predicts the presence of 
the house in areas within highwayroad. The main idea of 
this paper is to overcome the key challenges in modelling of 
neighbourhood in a spatial domain. In this paper, we discuss 
an event centric approach and N-most prevalent approach, 
and we also discuss the proposed window-based model to 
find the neighbourhood for point spatial datasets and the 
multiple window model for extended spatial data objects. 
We finally compare our proposed approach with existing 
approaches. 

This paper is structured as follows: Section 2 discusses 
existing methods available to discover neighbourhood and 
co-location pattern approaches. Section 3 describes the 
overview of co-location analysis related concepts, where the 
method’s event centric approach and N-most prevalent  
co-location pattern approach were explained with sample 
data. Section 4 discusses proposed multiple window-based 
model approach for co-location pattern analysis of the 
algorithm. Section 5 deals the implementation and result of 
spatial co-location patterns. Section 6 summarises the 
performance analysis and comparison our approach with the 
existing methods and Section 7 discusses the conclusions 
and future enhancements of the proposed system. 

 

2 Related work 

Discovering co-location patterns in the literature were 
categorised into three classes, namely spatial statistics, data 
mining, and the event centric approach (Huang et al., 2004). 
Spatial statistics-based approaches use measures of spatial 
correlation such as cross-K function with Monte Carlo 
simulation and quadrant count analysis to characterise the 
relationship between different types of spatial features. 
Computation costs of spatial correlation measures are more 
expensive due to the exponential number of candidate 
subsets in a large collection of spatial Boolean  
features. Data mining approach is further divided into a 
clustering-based map overlay approach and association  
rule-based approach. Association rule-based approach is 
divided into transaction-based approach and distance-based 
approach. Association rule-based approach uses an apriori 
algorithm (Agarwal and Srikant, 1994), for the creation of 
transactions over space to generate co-location patterns. 
Transactions over space can use a reference-feature centric 
(Koperski and Han, 1995) approach or a data-partition 
approach (Morimoto, 2001). In reference feature centric 
model, the transactions are created around instances of one 
user user-specified spatial feature. Data-partition approach 
defines transactions by dividing spatial datasets into disjoint 
partitions. There may be many distinct ways of partitioning 
the data, each yielding a distinct set of transactions, which 
in turn yields different values of support of a given  
co-location. A clustering-based map overlay approach 
(Estivill-Castro and Lee, 2001), treats every spatial attribute 
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as a map layer and considers spatial clusters of point-data in 
each layer as candidates for mining associations. 
Neighbourhood-based clustering (Zou et al., 2005) which 
discovers clusters, based on the neighbourhood 
characteristics of data. 

Prevalence measures and conditional probability 
measures, called interest measures, are defined differently in 
different models of co-location mining (Salmenkivi, 2006). 
A distance-based approach which is also called  
k-neighbouring class sets. In this the number of instances 
for each pattern is used as the prevalence measure, which 
does not possess an anti-monotone property by nature. The 
reference feature centric and data partitioning models 
materialise transactions and thus can use traditional support 
and confidence as measures. The event centric approach 
defined new transaction free measures called the 
participation index (Shekhar and Huang 2001), which 
posses the desirable anti-monotone property. Co-location 
pattern mining general approach formalised the co-location 
problem and showed the similarities and differences 
between the co-location rules problem and the classic 
association rules problem as well as the difficulties in using 
traditional measures (e.g., support, confidence) created by 
implicit, overlapping and potentially infinite transactions in 
spatial datasets. User-specified proximity neighbourhoods 
(Qian et al., 2009; Celik et al., 2008) is used in place of 
transactions to specify groups of items and defined interest 
measures that are robust in the face of potentially infinite 
overlapping proximity neighbourhoods. A novel Joinless 
approach (Yoo and Shekhar, 2006) for efficient co-location 
pattern mining uses an instance-lookup scheme instead of an 
expensive spatial or instance join operation for identifying 
co-location instances. Multi-layer index and neighbour 
domain set (Wang et al., 2006) techniques were used 
generate co-location patterns for continuous data. 

