PAPER • OPEN ACCESS

A note on hajos stable graphs

To cite this article: M Yamuna and K Karthika 2017 IOP Conf. Ser.: Mater. Sci. Eng. 263042118

View the article online for updates and enhancements.

Related content

\author{

- Excellent - stable graphs M Yamuna and K Karthika
}

Non - domination subdivision stable graphs M Yamuna and A Elakkiya

Matrix representation - Hajos stable graphs
M Yamuna and K Karthika

A note on hajos stable graphs

M Yamuna and K Karthika
Department of Mathematics, School of Advanced Sciences, VIT University, Vellore 632014, India
E-mail: myamuna@vit.ac.in

Abstract

Let G_{1} and G_{2} be two undirected graphs, ($\mathrm{v} w$) be an edge of G_{1}, and (x y) be an edge of G_{2}. Hajos construction forms a new graph H , that combines the two graphs by identifying vertices v and x into a single vertex, removing the two edges ($\mathrm{v} w$) and ($\mathrm{x} y$), and adding a new edge ($\mathrm{w} y$). In this paper we have discussed the properties of graphs G_{1} and G_{2} that are Hajos stable and not Hajos stable graphs. We have proved that, if G_{1} and G_{2} are Euler graphs, then the Hajos graph is also Euler. We have obtained conditions whether the Hajos stable graphs are Hamiltonian and not Hamiltonian graphs. Also we have provided on NG type result for Hajos stable graphs. We have proved that, if G_{1} and G_{2} are just excellent and Hajos stable then H is not just excellent. Also we have shown that very excellent graphs are not Hajos stable graphs.

1. Introduction

GyorgyHajos was a great mathematician who worked in graph theory, group theory etc. He was a member of the Hungarian Academy of Sciences, initially he was a corresponding member in 1948 and at later stage he became a full member in 1958. He was chosen to the Romanian Academy of Sciences in 1965, and in 1967 to the German Academy of Sciences Leopoldina. In 1942, he obtained the Gyula Konig prize and he won the Kossuth prize in 1951 and 1962 [1].
In graph theory, the Hajos construction is one of thebinaryoperation on graphs named after Gyorgy Hajos. Catlin has provided a conjecture for Hajos graph coloring [2]. Brown et al. have proved that the Hajos construction of two amenable k - critical graphs need be amenable for any $\mathrm{k} \geq 5$ [3].
An analogue of Hajos theorem for the circular chromatic number was proved by Zhu [4]. Kral has studied about an analogue of Hajos theorem for list coloring. Also one of the operations of Hajos sum was introduced by Kral [5]. Hajos join construction was introduced by Liu [6].
Yamuna et al have introduced the following stable graphs. A graph G is domination dot stable (DDS), if $\gamma(\mathrm{G} . \mathrm{uv})=\gamma(\mathrm{G}), \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{u} \perp \mathrm{v}$ [7]. A graph G is domination subdivision stable (DSS), if $\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=\gamma(\mathrm{G}), \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{u} \perp \mathrm{v}$ [8]. A graph G is domatic subdivision stable (dss), if $\mathrm{d}(\mathrm{G})=\mathrm{d}\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right), \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{u} \perp \mathrm{v}$ [9]. A graph G is $\gamma-$ stable graph if $\gamma\left(\mathrm{G}_{\mathrm{xy}}\right)=\gamma(\mathrm{G}), \forall, \mathrm{x}$, $\mathrm{y} \in \mathrm{V}(\mathrm{G}), \mathrm{x}$ is not adjacent to y [10].
A graph G is said to be total domination dot - stable if dotting any pair of adjacent vertices leaves the total domination number unchanged [11]. Desormeaux et al., have studied about the total domination stable graphs upon edge removal [12]. Also they have studied about the total domination vertex removal changing and stable graphs [13].
Graph operations produce new graphs from initial one. Binary operations are in general tough, since they involve more than one graph. Hajos construction is a binary operation involving three operations edge removal, edge addition and vertex merging. In this paper, we have studied the results on

Hajosstable graphs and not Hajos stable graphs. Also we have obtained results using general graph properties with the Hajos stable graphs.

