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1.  Introduction

The engineering ceramic composites with low density 
and high strength are mostly preferable for the industrial 
applications1. The distinctive properties like high specific 
stiffness and strength, high mechanical strength, good 
corrosive resistance and low thermal expansion of the 
particle reinforced composites have enabled their use in 
automotive, machine tool industries, aerospace, sporting 
equipment industries2. 

Generally, the engineering ceramic composites are 
Aluminium Metal Matrix Composite (AMMC)3. It is 
reinforced with different kinds of ceramic particles like 
Si3N4

4, A12O3
5, B4C

6,7, TiC8 and the most commonly used 
particle is SiC9,10.

However, it could be very difficult to machine 
AMMCs, because of their non-homogeneous, anistropic 
and reinforced by very abrasive materials. So, the 
machined composite may experience a significant 
damage and high wear rate of cutting tools. After all, 

the machining of composite materials is depending 
on several conditions like material properties, relative 
content of the reinforcement and the response to the 
machining process11

’
12. For machining these AMMCs for 

good machinability, the Poly Crystalline Diamond (PCD) 
tools were suggested well13. 

End milling is a vital and common machining 
process because of its flexibility and capability to produce 
various profiles even with curved surfaces. It has the 
ability to remove material faster with a good surface 
quality and milled surfaces are largely used to mate the 
aerospace, automobile, biomedical products, as well as in 
manufacturing industries applications14. 

The machining parameters optimization in an end 
milling process plays an important role in the practical 
manufacturing applications. The aims are to improve the 
surface roughness quality and maximize the Material 
Removal Rate (MRR) with optimal cutting force. 
Traditionally, trial-and-error and heuristic approaches are 
employed to obtain the optimal machining parameters. It 
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is well recognized that these methods are time consuming 
and lead to long machining periods with large machining 
cost15.

Design of experiments is a powerful analysis tool for 
modelling and analysing the influence of control factors 
on output performance. The traditional experimental 
design is difficult to be used especially when dealing 
with large number of experiments and when the number 
of machining parameter is increasing16. The most 
important stage in the design of experiment lies in the 
selection of the control factors17. The development of an 
effective methodology to determine the optimum cutting 
conditions leading to minimum surface Roughness (Ra) 
in milling by coupling Response Surface Methodology 
(RSM) with a developed Genetic Algorithm (GA)18.

From the light of the review, it is inferred that there 
is a lack of study in predicting and optimizing the 
cutting force along with MRR and Ra for end milling 
process. In this work, the main objective is to develop 
the mathematical models for the MRR, Ra and cutting 
Force (FR) with regards to machining parameters using 
RSM. The direct and interaction effect of each parameter 
are studied. The optimal machining parameters to obtain 
minimum Ra and cutting force with maximum MRRis 
done using Genetic Algorithm (GA).

2.  Materials and Methods

2.1 Materials
The end milling tests were conducted with BATIBOI-
NOMO universal milling machine shown in Figure 
1a. In the milling experiments, Al 6061/SiC composite 
material were used as the work piece with varying 
reinforcement wt. % of 5, 10 and 15, which had a 
dimension of 100*100*10 mm3. The stir casting method 
is the effectivemanufacturing mrthod for producingthe 
Al/SiC composites and the chemical composition of Al 

6061 is tabulated in Table 1. The Poly Crstalline Diamond 
(PCD) coated tool shown in Figure 1b of thickness 0.6 
mm and 12 mm in dia is used and its nomenclature is 
shown in Table 2.

Table 1.    Chemical composition of Al 6061
Ma-
terial

Mg C Cr Zn Fe Si Mn Ti Al

% 0.81 0.21 0.25 0.11 0.25 0.6 0.04 0.1 Bal-
ance

Table 2.    Tool Nomenclature
d1 d2 l1 l2 l3 l4

6.0 6.0 57.0 8.0 21.0 36.0

The MRR is calculated using the Equation (1) and 
the cutting forces is measured using the 3-axis milling 
tool dynamometer. The force data was obtained through 
DAQ card and amplifier under Dynoware software. 
From this, the three Force components (Fx, Fy and Fz) 
are measured simultaneously and its resultant (FR) is 
calculated using the Equation (2). The Surface Roughness 
(Ra) of the machined surface is measured using MarTalk 
Profilometer with the accuracy of 0.001 µm.