Mining co-location patterns with rare spatial features 
(Huang et al., 2006) proposes a new measure called the 
maximal participation ratio (maxPR) and shown that a  
co-location pattern with a relatively high maxPR value 
corresponds to a co-location pattern containing rare spatial 
events. The spatial neighbour relationships and the size-2 
prevalence co-locations are compressed into extended 
prefix-tree structures in the novel order-clique-based (Wang 
et al., 2009) approach which mine candidate maximal  
co-locations and co-location instances efficiently. Two 
algorithms DF-NMColoc and BF-NMColoc were used for 
finding N-most prevalent co-location patterns (Wan and 
Zhou, 2008; Yoo and Bow, 2009), where N is the desired 
number of co-located event sets with the highest interest 
measure values per each pattern size. Mine top-k closed 
method (Yoo and Bow, 2011) is used to discover compact 
co-location patterns without minimum prevalence threshold 
specified by user. 

3 Overview of co-location analysis and related 
concepts 

3.1 Event centric approach 

Co-location patterns are discovered by using any one of the 
model such as the reference feature centric model, window 
centric model and event centric model. The prevalence 
measure and the conditional probability measure are called 
interesting measures used to determine useful co-location 
patterns from the spatial data. The interesting measures are 
defined differently in different models. We considered 
Figure 2 as an example spatial dataset to illustrate the event 
centric model. In the figure, each instance is uniquely 
identified by T: I, where T is the spatial feature type, and I 
is the unique id inside each spatial feature type. For 
example, B: 2 represent the instance 2 of the spatial feature 
B. Two instances are connected by edges if they have a 
spatial neighbour relationship. A co-location rule is of the 
form: c1 => c2 (p, cp), where c1 and c2 are co-locations,  
c1 ∩ c2 = Ø, p is a number representing the prevalence 
measure, and cp is a number measuring conditional 
probability. An important concept behind this method is 
proximity neighbourhood. User will provide a relationship 
between its types. Then based on the relationship the 
instances of different types are connected as shown in 
Figure 2. Now based on neighbourhood relationship, clique 
formation is checked. For e.g., in Figure 2, A0 instance is in 
the neighbourhood of B0 and C1. After getting all the 
relationship between all the instances, participation of each 
type in a relationship is calculated. The participation ratio 
pr(c, fi) for feature type fi in a size-k co-location C (f1, …, 
fk). 

Participation ratio = No. of instances of fi in the 
relationship / Total no of instances of fi.

 

Figure 2 Sample spatial data 
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For e.g., participation ratio of A in A – B relationship is 3/4. 
As three instances of A, i.e., A0, A1, A2, out of total four 
participate in A-B relationship. The participation index pi 
(cp) of a co-location C (f1 … fk) is k

ii 1min (pr(c, f )).=  
The participation index is used as the measure of 

prevalence of a co-location. 
For e.g., participation index of AB is min (pr (A), pr 

(B)), i.e., min (3/4, 2/5), therefore pi of AB is 2/5. 

Methodology 

Step 1 Initialisation: user provides the neighbourhood 
relationship between the objects. 

Step 2 For k in (2, 3, …, K – 1) and prev. co-location 
found do 
1 Generate size k candidate co-locations 
2 Check for cliques and generate table instances 
3 Calculate prevalence and select prevalent  

co-locations 
4 Generate co-location rules of size k. 

Table 1 Event centric co-location patterns 

(a) Patterns where K = 1 

A B C 

0 0 0 
1 1 1 
2 2 2 
3 3  
 4  
Pr 1 1 1 

(b) Patterns where K = 2 

A B B C A C 

0 0 1 0 0 1 
1 3 3 0 2 0 
2 3 4 2   
Pr 0.75 0.4 0.6 0.67 0.5 0.67 
PI 0.4 0.6 0.5   

(c) Pattern where K = 3 

A B C 

2 3 0 
Pr 0.25 0.2 0.33 
PI  0.2 

Event centric approach co-location patterns are shown in 
Table 2 for various size k. first one candidate pattern is 
generated, and then two candidate patterns are generated. 
Neighbourhood instances are identified based on the clique 
formation between the event instances. Table 2(b) shows the 
candidate sets based on the cliques between instances of  
A-B, B-C, A-C. In the event A-B, there are three cliques 
A0-B0, A1-B3, A2-B3. Therefore, Pr of both A and B in  
A-B is calculated as 0.75 and 0.4, respectively. And PI of 

A-B is calculated as min (0.75, 0.4), i.e., 0.4. This is 
compared with the prevalent threshold given by the user. 

