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Abstract: The problem of unsteady unidirectional hydromagnetic flow due to stress applied

at the free surface is studied here. The applied magnetic field is normal to the horizontal

boundary. The dynamics of fluid and electric currents are investigated as functions of magnetic

Prandtl number Pm (= σµ0ν), which measures the ratio of viscous diffusion to magnetic

diffusion. In contrast to hydrodynamic Rayleigh problem, the transient dynamics consists of

two diffusively growing layers as in the conventional MHD Rayleigh problem (see Dix [5]).

The viscous Hartmann layer becomes steady soon, while the magnetic diffusion layer diffuses

to infinity with Alfven speed. The electric currents generated in the Hartmann layer find a

return path in the magnetic diffusion layer. It may also be seen that the free surface Hartmann

layer is weak compared to rigid surface Hartmann layer.
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1. Introduction

The classical Rayleigh’s problem studies the motion of an infinitely extended,
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incompressible, viscous fluid in response to an infinite flat plate suddenly set in
motion along its own plane. The usefulness of such a problem is that it exhibits
qualitative boundary layer characteristics. In fact, immediately following the
impulse, a simple Rayleigh layer, unaffected by other affects such as rotation
and magnetic field, develops with a dimensional thickness of O(νt)

1
2 . Batchelor

[1] considered the Rayleigh problem for a free surface subject to a constant
stress and derived the solution for the unidirectional velocity field u(y, t), and
∂u
∂y . As Batchelor mentioned, these solutions, under suitable conditions, cor-
respond to the velocity distribution in water set into motion by air blowing
steadily over its free surface. Astrogeophysical flow systems are seldom undis-
turbed and so extensions to classical Rayleigh problem including other affects
invite our attention. It is well known that the inclusion of Coriolis force in
Rayleigh problem makes the flow steady and confines the velocity distribution
to a boundary layer, known as Ekman layer. Batchelor [1] (also see Pedlosky
[7]) presented the analysis of steady Ekman layer at a free surface. Similarly,
there exist magnetohydrodynamic extensions of Rayleigh problem with a me-
chanical forcing on rigid boundary (for ex. Hughes and Young [6]).Following
Batchelor’s analysis of Rayleigh problem for a free surface, we wish to ana-
lyze unsteady hydromagnetic flow due to a tangential stress applied at the free
surface of a conducting fluid. The ultimate aim is to understand free surface
rotating bounded (and unbounded) hydromagnetic flows including the effect of
variation of Coriolis parameter.

Rossow [8], Dix [5], and several others have attacked the hydromagnetic
Rayleigh problem from different angles. We wish to extend the Hydromagnetic
Rayleigh problem analysis as given by Dix [5], and Hughes & Young [6] for a
rigid surface to a free surface. The solution of the linear problem will be studied
using Laplace transform technique. All possible limiting cases will be discussed.

The statement of the problem and mathematical formulation are given in II.
Exact Laplace transform solution followed by limiting cases of interest are dis-
cussed in III. Section IV deals with a special case of interest for which the mag-
netic prandtl number is unity. The physically important case of non-vanishing
but small magnetic prandtl number is presented in V. Finally the results are
summarized in VI.

2. Statement of the Problem

We consider an infinite expanse of an incompressible conducting fluid initially
at rest. The fluid is bounded by a horizontal free surface at the top aty = 0.
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A uniform magnetic field of strength ~B0is applied parallel to the y-axis. At
timet = 0 , a uniform and constant stress A2

ν τ0 is applied at the free surface
in x-direction (see Fig.1) where A is the Alfven speed and ν is the kinematic
viscosity.