Time

DOC*b*l
MRR =     (1)

2
z

2
y

2
xR FFFF ++=     (2)

Where, l = length of the plate
 b = breath of the plate
 DOC = depth of cut
 FR = Resultant cutting force
 Fx, Fy and Fz = Cutting force along x, y and z-axis 
respectively.

2.2 Design of Experiments (DOE)
The RSM involves the studying the response based on 
the combinations, estimating the coefficients, fitting the 

Figure 1.   (a) Universal milling machine (b) PCD tool.
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experimental data, predicting the response and checking 
the adequacy of the fitted model20. Here, the responses 
are MRR, Ra and FR for the independent variables (input 
parameters) are reinforcement %, Depth of Cut and Feed 
rate, Cutting Speed are shown in Table 3. For this DOE, 
the three levels RSM design with L31 array was done using 
MINITAB 16. The regression equations were formed 
for the individual responses based on the controlling 
parameters. From this mathematical model, the predicted 
models are estimated and the models are validated 
through ANOVA. 

Table 3.    Parameters and levels in end milling
S. 
No.

Variable Parameter Units levels
Low High

1. A Material (Wt. %) 5 15
2. B Depth of Cut (mm) 0.3 0.6
3. C Feed (mm/min) 30 90
4. D Cutting 

Speed
(rpm) 100 1000

2.3 Genetic Algorithm (GA)
GA is used to find the optimum configuration of input 
parameters to achieve the optimal response. In the GA 
many individuals construct a population to evolve based 
on described selection rules to state that the fitness gets 
maximized21,22. GA is of many coded types, here the real 
coded is used because the inputs are taken from RSM 
model. The values of initial parameters are tabulated in 
Table 4 for doing GA in MATLAB 14. The population was 
supervised by reproduction, which contained three main 
operators (selection, crossover and mutation) as shown in 
Figure 2.

Figure 2.   GA for optimization.

Table 4.    Parameters of GA
Parameters Value
Chromosome length 4
Population size 104
Mutation rate 0.2
Selection function Tournament
Crossover fraction 0.8
Mutation function Adaptive feasible
Crossover function Single point

3.  Response Surface Methodology

The results of the output parameters after machining 
process were consolidated for the mathematically model 
the input parameters. The experiment is designed 
according to the selected three factors with three levels, 
and it is given in Table 3 as explained23. The RSM trials of 
the randomized design Table are shown in Table 5.

3.1 Mathematical Models for the Responses
The mathematical models for the responses are derived 
from the uncoded data for the given input trails. The MRR 
in form of regression equation is stated in Equation (3), 
which states that the factor B influences more compared 
to other factors. In Equation (4) and (5) are the regression 
equations of Ra and FR respectively, which also declare 
that the factors B (depth of cut) influences highly in all 
configuration results. 

 

      (3)
 

      (4)
 

      (5)
3.2  Checking of Data and Adequacy of 

Model
The normality of the data was assessed by means of the 
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normal probability plot. The normal probability plot of 
the residuals for the MRR, Ra and FR are shown in Figure 
3 (a), (b) and (c) respectively. The normal probability plot 
for the responses reveals that the residuals fall in a straight 
line. This means the errors are distributed normally. The 
Independence of the data was tested, by plotting a graph 
between the residuals, and the run order for the responses 
confirms that there was no predictable pattern observed, 
because all the run residues lay on or between the levels, 
which agrees with the results22.

Table 6.    Adequacy of the models
S. No. Response Std. Deviation R2 R2

(adj)

1. MRR 3.308 92.7% 86.4%
2. Ra 1.069 86.6% 84.9%
3. FR 108.9 89.4% 81.4%

Residual

Pe
rc

en
t

5.02.50.0-2.5-5.0

99

90

50

10

1

Fitted Value

Re
si

du
al

3020100

5.0

2.5

0.0

-2.5

-5.0

Residual

Fr
eq

ue
nc

y

630-3-6

8

6

4

2

0

Observation Order

Re
si

du
al

30282624222018161412108642

5.0

2.5

0.0

-2.5

-5.0

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

Figure 3.   (a) Input data analysis of plot for MRR.