When k = 3, Size-3 candidates are generated as shown 
in Table 2(c). In size-3 candidates, only one clique is 
formed, i.e., A2-B3-C0. The Pr of A, B and C in A-B-C is 
0.25, 0.2 and 0.33, respectively. Therefore, value of Pi is 0.2 
as its minimum in all the Pr’s. As in the example, we do not 
have cliques of size-4. So algorithm stops with output as all 
the prevalent co-location patterns. 

Table 2 N-most prevalent co-location patterns 

(a) Neighbourhood transactions 

S. no. Items (neighbour objects) 

1 A0 B0,C1 
2 A1 B3 
3 A2 B3,C0 
4 B0 A0 
5 B1 C0 
6 B3 A1,A2,C0 
7 B4 C2 
8 C0 A2,B1,B3 
9 C1 A0 
10 C2 B4 

(b) Event neighbourhood transactions 

S. no. Items (neighbour objects) 

1 A B,C 
2 A B 
3 A B,C 
4 B A 
5 B C 
6 B A,C 
7 B C 
8 C A,B 
9 C A 
10 C B 

(c) Candidate generation outcomes 

Star candidates Co-located candidates 

K = 2  
A B: 3/3 A C:2/3 A B: 1/4 
B A: 2/4 B C:3/4 A C: 2/3 
C A: 2/3 C B: 2/3 B C: 2/3 
K = 3  
A B C: 2/3 C A B: 1/3 
B A C: 1/4 

A B C: 1/4 

3.2 N-most prevalent co-location patterns approach 

Most studies of spatial co-location mining require the 
specification of two parameter constraints to find interesting 
co-location patterns. One is a minimum prevalent threshold 
of co-locations, and the other is a distance threshold to 
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define spatial neighbourhood. However, it is difficult for 
users to decide appropriate threshold values without prior 
knowledge of their task-specific spatial data. To improve on 
the first constraint, the problem of finding N-most prevalent 
co-located event set was introduced where N is the desired 
number of co-located event sets with the highest interest 
measure values per each pattern size. If the prevalence 
threshold is set too high, there may be only a small number 
of result sets or even no result. If the threshold is too low, 
too many result patterns can be generated with an 
exceedingly long computational time. They make the 
analysis of the discovered patterns impractical and even 
useless. So, to improve it N-most prevalent co-located event 
set was introduced. In particular, the task of mining N-most 
prevalent co-location patterns from a spatial dataset is to 
find N co-located event sets with the highest participation 
index values per each pattern size. For example, in the 
process of Figure 2, if N is 2, the N-most prevalent mining, 
spatial co-location patterns co-located event sets of size 2 is 
{B, C} and {A, C} since they have higher participation 
index values than other event sets, {A, B}. 

K-co-located event set is a co-location containing k 
event types. 

The N-most prevalent k-co-located event sets: Let L be a 
list of all k-co-located event sets by descending their 
participation index values, and let p be the participation 
index of the Nth k-co-located event set in the list L. The  
N-most prevalent k-co-located event sets is a set of  
k-co-located event sets having a participation index ≥ p. 

The N-most prevalent co-location patterns are the union 
of the N-most prevalent k-co-located event sets for 2 ≤ k ≤ 
kmax, where kmax is the maximum size of co-location 
patterns. 

Given spatial objects oi ∈ S, the neighbourhood 
transaction of oi is defined as set of spatial objects {oi, oj ∈ 
S | R(oi, oj) = true ∧ oi’s event type ≠ oj’s event type}, where 
R is neighbour relationship. For example, in Figure 2, C0 
has neighbour relationships with each A2, B1 and B3. The 
neighbourhood transaction of C0 is {A2, B1, B3} including 
itself as shown in Table 2(a). 

Given spatial objects oi ∈ S, the event neighbourhood 
transaction of oi is defined as set of spatial objects {oi’s 
event type, distinct event type oj ∈ S | R(oi, oj) = true ∧ oi’s 
event type ≠ oj’s event type}, where R is neighbour 
relationship. 