Figure 1: Hydromagnetic Rayleigh problem at a free surface

The governing equations are the same as those given by Hughes & Young [6].
This is a problem of unidirectional flow with ~V = u(y, t)̂i and induced magnetic
field h(y, t) in the y-direction. The governing equations may be written as (see
Hughes & Young [6])

ρ
∂u

∂t
= µf

∂2u

∂y2
+B0

∂h

∂y
(1)

∂2h

∂y2
= σµ0

∂h

∂t
− σB0

∂u

∂y
(2)

where ρ is fluid density, µf is fluid viscosity, σ and µ0 are conductivity and
magnetic permeability of the fluid. Fluid motions are driven by the constant
stress applied along the direction x-axis as mentioned earlier. The initial and
boundary conditions will be directly presented after non-dimensionalization.
There is no characteristic length scale in the problem. The length scale may be
chosen based on Alfven speed to avoid one nondimensional number. Following
Hughes & Young [6], we substitute the following dimensionless starred variables,
into (1)-(2)

− y∗ =
Ay

υ
, z∗ =

Az

υ
, t∗ =

A2t

υ

h∗ =
h

H0
, u∗ =

u

A
,G∗ =

υ

ρA3

∂p

∂x
(3)

where A = B0√
ρµ0

is the Alfven speed. It may be noted that as y goes from 0 to
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−∞, the variable y∗ goes from 0 to ∞. We now obtain,

∂2u∗

∂y∗2
−

∂h∗

∂y∗
=

∂u∗

∂t∗
(4)

∂2h∗

∂y∗2
− pm

∂u∗

∂y∗
= pm

∂h∗

∂t∗
(5)

where pm = σµ0ν is magnetic Prandtl number. Boundary conditions in non-
dimensional form may be written as,

∂u∗

∂y∗ (t
∗, 0) = −τ0, u∗(t∗,∞) = 0, u∗(0, y) = 0

h∗(t∗,∞) = 0, h∗(t∗, 0) = 0, h∗(0, y) = 0

}

(6)

3. Transient Solution and Limiting Cases

Taking Laplace transform of (4)-(6) with the respect to dimensionless time, we
get

d2ū∗

dy∗2
− sū∗ =

dh̄∗

dy∗
(7)

d2h̄∗

dy∗2
− pmsh̄∗ = pm

dū∗

dy∗
(8)

The boundary conditions in transform plane become:

∂ū
∂y∗

∗
(s, 0) = − τ0

s , ū∗(s,∞) = 0, ū∗(0, y) = 0

h̄∗(s,∞) = 0, h̄(s, 0) = 0, h̄∗(0, y) = 0

}

(9)

The equations (7) and (8) can be combined to give,

[

d4

dy4
− [s(1 + pm) + pm]

d2

dy2
+ pms2

](

ū∗

h̄∗

)

= 0 (10)

Using boundary conditions at y∗ = ∞, the solutions of u∗, and h∗ can be written
as,

ū∗(s, y∗) = c1e
−λ 1 y∗ + c2e

−λ2 y∗ (11)

h̄∗(s, y∗) =
(λ2

1 − s)

λ1
c1e

−λ 1 y∗ +
(λ2

2 − s)

λ2
c2e

−λ2 y∗ (12)
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where λ1 , 2 = 1
2

[

√

pm + s(1 +
√
pm)2 ±

√

pm + s(1−√
pm)2

]

. The constants

c1 and c2 can be determined using the boundary conditions. They are,

c1 =
τ0(s−λ2

2)λ1

D , c2 = − τ0(s−λ2
1)λ2

D

where

D = s2(λ2
2 − λ1

2) = −s2
(

√

pm + s(1−
√
pm)2

)(

√

pm + s(1 +
√
pm)2

)

Therefore, the solution of ū, h̄ are,

ū∗ = −
τ0
D

[

(s− λ2
2)λ1e

−λ1y∗ − (s− λ2
1)λ2e

−λ2y∗
]

(13)

h̄∗ = −
τ0(s− λ2

1)(s− λ2
2)

D

[

e−λ1y∗ − e−λ2y∗
]

(14)

These solutions differ considerably from those of rigid surface Rayleigh problem.
Yet, the physical features do not change much qualitatively. It may be noted
from (13) that the flow has a double layer exponential structure in y∗. Following
Benton & Loper [2] these layers may be referred to as the k and m layers
corresponding to the roots λ1 and λ2 respectively. From our previous knowledge
[2, 6] the k layer corresponds to Hartmann layer and the m layer corresponds
to magnetic diffusion layer or Alfven layer. Since for large time,λ1 =

√
Pm

, the thickness of the k layer is M−1 where M = LB0

√

σ
µ is the Hartmann

number. Exact inversion of (13) - (14) is not possible. We shall first present
some interesting limiting cases of interest.