2. Materials and methods

We consider only simple connected undirected graphs $\mathrm{G}=(\mathrm{V}, \mathrm{E})$. The open neighborhood of vertex $v \in V(G)$ is denoted by $N(v)=\{u \in V(G) /(u v) \in E(G)\}$ while its closed neighborhood is the set $\mathrm{N}[\mathrm{v}]=\mathrm{N}(\mathrm{v}) \cup\{\mathrm{v}\}$. A cut vertex (edge) of a graph G is a vertex (edge) whose deletion increases the number of components. We write $\mathrm{G}-\mathrm{v}$ or $\mathrm{G}-\mathrm{S}$ for the subgraph obtained by deleting a vertex vor set of vertices S.
An Euler path is a path that uses every edge of a graph exactly once. An Euler circuit is a circuit that uses every edge of a graph exactly once. A Hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly once. A Hamiltonian cycle is a Hamiltonian path that is a cycle. We denote u adjacent to v by $u \perp v$. For details of on graph theory we refer to [14].
A set of vertices D, in a graph $G=(V, E)$ is a dominating set if every vertex of $V-D$ is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set. The cardinality of any minimum dominating set for G is called the domination number of G and it is denoted by $\gamma(\mathrm{G}) . \gamma-$ set denotes a dominating set for G with minimum cardinality.
A vertex v is said to be good if $\exists \mathrm{a} \gamma$ - set of G containing v . If \exists no $\gamma-$ set of G containing v, then v is said to be bad vertex. A vertex v is said to be a , down vertex if $\gamma(\mathrm{G}-\mathrm{u})<\gamma(\mathrm{G})$, level vertex if $\gamma(\mathrm{G}$ $-\mathrm{u})=\gamma(\mathrm{G})$, up vertex if $\gamma(\mathrm{G}-\mathrm{u})>\gamma(\mathrm{G})$. A vertex v is said to be selfish in the $\gamma-$ set D , if v is needed only to dominate itself. A vertex in $\mathrm{V}-\mathrm{D}$ is k - dominated if it is dominated by at least k vertices in D that is $|N(v) \cap D| \geq k$. The private neighborhood of $v \in D$ is denoted by $p n[v, D]$, is defined by $\mathrm{pn}[\mathrm{v}, \mathrm{D}]=\mathrm{N}(\mathrm{v})-\mathrm{N}(\mathrm{D}-\{\mathrm{v}\})$. For details of on domination we refer to [15].

Hajos construction

Let G_{1} and G_{2} be two graphs, $\left(u_{1} v_{1}\right)$ be an edge of G_{1}, and $\left(u_{2} v_{2}\right)$ be an edge of G_{2}. Then the Hajos construction produce a different graph H that combines the 2 graphs by merging vertices u_{1} and u_{2} into a single vertex u_{12}, eliminating the two edges $\left(u_{1} v_{1}\right)$ and ($u_{2} v_{2}$), and adding a new edge (v_{1} v_{2}) [16].

Hajos stable graphs

Let G_{1} and G_{2} be any two graphs. Let $\mathrm{E}\left(\mathrm{G}_{1}\right)=\left\{\mathrm{e}_{11}, \mathrm{e}_{12}, \ldots, \mathrm{e}_{1 \mathrm{p}}\right\}$ and $\mathrm{E}\left(\mathrm{G}_{2}\right)=\left\{\mathrm{e}_{21}, \mathrm{e}_{22}, \ldots, \mathrm{e}_{2 \mathrm{q}}\right\}$. Let $M=E\left(G_{1}\right) \times E\left(G_{2}\right)=\left\{\left(e_{1 i} e_{2 j}\right) \mid e_{1 i} \in E\left(G_{1}\right), e_{2 j} \in E\left(G_{2}\right)\right\}$, that is M is the cartesian product between sets $\mathrm{E}\left(\mathrm{G}_{1}\right)$ and $\mathrm{E}\left(\mathrm{G}_{2}\right)$. Let $|\mathrm{M}|=\mathrm{k}$. Let $\mathrm{H}_{1}, \mathrm{H}_{2}, \ldots, \mathrm{H}_{4 \mathrm{k}}$ be the Hajos graphs generated by applying Hajos construction 4 k times. If $\gamma\left(\mathrm{H}_{\mathrm{i}}\right)=\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right), \forall \mathrm{i}=1,2, \ldots, 4 \mathrm{k}$, then G_{1} and G_{2} are said to be Hajos stable graphs [17].