For example, in Figure 2, C0 has neighbour 
relationships with each A2, B1 and B3. The event 
neighbourhood transaction of C is {A, B} including itself as 
shown in Table 2(b). 

Methodology 

Step 1 Preprocess 
1 Initialisation: user provides the neighbourhood 

relationship. 
2 ST = gen_neighbour_transactions(S, R) 

 

Step 2 Candidate generation 
1 for i = 1 to m do 
2 Tree i = build_CP-tree (fi, ST) 
3 end do 
4 C = gen_candidates(Tree1, . . . , Tree m) 
5 calculate_upper_pi(C) 

Step 3 Pruning 
1 Generate the N-most prevalence co-location 

patterns. 

In preprocessing step, the neighbourhood transactions are 
generated based on the neighbourhood relationships 
obtained from the user. Using data from Figure 2 the 
neighbourhood transactions and event neighbourhood 
transactions are generated as shown in Tables 2(a) and 2(b). 
The Cp tree is constructed for each event from the event 
neighbourhood transactions, as shown in Figure 3. The star 
candidates are generated for various sizes k by mining Cp 
tree as shown in Table 2(c). Finally, the co-located 
candidates are generated from the star candidates who 
satisfy the prevalence measures. After generating  
co-location patterns for each size, their upper bound PI is 
sorted and then pruned on the basis of N value specified by 
the user. For example, suppose N value specified by the user 
is 2. 

Figure 3 CP tree generation (see online version for colours) 
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Then N-most prevalent patterns for size 2 are {A C} and  
{B C}. And for size 3, we have only one co-location pattern 
{A B C} as shown in Table 2(c). 

4 Multiple window-based model approach for  
co-location pattern analysis 

Most studies of spatial co-location mining require the 
specification of two parameter constraints to find interesting 
co-location patterns. First, one is a minimum prevalent 
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threshold of co-locations. The second is a distance threshold 
to define spatial neighbourhood. However, it is difficult for 
users to decide appropriate threshold values without prior 
knowledge of their task-specific spatial data. 

To overcome the above constraints, we have proposed 
the following solution as our contribution in the area of  
co-location pattern analysis. 

To improve on the first constraint, the problem of 
finding N-most prevalent co-located event sets was 
introduced where N is the desired number of co-located 
event sets with the highest interest measure values per each 
pattern size. If the prevalence threshold is set too high, there 
may be only a small number of result sets or even no result. 
If the threshold is too low, too many result patterns can be 
generated with an exceedingly long computational time. 
They make the analysis of the discovered patterns 
impractical and even useless. So, to improve it N-most 
prevalent co-located event was introduced. 

To improve on the distance neighbourhood constraint 
the ‘window’ model is introduced. 

In this window-based model, a distance measure is taken 
from the user, and an Euclidean bounding window is created 
around that point spatial object. The spatial objects which 
are within this neighbourhood are said to be in the 
neighbourhood of that particular spatial object as shown in 
Figure 4. Window model avoids the relationship 
specification by the user as an input to the system. For 
example, in Figure 5, A0 has C1 and B1 in its window area. 
Therefore, A0 has the neighbourhood relationship with C1 
and B1. Another example as B2 has no other object  
in its window area; therefore, B2 does not have any 
neighbourhood relationship with other objects. This window 
model will generate the neighbourhood relationship between 
the objects which then can be used for further calculations. 
As in general, event centric approach and N-most prevalent 
approach, user has to provide the relationship between 
objects but by using window model user can get the 
neighbourhood relationship by just provide the size of the 
window. 

Figure 4 Single window 

 

On the extended data-types (i.e., points including lines and 
polygons) the multiple – window model is introduced. 

The range for creating the multiple windows for the 
spatial dataset is decided dynamically, as the user might not 
be having the prior knowledge of their task-specific spatial 
data. So we are proposing the concept of multiple windows. 
In this method, we do not require the user-specified values 
to define the window and neighbourhood relationship. A 

number of windows are generated around each object as 
shown in Figure 6. Each window defines a unique 
relationship with another object based on that we proceed. 
For each window, the algorithm will generate co-location 
candidates which in turn are pruned to generate co-location 
patterns. From the output, user can itself decide what is 
required for the task. 