3.1. Laplace Inversion for Some Limiting Cases

3.1.1. Steady State Solution (The k-Layer (Hartmann Layer)
Dynamics)

Since we expect a steady state, we may use the final value theorem,

f(y,∞) = sF (y, s) as s → 0

As s → 0, we have,λ1 =
√
Pm , λ2 = 0, D = −s2Pm. The steady state solutions

are,

u∗ =
τ0√
Pm

e−
√
Pmy∗ , h∗ = (e−

√
Pm y∗ − 1)(−τ0) (15)
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If we write in dimensional form, we shall realize that the solutions represent
actually Hartmann layer and it is weak compared to rigid surface Hartmann
layer. The fact that λ2 clearly shows that the m-layer diffuses out to spatial
infinity leaving out steady state k-layer. The velocity and magnetic field profiles
in Hartmann layer (k layer) are shown below when Pm = 1.

Figure 2: k layer velocity profile
when Pm = 1.

Figure 3: k layer magnetic field pro-
file when Pm = 1.

3.1.2. The Early Time Behaviour

The early time behavior of any of the functions in physical space is determined
by the corresponding behavior of the transformed functions for large s .The
initial value theorem states

f(y, 0) = sF (y, s) as s → ∞

The velocity ū∗ in such a case reduces to

ū∗ =
τ0

s3/2

[

e−
√
sy∗

]

(16)

The inverse Laplace transform of (16) is (ref. Campbell & Foster [3], table no.
824.5),

u∗(y∗, t∗) = −τ0y
∗ + τ0

[

√

4νt∗

π
exp

(

−
y∗2

4νt∗

)

+ y∗ erf

(

y∗√
4νt∗

)

]

(17)

Equation (17) agrees with the classical Hydrodynamic Rayleigh problem for
a free surface discussed by Batchelor [1]. Physically, we expect the simple
Rayleigh layer solution immediately following the impulse.
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3.1.3. Hydrodynamic Rayleigh Problem for a Free Surface (Pm = 0)

This limit Pm = 0 is singular since it multiplies the time derivative terms in
(5). In this limit, the equations reduce to

∂2u∗

∂y∗2
+

∂h∗

∂y∗
=

∂u∗

∂t∗
and

∂2h∗

∂y∗2
= 0

Therefore we get

∂2(D1u
∗)

∂y∗
2 =

∂(D1u
∗)

∂t∗
where D1u

∗ =
∂u∗

∂y∗

Hence, D1u
∗ = −τ0 + τ0erf(y

∗/4t∗)
1
2 .In fact, it is easily confirmed from (13)

that,

ū∗ =
τ0

s3/2

[

e−
√
sy∗

]

(18)

The inverse Laplace transform of (18) is (ref. Campbell & Foster [3], table no.
824.5)

u∗(y∗, t∗) = −τ0y
∗ + τ0

[

√

4νt∗

π
exp

(

−
y∗2

4νt∗

)

+ y∗ erf

(

y∗√
4νt∗

)

]

(19)

Equation (19) and the solution for D1u
∗ agree with the classical Hydrodynamic

Rayleigh problem for a free surface discussed by Bathcelor [1]. In fact the limit
Pm = 0 in the present case shows that there cannot be a Hartmann layer at the
free surface since d2h∗

dy∗2
. The m layer (Magnetic diffusion layer) is suppressed

in this case since it diffuses instantaneously to infinity and becomes spatially
uniform. As a result we have only the hydrodynamic Rayleigh layer solution
given by (19). Thus for Pm → 0, the hydromagnetic effects become unimportant
in our problem.