Example

G_{1}

Figure 1.
Fig. 1, H_{1}, H_{2} and H_{3} are the Hajos graph obtained from G_{1} and G_{2} using the edge pairs $\left\{\left(u_{4} u_{6}\right),\left(v_{2}\right.\right.$ $\left.\left.\mathrm{v}_{3}\right)\right\},\left\{\left(\mathrm{u}_{1} \mathrm{u}_{2}\right),\left(\mathrm{v}_{4} \mathrm{v}_{5}\right)\right\},\left\{\left(\mathrm{u}_{1} \mathrm{u}_{2}\right),\left(\mathrm{v}_{4} \mathrm{v}_{7}\right)\right\}$ respectively. $\gamma\left(\mathrm{H}_{1}\right)>\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right), \gamma\left(\mathrm{H}_{2}\right)<\gamma\left(\mathrm{G}_{1}\right)+$ $\gamma\left(\mathrm{G}_{2}\right), \gamma\left(\mathrm{H}_{3}\right)=\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)$.
The results R1 and R2 were proved in [17].
R1.
Let G_{1} and G_{2} be any two graphs. Let D_{1} and D_{2} be γ - sets for G_{1} and G_{2} respectively. Let H be the Hajos graph. Then $\gamma(\mathrm{H})<\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)$ if and only if either

1. \exists some $\left(u_{i} v_{i}\right) \in D_{i}$ such that $u_{i} \perp v_{i}, i=1$, 2 , or
2. \exists a selfish vertex in $\mathrm{G}_{\mathrm{i}}, \mathrm{i}=1,2$, or
3. both G_{1} and G_{2} have 2 - dominated vertices simultaneously together, or
4. ifpn $\left[u_{i}, D_{i}\right]=v_{i}$ in G_{i}, then G_{j} has 2 - dominated vertices, where $i, j=1,2, i \neq j$.

R2

Let G_{1} and G_{2} be any two graphs. Let D_{1} and D_{2} be $\gamma-$ sets for G_{1} and G_{2} respectively. Let H be the Hajos graph. Then $\gamma(\mathrm{H})>\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)$ if and only if either

1. if u_{i} is an $u p$ vertex, u_{j}, v_{i}, v_{j} are bad vertices, then
a. $\quad v_{i}$ is not a 2 - dominated vertex with respect to every D_{i} in G_{i} and
b. $\quad \mathrm{v}_{\mathrm{j}}$ is not a good vertex in $\mathrm{C}_{\mathrm{j}}-\mathrm{N}\left[\mathrm{u}_{\mathrm{j}}\right], \forall \gamma-$ sets D_{3} for $\mathrm{C}_{\mathrm{j}}-\mathrm{N}\left[\mathrm{u}_{\mathrm{j}}\right]$ such that $\left|\mathrm{D}_{3}\right|=\left|\mathrm{D}_{\mathrm{j}}\right|$, where $\mathrm{i}, \mathrm{j}=1,2, \mathrm{i} \neq \mathrm{j}$, or
2. $\quad i f u_{i}$ are bad vertices, v_{i} are up vertices, then $u_{i} \in p n\left[v_{i}, D_{i}\right], \forall$ possible $\gamma-$ sets in $G_{i}, i=1,2$.

R3. If R1 and R2 are not satisfied, then G_{1} and G_{2} are said to be Hajos stable graphs.

3. Results and discussions

We shall use the following notations throughout the paper.

Notations

Throughout this paper

1. G_{1} and G_{2} are any two graphs.
2. H is the Hajos graph generated from G_{1} and G_{2}.
3. $e_{i}=\left(u_{i} v_{i}\right), i=1,2$ are any two random edges from G_{1} and G_{2} respectively.
4. While creating a Hajos graph using any $e_{i}=\left(u_{i} v_{i}\right) \in G_{i}, i=1,2$, the vertex obtained by merging vertices u_{1}, u_{2} is labeled as u_{12}.
5. Whenever $\gamma(H)=\gamma\left(G_{1}\right)+\gamma\left(G_{2}\right)$, let R be a $\gamma-$ set for H. In this case let $A_{i}=G_{i}-\left\{e_{i}\right\}$. Let $\mathrm{X}_{\mathrm{i}}=\mathrm{R} \cap \mathrm{V}\left(\mathrm{G}_{\mathrm{i}}\right), \mathrm{Y}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}} \cup\left\{\mathrm{u}_{\mathrm{i}}\right\}, \mathrm{i}=1,2$.

Theorem 1

If H is the Hajos graph, then $\gamma(H) \geq 2$.