Figure 5 Window model objects illustration 

 

Figure 6 Multiple window 

 

4.1 Modelling neighbourhood 

We have used different techniques to define the 
neighbourhood. We initially apply the ‘window’-based 
system. The window-based system took the input from the 
user for defining the Euclidean distance around an object. 
Taking input from the user suffers from a lot of setbacks. 
Many co-location patterns may not be detected if the user 
input is too small. We proposed the ‘multi-window’-based 
model, which defines a range of windows for detecting the 
neighbourhood around an object. This multi-window model 
does not suffer from the earlier flaw. In geospatial 
environment, a window is a zone of specified distance 
around spatial objects. Neighbourhood is being calculated as 
the boundary should be equidistance from the object. E.g., 
in case of point object boundary will be a circle, in case of 
extended spatial objects (such as line or polygon) boundary 
will be the isoline equidistance to the edges of objects. On 
the user specified spatial data, multiple-window model is 
applied to define the neighbourhood relationship objects. In 
this step, we check the neighbourhood of the spatial objects 
and based on their attribute values, we decide a 
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neighbourhood and using a dynamic boundary, we generate 
the co-location patterns. 

Figure 7 Window boundaries around various spatial objects 

 

Figure 7 shows a window operation on different types of 
spatial objects. Objects in space frequently have some sort 
of impact on the objects and areas around them. Houses 
near to the highways will have more value in the real estate 
field. 

The Euclidean neighbourhood G(fj) of a feature fj is the 
union of N(il) for every instance il of the feature fj. 

The Euclidean neighbourhood G(f1, f2……fk) for a 
feature set C = {f1, f2……fk} is the intersection of G(fi) for 
every feature fi in C. 

The support ratio Pr(f1, f2……fk) for a feature set  
C = {f1, f2……fk} is G(f1, f2……fk) / the total area of the 
plane, where G(f1, f2……fk) is the Euclidean neighbourhood 
of the set C. The support ratio serves as the prevalence 
measure in this method. The window-based model has a 
major challenge in dealing with the large number of 
overlapping operations, which find intersection area among 
windows of spatial objects through geometric intersections. 
To reduce the overlay, overlapping should be avoided and 
that can be done using below formula. 
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The bounding neighbourhood of a spatial object, BN(o) is 
defined as MBBR(window(MOBR(Spatial Object O),d)) as 
shown in Figure 7, where MOBR is the minimum object 
bounding box, window is the window with size d, and 
MBBR is the minimum window bounding box. 

For example, Figure 8 shows eight objects with their 
bounding neighbourhoods. Four instances of feature A, A1, 
A2, A3, A4 and only the bounding neighbourhood of A3 
has one cell overlapping with the bounding neighbourhood 
of A4. If we set area the area of a cell to be one unit, the 
Euclidean bounding neighbourhood BN(A) of feature,  
A is 4*9 – 1 = 35, which is the union of the bounding 
neighbourhoods of these four instances. 

SPr(A) BN(A) / total area of the plane 35 / 200 0.175,= = =  

SPr(B) BN(AB) / total area of the plane 12 / 200 0.06= = =  

The conditional probability Pr (C2|C1) of a co-location rule 
s C1->C2 is the probability of finding the neighbourhood of 
C2 in the neighbourhood of C1. It can be computed as  
N(C1 ∪ C2) / N(C1). 

Figure 8 Bounded neighbourhood illustration 

 

Suppose we have the sample data shown in Figure 9, with 
two types A and B. And both A and B with two instance 
each. Let the spatial working area be 8*8. 

Therefore, the range of possible for the window is 
calculated as: 

4* .
spatial working areaLimit

total no of objects
=  

Hence, range of the window varies from 1 to limit at integer 
values. In our example, Figure 9, we have a total four 
object, therefore limit = 2. So, the range is defined from  
1 to 2. Therefore, there would be two neighbourhood 
relationship between objects one with window size 1 and 
other with size 2. So for each window size support ratios are 
calculated to generate the co-location patterns. 

Figure 9 Sample dataset for windows-based model 

 

4.2 Candidate co-location generation 

Based on the neighbourhood relationship defined by the 
multiple windows, for each individual window candidate are 
generated. All generated candidates are then processed for 
pruning. After finding the neighbourhood relationship, we 
have calculated the support ratio for every relationship. In 
above dataset, we have only one relationship A-B. So we 
have to calculate the support ratio for A-B. 