4. Solution of the Problem when Pm = 1

In this case we assume that the Prandtl number is unity. The values of
λ1, λ2,D, c1, and c2 in this limiting case are,

λ1 =
1

2

[√
1 + 4s+ 1

]

; λ2 =
1

2

[√
1 + 4s− 1

]

D = −s2(
√
1 + 4s), c1 = −

τ0

s(
√
1 + 4s)

; c2 =
τ0

s(
√
1 + 4s)











(20)
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Using (20), the expressions for velocity, induced magnetic field and current
density are:

ū∗ =
τ0

2s
(
√

s+ 1
4

)

[

e−
y∗

2 e
−
√

s+ 1
4
y∗

+ e
y∗

2 e
−
√

s+ 1
4
y∗
]

(21)

h̄∗ =
τ0

2s
(
√

s+ 1
4

)

[

e−
y∗

2 e
−
√

s+ 1
4
y∗ − e

y∗

2 e
−
√

s+ 1
4
y∗
]

(22)

These solutions are slightly different from the rigid surface hydromagnetic
Rayleigh problem. We now have an additional term (s + 1

4)
1
2 in the denomi-

nator. However, for large times s → 0 , this term reduces to 1
2 . The inverse

transform of (21)-(22) are, (ref. Campbell & Foster [3], table no. 825)

u∗(y∗, t∗) =
τ0
2

[

−erfc

[

y∗ + t∗

2
√
t∗

]

(1 + ey
∗

) + erfc

[

y∗ − t∗

2
√
t∗

]

(1 + e−y∗)

]

(23)

h∗(y∗, t∗) =
τ0
2

[

erfc

[

y∗ + t∗

2
√
t∗

]

(1− ey
∗

)− erfc

[

y∗ − t∗

2
√
t∗

]

(e−y∗ − 1)

]

(24)

It can be seen from (23) and (24) that the flow consist of two diffusing Alfven
waves having decaying amplitude (because of 2

√
t in the denominator). Both

these backward and forward waves decay due to viscous dissipation. The back-
ward wave term has significant magnitude only near to the boundary and it is
necessary to satisfy the boundary condition. At the free surface viscous forces
are not strong. So, the Hartmann boundary layer thickness is relatively large
compared to the one at the rigid surface. The solutions for u∗ and h∗ given by
(23) and (24) are shown below in Figure (4).

4.1. Large Time Behavior of Solutions when Pm = 1

Now, we wish to examine the solutions for large values of time. Allowing s ≪ 1
in (21)-(22) and using the relation jz = −∂hx

∂y , we get

ū∗ =
τ0
s

[

e−y∗ + 1
]

e−y∗s

h̄∗ =
τ0
s

[

e−y∗ − 1
]

e−y∗s

j̄∗ =
∂h∗x
∂y∗

=
τ0
s

[

−e−y∗ + s
]

e−y∗s



























(25)
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Figure 4: (a) velocity distribution for various values of time t: t∗ = 1
to t∗ = 50 (b) magnetic field distribution for various values of time t:
t∗ = 1 to t∗ = 50

The inverse Laplace transform of equations (25)give,

u∗(y∗, t∗) = τ0(e
−y∗ + 1)H(t∗ − y∗). (26)

h∗(y∗, t∗) = τ0(−1 + e−y∗)H(t∗ − y∗). (27)

j∗(y∗, t∗) = τ0

[

−e−y∗H(t∗ − y∗) + δ(y∗ − t∗)
]

. (28)

where H(t∗ − y∗) and δ(y∗ − t∗)are, respectively, Heaviside step function and
Dirac-delta function. From (26)-(28), the physical significance of the two layers,
namely the k layer (Hartmann layer) and m layer (magnetic diffusion layer) can
be understood. It is seen that the k layer grows and eventually becomes steady,
whereas the m layer diffuses at Alfven speed to infinity. The electric currents
generated in the k layer are returned through m layer. The figure (5) clearly
represent the velocity field, induced magnetic field and the current density in
this approximation. The electric currents in the Hartmann layer flow in the −z
direction. These currents are returned in a current sheet which propagates in
the y∗ direction at the Alfven speed in our approximation. However the electric
currents returned in a small thickness known as Alfven region.