Proof

Since G_{1} and G_{2} are connected graphs, $\gamma\left(G_{1}\right), \gamma\left(G_{2}\right) \geq 1$. u_{12} is not adjacent v_{1}, v_{2} and vice - versa. Any $x \in V\left(G_{1}\right), x \neq v_{1}$ does not dominate any vertex in G_{2}. Similarly any $y \in V\left(G_{2}\right), y \neq v_{2}$ does
not dominates any vertex in G_{1}. There is no vertex in H adjacent to the remaining vertices, implies $\gamma(\mathrm{H}$) ≥ 2.

Theorem 2

If H is the Hajos graph, then both G_{1} and G_{2} can not have cut edges simultaneously.

Proof

If G_{1} and G_{2} have cut edges, say $e_{1}=\left(u_{1} v_{1}\right), e_{2}=\left(u_{2} v_{2}\right)$. Let
$G_{1}-e_{1}=G_{11}, G_{12}$, such that $u_{1} \in G_{11}, v_{1} \in G_{12}$ and
$G_{2}-e_{2}=G_{21}, G_{22}$, such that $u_{1} \in G_{21}, v_{1} \in G_{22}$.
Since there is no connectivity between G_{11} and G_{12} and G_{21}, G_{22}, H is disconnected with two components $G_{11} \cup G_{21}$ and $G_{12} \cup G_{22}$, which is not possible.

Theorem 3

If G_{1} and G_{2} are Euler graphs, then the Hajos graph H is also Euler.

Proof

Let G_{1} and G_{2} be Euler graphs. Let H be Hajos graph. By removing edges in G_{1} and G_{2}, we create two odd degree vertices in each G_{i}, where $i=1,2$. By merging u_{1} and u_{2} and adding an edge between v_{1} and v_{2}. Every vertex in H is of even degree and hence Euler.

Theorem 4

If G_{1} and G_{2} are Hamiltonian graph, then

1. H is Hamiltonian, $\forall\left(u_{i} v_{i}\right) \in E\left(G_{i}\right)$ such that $\left(u_{i} v_{i}\right)$ is in some Hamiltonian circuit of G_{i}.
2. H is not Hamiltonian, $\forall\left(u_{i} v_{i}\right) \in E\left(G_{i}\right)$ such that $\left(u_{i} v_{i}\right)$ is not in Hamiltonian circuit of G_{i}.

Proof

Let G_{1} and G_{2} be Hamiltonian including edges $\left(u_{i} v_{i}\right) \in E\left(G_{i}\right), i=1$, 2. Let H_{i} be the Hamiltonian circuit in G_{i} including $\left(u_{i} v_{i}\right)$. In A_{i}, there is a Hamiltonian path from u_{i} to $v_{i}, i=1$, 2. In graph H start from vertex u_{12} trace H_{2} to reach vertex v_{2}, then v_{2} to v_{1} and back to vertex u_{12} through H_{1}. This generates a Hamiltonian circuit in H .
Let $\left(u_{i} v_{i}\right)$ be edges in G_{i} not included in any Hamiltonian circuit for G_{i}. If H is Hamiltonian, then there is a Hamiltonian circuit for H say H_{3}. Since ($v_{1} v_{2}$) is the only edge in H such that $v_{1} \in G_{1}$ and $v_{2} \in G_{2}, G_{i} \cap H_{3}$ generates a Hamiltonian path from u_{i} to v_{i}. Adding an edge between u_{i}, v_{i} generates a Hamiltonian circuit in G_{i} including edge ($u_{i} v_{i}$), a contradiction. Hence H is not Hamiltonian.

Theorem 5

If G_{1} and G_{2} are the Hajos stable graphs, then

1. $\gamma(\mathrm{H})+\gamma(\overline{\mathrm{H}})=\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)+2$.
2. $\gamma(\mathrm{H}) \gamma(\overline{\mathrm{H}})=2\left(\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)\right)$.

Proof

In H, v_{1} is not adjacent to u_{12}, v_{1} not adjacent to any $y \neq v_{2} \in G_{2}$. Similarly v_{2} is not adjacent to u_{12}, v_{2} not adjacent to any $x \neq v_{1} \in G_{1}$. So, v_{1}, v_{2} collectively not adjacent to the remaining vertices of H, implies $\mathrm{v}_{1}, \mathrm{v}_{2}$ are together adjacent to the remaining vertices of $\overline{\mathrm{H}}$, implies $\gamma(\overline{\mathrm{H}})=2$.
Hence $\gamma(\mathrm{H})+\gamma(\overline{\mathrm{H}})=\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)+2$.