( )BN ABSupport ratio total area of the plane=  
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Figure 10 Modelling of neighbourhood using window,  
(a) intersection between A1 and B1 (b) intersection 
between A1 and B2 (c) intersection between A2 and 
B2 (see online version for colours) 

 
(a) 

 
(b) 

 
(c) 

And BN of two different type is calculated by area 
intersection between them. Therefore, for window size 1, 
the area between A1 and B1 is two units, and the area 
between A1 and B2 is again two units. And area between 
A2 and B2 is one unit as shown in Figure 10. 

Therefore, BN (AB) is 2 + 2 + 1 = 5 units. So support 
ratio (AB) is 5/64. Similar way we proceed for window  
size 2. And support ratio (AB) for window size 2 is 41/64. 

4.3 Pruning 

After finding support ratio for each relationship, we 
compare it with the minimum threshold given by the user. 
Co-location candidates having a support ratio greater than 
the user-specified threshold value are termed as co-location 
patterns. 

Multiple window based co-location pattern algorithm  
Input:  
 1. A spatial working area ‘W’ of D1×D2 dimensions. 
 2. S = {A set of Spatial features of points and lines.} 
 3. F= {Instance-id, Feature-Type, Location in Space} 

which would be representing a set of instances of 
features. 

 4. A minimum support ratio threshold ‘β’ 
 5. A conditional probability limit ‘µ’ for generating the 

co-location rules 
Output: 
 1. A set of co-location patterns with coverage ratios 

greater than the minimum total ratio threshold ‘β’ 
which is user-specified. 

 2. A set of co-location rules with conditional probability 
greater than the limit ‘µ’. 

Variables: 
 1. i = the co-location size. 
 2. BB2 = A set of candidate size-2 coarse level  

co-location patterns. 
 3. BP2 = A set of size-2 coarse level co-location patterns 

having total ratios > ‘β’. 
 4. Bi = A set of candidate size-i co-location patterns. 
 5. Pi = A set of size-i co-location patterns. 
 6. Ti = A set of co-location rules derived from size-i  

co-location patterns. 
The geometric filter: 
 1. Initialisation 
 2. BB2 = Pattern_search (S, F, r[]) 
 3. BP2 = Prevalence_prune(BB2, β) 
Pattern search:  
 1. Initialisation 
 2. P2 = overlay(BP2, r[]); i=2 
 3. While( not empty Pi) do { 
 4. Bi+1 = generate_candidate_co-location(Pi); 
 5. Pi+1 = Prevalence_prune(B i+1, β) 
 6. Ri+1 = generate_co-location_rule(µ) 
 7. i = i + 1 } 
 8. SAVE: union(P2,……..Pi+1) 
 9. SAVE: union(R2,……..Ri+1) 

The above multiple window-based co-location pattern 
algorithm is proposed to discover co-location patterns from 
different types of spatial data such as point, line and 
polygon. 
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5 Implementation and result discussion 

Dev-C++ is used for the implementation. It is easy and 
convenient to use this tool for implementation. Datasets are 
taken as input from the user and tested on the implemented 
algorithms. The algorithm was tested with synthetic dataset, 
and the co-located patterns generated were found out in 
different cases as shown in Figures 11 and 12. 

Figure 11 Co-location pattern for single window approach  
(see online version for colours) 

 

The single window approach generates fewer numbers of 
patterns, which omit important patterns due to limited 
neighbours in the window as in Figure 11. The multiple 
window approach includes important pattern and generates 
more co-location patterns as shown in Figure 12. The  
co-located patterns generated were found to be more 
optimised and dynamic with our proposed methodology. 

Considering the fact that user might not be having prior 
knowledge of datasets, we tried to define the neighbourhood 
relationship with the more dynamic approach. 

In this paper, we proposed algorithm for co-location 
mining for different types of spatial data objects. We studied 
the existing techniques and had implemented them. We 
started with an event centric model where the algorithm 
faced two major constraints, first is a minimum prevalent 
threshold of co-locations, and the other is a distance 
threshold to define spatial neighbourhood. We implemented 
the N-most prevalent co-location pattern algorithm where 
the first constraint was improved, such that users can control 
their interesting patterns in the number of desired patterns. 
As the user might not be having prior knowledge of their  
task-specific dataset, we proposed a window model to 
improve the second constraint in both the above methods. 
Both the methods are modified and are implemented and 

tested with window model. Window model is used to 
provide the distance threshold to define spatial 
neighbourhood. Then we tried to make it applicable to the 
extended spatial data objects by introducing the  
multiple-window model to make it more dynamic in its 
neighbourhood selection. 