Table 5.    Analytical table of responses for the independent variables
S. No. Material (wt. %) Depth of Cut (mm) Feed (mm/min) Cutting Speed (rpm) MRR (mm3/s) Ra (µm) FR (N)

1 15 0.3 30 1000 4.5 0.5 36.68
2 10 0.6 60 550 12.44 2.41 264.8
3 10 0.6 60 550 12.44 2.41 264.8
4 10 0.6 60 550 12.44 2.41 264.8
5 15 0.3 90 100 24.28 4.92 314.03
6 10 0.6 30 550 7.2 0.52 94.96
7 10 0.6 60 550 12.44 2.41 264.8
8 10 0.6 90 550 20.57 2.32 25.82
9 5 0.3 90 1000 10.29 0.69 49.33

10 15 0.9 90 1000 36 0.95 88.91
11 15 0.9 90 100 30.86 6.15 501.65
12 5 0.9 90 100 27 9.06 752.12
13 5 0.9 90 1000 31.76 0.77 49.83
14 10 0.6 60 550 12.44 2.41 264.8
15 10 0.9 60 550 11.37 1.13 122.16
16 10 0.6 60 100 12.13 3.51 365.64
17 10 0.6 60 1000 13.12 0.01 44.86
18 10 0.6 60 550 12.44 2.41 264.8
19 15 0.6 60 550 8 1.25 111.07
20 10 0.6 60 550 12.44 2.41 264.8
21 15 0.3 90 1000 8 1.25 111.07
22 10 0.3 60 550 3.6 0.62 88.91
23 15 0.3 30 100 3.6 2.76 35.62
24 5 0.6 60 550 8.37 0.78 51.01
25 5 0.9 30 1000 10.8 2.25 57.81
26 15 0.9 30 100 4.77 4.82 278.14
27 15 0.9 30 1000 4.25 0.78 7.28
28 5 0.3 90 100 1.87 7.57 501.65
29 5 0.3 30 100 2.4 1.84 373.07
30 5 0.3 30 1000 4 0.35 4.87
31 5 0.9 30 100 10.8 2.01 178.72
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Figure 3.   (b) Input data analysis of plot for Ra.
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Figure 3.   (c) Input data analysis of plot for FR.

Residual

Pe
rc

en
t

2001000-100-200

99

90

50

10

1

Fitted Value

Re
si

du
al

6004503001500

100

0

-100

-200

Residual

Fr
eq

ue
nc

y

100500-50-100-150-200

8

6

4

2

0

Observation Order

Re
si

du
al

30282624222018161412108642

100

0

-100

-200

Normal Probability Plot of the Residuals Residuals Versus the Fitted Values

Histogram of the Residuals Residuals Versus the Order of the Data

The adequacy of the responses are tabulated in Table 
6 with R2 and R2

(adj) values. These indicate that the model 
fits the data well and R2 is in agreement with R2

(adj) which 
supports prediction power of the model. In all the models, 
both the values are good and above 80% which makes a 
fitness in predicted solutions.

3.3 ANOVA 
The ANOVA for MRR, Ra and FR are tabulated in Table 
7 to 9 respectively. In all forms of regression, the P values 
of the responses are less than the F value and also it was 
less than 0.05 i.e. significant for 95% confidence limit. It 
confirms that the developed models are adequate, and 
the predicted values are in good agreement with the 
measured data.

Table 7.    ANOVA for MRR
Source DF Seq SS Adj SS Adj MS F P
Regres-
sion

14 2234.93 2234.93 159.638 14.59 0

Linear 4 1693.47 1693.47 423.367 38.68 0
Square 4 83.78 83.78 20.944 1.91 0.157
Interac-
tion

6 457.68 457.68 76.28 6.97 0.001

Residual 
Error

16 175.11 175.11 10.944

Lack-of-
Fit

10 175.11 175.11 17.511

Pure 
Error

6 0 0 0

Total 30 2410.03

Table 8.    ANOVA for Ra
Source DF Seq SS Adj SS Adj MS F P
Regres-
sion

14 118.318 118.3183 8.4513 7.39 0

Linear 4 89.375 89.375 22.3438 19.54 0
Square 4 7.788 7.7882 1.9471 1.7 0.198
Interac-
tion