$$
\gamma(\mathrm{H}) \gamma(\overline{\mathrm{H}})=2\left(\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)\right) .
$$

Hajos stable and DSS graph

A subdivision of any graph G is the another graph generating from the subdivision of edges in G. Consider any edge e with endpoints $\{\mathrm{u}, \mathrm{v}\}$ generating a new graph which contains one new vertex say w . Also an edge set e supplanting by 2 new edgese $\mathrm{e}_{1}=(\mathrm{uw})$ and $\mathrm{e}_{2}=(\mathrm{wv})$.
A graph G is domination subdivision stable (DSS), if $\gamma\left(\mathrm{G}_{\mathrm{sd}} \mathrm{uv}\right)=\gamma(\mathrm{G}), \forall \mathrm{u}, \mathrm{v} \in \mathrm{V}(\mathrm{G}), \mathrm{u} \perp$ v.Subdividing any edge (uv) of a graph G denotes $G_{s d} \mathrm{Vv}$. Let w be a vertex introduced by subdividing(uv) and denote this by $\mathrm{G}_{\mathrm{sd}} \mathrm{Uv}=\mathrm{w}[8]$.

Theorem 6

If G_{1} and G_{2} are DSS, then H is not Hajos stable.

Proof

If G_{i} is DSS, then we know that, for every $\left(u_{i} v_{i}\right) \in E\left(G_{i}\right)$, either there is some $u_{i}, v_{i} \in D_{i}, u_{i} \perp v_{i}$ or there is some $u_{i} \in D_{i}$, such that either, v_{i} is either $p n\left[u_{i}, D_{i}\right]=\left\{v_{i}\right\}$ or v_{i} is 2 - dominated.
If G_{1} and G_{2} has to be Hajos stable, then
i. $u_{i}, v_{i} \in D_{i}$ is not possible, by R1.
ii. Both $\mathrm{G}_{1}, \mathrm{G}_{2}$ containing 2 - dominated vertices is not possible, by R1.
iii. G_{1} having a $2-$ dominated vertex and $v \in p n\left[u, D_{2}\right]$ are simultaneously not possible together, by R1.
If G_{1} and G_{2} has to be Hajos stable, the only possibility is there is some $v_{1} \in G_{1}, v_{2} \in G_{2}$ such that pn [$\left.\mathrm{u}_{1}, \mathrm{D}_{1}\right]=\left\{\mathrm{v}_{1}\right\}, \mathrm{pn}\left[\mathrm{u}_{2}, \mathrm{D}_{2}\right]=\left\{\mathrm{v}_{2}\right\}$.
If $\mathrm{pn}\left[\mathrm{u}_{1}, \mathrm{D}_{1}\right]=\left\{\mathrm{v}_{1}\right\}$, then any other $\mathrm{x}_{\mathrm{i}} \in \mathrm{N}\left[\mathrm{u}_{1}, \mathrm{D}_{1}\right]$, is either $2-$ dominated or it belongs to D_{1}. But $\left(u_{1} x_{1}\right) \in D_{1}$ is not possible, by R1.
So, the only possibility is x_{i} is 2 - dominated, $\mathrm{v}_{1}, \mathrm{v}_{2}$ private neighbors, which is not possible, by R1. Hence both G_{1} and G_{2} cannot have single private neighbors simultaneously together for any $\gamma-$ set for G_{1} and G_{2}. Hence if G_{1} and G_{2} are $\operatorname{DSS}, \mathrm{G}_{1}$ and G_{2} are not Hajos stable graphs.

Hajos stable and excellent graph

A graph G is excellent if every vertex of G is good. In [18] M. Yamuna and N. Sridharan, had defined a graph G to be Just excellent (JE), if it to every $u \in V(G)$, ヨa unique γ - set of G containing u.

An excellent graph G is very excellent (VE), if $\exists \mathrm{a} \gamma-$ set D of G , such that to every vertex vin V D, \exists oneuin D, such that $D-\{v\} \cup\{u\}$ is a $\gamma-$ set of a graph G. A $\gamma-$ set D of G is said to be a very excellent γ - set if D nourishing the above property [19].

Theorem 7

If G_{1} and G_{2} are JE and Hajos stable graphs, then H is not JE.
Proof
Since the Hajos graph is stable, $\gamma(\mathrm{H})=\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right) .|\mathrm{V}(\mathrm{H})|=\left|\mathrm{V}\left(\mathrm{G}_{1}\right)\right|+\left|\mathrm{V}\left(\mathrm{G}_{2}\right)\right|-1$. If H is JE , then there should exist a domatic partition for H such that the size of every partition is equal to $\gamma\left(\mathrm{G}_{1}\right)+\gamma\left(\mathrm{G}_{2}\right)$, which is not possible. Hence H is not JE.