Figure 12 Co-location pattern for multiple window approach 
(see online version for colours) 

 

6 Performance analysis 

Here, we compared our proposed approach with existing 
approach. We also have shown the comparison in Table 3(a) 
and Table 3(b). We have used the dataset shown in  
Figure 13 for the result analysis purposes. 

Table 3(a) Result comparison between event centric and N-most 
prevalent approach 

Event centric approach N-most prevalent co-location 
patterns 

Inputs: Inputs: 

1 Above dataset. 1 Above dataset. 

2 Value of the window = 7 2 Value of the window = 7 

3 Min threshold value = 0.2 3 No. of patterns (N) = 2 

Output: Output : 

1 A-B 1 For size 2 A-C and B-C 
are co-located. 

2 A-C 

3 B-C and A-B-C are  
co-located. 

2 For size 3 A-B-C are  
co-located. 
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Table 3(b) Result comparison between single window approach 
and multiple window approach 

Existing window approach Multiple-window model  

Input:  Input:  

• Above dataset • Above dataset 

• Workspace area (8*8) • Workspace area (8*8) 

• Window size (1) • Threshold value (0.4) 

• Threshold value (0.4)  

Output: Output: 

• A and B are not co-located • For window size 1: A and 
B are not co-located. 

 • For window size 2: A and 
B are co-located. 

From the above results [Table 3(a)] we conclude that event 
centric approach depends on the user-specified threshold 
value for generating co-location patterns. So, the user must 
have a prior knowledge of their datasets, whereas, in  
N-most, prevalent patterns approach the number of patterns 
generated are controlled by the user. N specifies the number 
of patterns to be generated for each size. 

Comparison for extended data objects. 

Figure 13 Sample dataset for result analysis results 

 

Figure 14 Example dataset for result analysis 

 

Figure 15 Various co-location approaches performance,  
(a) execution time vs. co-location approach  
(b) number of co-location pattern vs. approach  
(see online version for colours) 
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(b) 

The above results infer the following: 

• In existing window approach, the window value is user 
defined. So the outcomes are biased in terms of window 
value. As the number of generated co-location patterns 
can be very low if a window value is low, whereas in 
multiple window models, the window value will be a 
range of values with integer intervals. 

• In existing window approach, the number of  
co-location patterns generated would be less compared 
to the multiple window models as the multiple window 
model works on range of window values. 

• In existing window approach, the user needs to have a 
prior knowledge of the existing condition to make a 
correct estimate for the number of co-location patterns 
to be generated whereas the multiple window model 
does have any such requirement. It is more generic. 

• Existing window approach is less efficient as compared 
to the multiple window model because of the window 
value is user defined, and it may miss out important  
co-location patterns. 
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• Number of co-location pattern generation is more in 
multiple window approach compare than single 
window approach. The execution time for multiple 
windows is more than single window and less than an 
even centric and n-prevalent approach. 

7 Conclusions 

In this paper, we proposed multiple window-based 
algorithm for co-location mining for different types of 
spatial data objects. We have discussed the different  
co-location pattern analysis algorithms like the event centric 
approach and N-most prevalent co-location patterns. We 
implemented the N-most prevalent co-location pattern 
algorithm where the first constraint was improved, such that 
users can control their interesting patterns in the number of 
desired patterns. As the user might not be having prior 
knowledge of their task-specific dataset, we proposed a 
window model to improve the second constraint in both the 
above methods. Both the methods are modified and are 
implemented and tested with window model. Window 
model is used to provide the distance threshold to define 
spatial neighbourhood. Then we tried to make it applicable 
to the extended spatial data objects by introducing the 
multiple-window model to make it more dynamic in its 
neighbourhood selection. Here, we have tested only the 
Boolean features in co-location pattern generation. In future, 
the algorithm can be tested for continuous and categorical 
features. 
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