6 21.155 21.155 3.5258 3.08 0.033

Residual 
Error

16 18.293 18.2934 1.1433

Lack-of-
Fit

10 18.293 18.2934 1.8293

Pure 
Error

6 0 0 0

Total 30 136.612

Table 9.    ANOVA for FR

Source DF Seq SS Adj SS Adj MS F P
Regression 14 731762 731762 52269 4.41 0.003
Linear 4 580060 580060 145015 12.23 0
Square 4 24819 24819 6205 0.52 0.22
Interaction 6 126884 126884 21147 1.78 0.166
Residual 
Error

16 189652 189652 11853

Lack-of-Fit 10 189652 189652 18965
Pure Error 6 0 0 0
Total 30 921414



Vol 9 (30) | August 2016 | www.indjst.org Indian Journal of Science and Technology6

A New Hybrid Approach to Optimize the End Milling Process for Al/SiC Composites using RSM and GA

3.4  Interaction Effect of the Controlling 
Factors

The contour plots were developed to study the interaction 
effect of controlling parameters on MRR is shown in 
Figure 4. The maximum MRR (Dark Green) is identified 
at high depth of cut and feed rate. The material and cutting 
speed factors doesn’t influence much compared to others 
in MRR. This result confirms the results of Equation (3) 
and also it agrees with the results24.

The interaction effect of controlling parameters on Ra 
shown in Figure 5 reveals that the minimum Ra (Dark 

Blue) is identified well with the maximum cutting speed25. 
Even though other parameters influence the Ra but the 
significant observation was found with the influence 
of cutting speed. The minimum FR (Light Green) was 
noticed with less feed rate, reinforcement (wt. %) at high 
cutting speed as shown in Figure 6. The increase in FR 
will leads to decrease in tool life but with minimum FR 
configuration, the MRR is less. Therefore, it is essential 
to final an optimal configuration with minimal FR with 
produce maximum MRR26.

Figure 4.   Contour plots for MRR. 

Figure 5.   Contour plots for Ra.
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4.   Optimization of Machining 
Parameters 

For finding the optimal end milling machining parameters, 
the generation was started with 0.5 of fitness value and it 

was increased with a 0.005 step to reach the final value. 
The generation plot was graphically represented in Figure 
7 (a) and (b) against average spread and average distance 
respectively. This shows the average spread of 0.09 for the 
maximum generation of 104.

Figure 6.   Contour plots for FR.

Figure 7.   Generation plots.
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Among these configurations the possible optimal 
solutions are generated at 21 plots which are tabulated in 
Table 10. The optimal machining parameters of end milling 
which can provide minimum FR, Ra and maximum MRR 
was found from Figure 8 i.e., reinforcement material of 5 
wt. %, depth of cut 0.3 mm, feed rate of 49.3 mm/min and 
cutting speed of 474.3 rpm. From the estimated model, 
the responses for these input are MRR of 13.96 mm3/s, 
Ra of 1.08 µm with the FR of 175.73N. The same trail 
was practically executed to get the practically solution 
and it was MRR of 11.3 mm3/s, Ra of 0.73 µm with the 
FR of 211.47N which was 11%, 13% and 17% deviation 
from the predicted results but the optimal configuration 
remains well with the desirability of 98.7%. 

Figure 8.   Optimized results of responses.

5.  Conclusion

In this research, the engineering ceramic material Al/
SiC was studied to machine through end milling process. 
The necessity of machining parameters control and its 
influences on quality also illustrated well. The second 
order polynomial mathematical models were generated 
to estimate the responses in a significant level using 
RSM with L31 array and it was optimized through GA. 
The optimal machining parameters of end milling were 
reinforcement of 5 wt. %, 0.3 mm depth of cut, feed rate of 
49.3 mm/min and cutting speed of 474.3 rpm. From the 
estimated model, the responses for these input are MRR 
of 13.96 mm3/s, Ra of 1.08 µm with FR of 175.73N which 
were 11%, 13% and 17% deviation from the experimental 
results with the desirability of 98.7%.
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