Theorem 8

If G_{1} and G_{2} are $V E$, then G_{1} and G_{2} are not Hajos stable graphs.
Let $v \in V\left(G_{1}\right), v \in V\left(G_{1}\right)-D_{1}$. Let u dominate v.

1. If there is some $x \in D_{1}$ such that $D_{1}-\{x\} \cup\{v\}$ is a $\gamma-$ set for G_{1}, then \exists a $\gamma-$ set $D_{1}{ }^{\prime}$ for G_{1} such that $\{\mathrm{v}, \mathrm{x}\} \in \mathrm{D}_{1}{ }^{\prime}$.
2. So, every vertex in $V-\mathrm{D}$ can be interchanged only with vertices dominating it. This means that every $v \in V\left(G_{1}\right)-D_{1}$ is a private neighbor. So $\left\langle p n\left[u, D_{1}\right]\right\rangle$ is complete for every $u \in$ D_{1}. Let $v_{i}, w_{j} \in V\left(G_{1}\right)-D_{1}$ such that $v_{i} \perp w_{j}$. Since $\gamma\left(G_{1}\right) \geq 2$, there is some $u_{1}, u_{2} \in D_{1}$. Let pn $\left[\mathrm{u}_{1}, \mathrm{D}_{1}\right]=\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}\right\}$ and $\mathrm{pn}\left[\mathrm{u}_{2}, \mathrm{D}_{2}\right]=\left\{\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{\mathrm{p}}\right\}$. Since $\left\langle\mathrm{pn}\left[\mathrm{u}_{1}, \mathrm{D}_{1}\right]\right\rangle$ and $\left\langle\mathrm{pn}\left[\mathrm{u}_{2}, \mathrm{D}_{2}\right]\right\rangle$ are complete, $\mathrm{D}_{1}-\left\{\mathrm{u}_{1}, \mathrm{u}_{2}\right\} \cup\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right\}$ is a $\gamma-$ set for G_{1} such that $\mathrm{v}_{\mathrm{i}} \perp \mathrm{w}_{\mathrm{j}}$. So we conclude that there is some $\gamma-$ sets for G_{i} such that $u_{i} \perp u_{j}$ where $u_{i}, u_{j} \in D_{i}$. Hence if G_{1} and G_{2} are VE, then G_{1} and G_{2} are not Hajos stable graphs.

References

[1] Horvath, Janos Hajos Gyorgy 2006 Bolyai Society Mathematical Studies 14 Springer, 606
[2] CatlinP A 1979Journal of Combinatorial Theory Series B 26268-74
[3] BrownJ I 1990Discrete Mathematics 80 123-43
[4] Zhu X 2001Proceeding of the American Mathematical Society 1292845 - 52
[5] Kral D 2004Discrete Mathematics 287 161-63
[6] Liu S and ZhangJ2006 J. Calmet, T. Ids and D. Wang (Eds): AISC, LNAI4120211-25

IOP Conf. Series: Materials Science and Engineering 263 (2017) 042118 doi:10.1088/1757-899X/263/4/042118
[7] Yamuna M and Karthika K 2011International Journal of Engineering Science Advanced Computing and Bio - Technology 2 209-216
[8] Yamuna M and Karthika K 2012International Journal of Mathematical Archive 3 1467-71
[9] Yamuna M and Karthika K 2013Global Journal of Pure and Applied Mathematics 9 137-42
[10] YamunaM and Karthika K 2013 International Journal of Pure and Applied Mathematics 87453 -58.
[11] Rickett S A and Haynes T W 2011Discrete Applied Mathematics 159 1053-57
[12] Desormeaux W J et al 2011Discrete Applied Mathematics 159 1048-52
[13] Desormeaux W J et a. 2011Discrete Applied Mathematics 159 1548-54
[14] Narasing Deo 2010Graph theory with Application to Engineering and Computer Science Prentice Hall India.
[15] Haynes T. W et al 1998 Fundamentals of Domination in Graphs Marcel Dekker New York.
[16] https://en.wikipedia.org/wiki/Haj\�\�s_construction.
[17] Yamuna M and Karthika K 2017Songklanakarin Journal of Science and Technology (accepted).