4.2. Inviscid, Super Conducting Liquid

In this case, ν tends to zero and σ tends to infinity such that the Prandtl
number remains unity. Now we change (13) and (14) to dimensional form and
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Figure 5: (a) velocity field when Pm is unity (for large time), (b) Induced
magnetic field when Pm is unity (for large time), (c)current density
when Pm is unity (for large time)

then let ν tend to zero. We get

ū =
τ0
2s

e−
y
A
s (29)

h̄ = −
τ0
2s

e−
y
A
s (30)

The inverse transform of (29) and (30) are,

u = τ0H
(

t− y
A

)

h = −τ0H
(

t− y
A

)

}

(31)

Since the fluid is highly conducting, the magnetic fields are frozen into the fluid.
As a result, the electric currents are generated at the surface and at the edge of
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the layer. The layer moves with Alfven speed. The thickness of the Hartmann
layer tends to zero. In this limiting case, there is a vortex sheet at y = 0 and
there are two electric current sheets, one at y = 0, and the other at y = At.

5. Magnetic Prandtl Number Smaller than Unity pm ≪ 1

In this case, we let magnetic Prandtl number much smaller than unity. The
values of λ1, λ2,D, c1, c2 are,

λ1λ2 = s
√
pm; λ2

1 + λ2
2 = s(1 + pm) + pm;

λ2
1 − λ2

2 =
√

s2(1− pm) + 2spm(1 + pm) + p2m

λ1 =
√
s+ pm;D = −s2(s+ pm); c1 =

τ0

s
√

(s+ pm)
;

c2 = −
τ0p

3/2
m

s(s+ pm)
3/2

;λ2 =
s
√
pm√

s+ pm

The value for λ2 can also be obtained directly by neglecting viscous term in
the equation (9). The resulting equations, which are valid in m layer may be
solved to get λ2. The solutions of ū and h̄ are

ū∗ = τ0
s
√

(s+pm)

[

e−
√
s+pmy∗ + p

3/2
m

(s+pm)e
− s

√
pm√

(s+pm)
y∗
]

h̄∗ = − τ0pm
s(s+pm)

[

e−
√
s+pmy∗ − e

− s
√

pm√
(s+pm)

y∗
]















(32)

In order to invert equations (32), it is convenient to express (32) in a form

Figure 6: (a)velocity field,(b)Induced magnetic field when Pm is
small(Pm = 0.01)
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valid for s ≪ pm. For s ≪ pm the velocity and induced magnetic field become,

ū∗ =
τ0
s





e
−√

pm
(

1+ s
2pm

)

y∗

√
pm

− e− s y∗



 and h̄∗ =
τ0
s

[

e−
√
pmy∗e

− s
2
√

pm
y∗ − e− s y∗

]

(33)
The inverse transforms of (33) are,

u∗(y∗, t∗) =
τ0√
pm

[

e−
√
pmy∗H(t∗ −

y∗

2
√
pm

) +
√
pmH(t∗ − y∗)

]

h∗(y∗, t∗) = −τ0

[

−e−
√
pmy∗H(t∗ −

y∗

2
√
pm

) +H(t∗ − y∗)

]



















(34)

From (34), it can be seen that, the solutions of u∗ and h∗ comprise of slow and
fast moving waves. The slow waves are formed in k-layer, because, in Hartmann
layer, the viscous force is important and it balances the magnetic force. The
fast waves are formed in magnetic diffusion layer because it is inviscid to lowest
order and the disturbance propagates with Alfven speed. The solution of u∗

and h∗ obtained in (34) are plotted in Figure (6) for Pm = 0.01.

6. Summary and Comments

The hydrodynamic Rayleigh layer is a diffusing layer since there is no other
force to balance viscous diffusion. In the presence of magnetic field, the vis-
cous force can be balanced by magnetic force. Thus, two layers, namely k-layer
(The Hartmann layer) and m-layer (the magnetic diffusion layer) arise. The
electric currents generated in k-layer are closed through m-layer. Thus, while
the electric currents in k-layer retard the fluid, the returning electric currents in
m-layer propel the fluid. It has been shown in Section 3.1.3 that in the limiting
case Pm = 0 or Pm → 0 there is no Hartmann layer, we have only the hydro-
dynamic Rayleigh problem solution for the free surface. The same is the case
with Hydromagnetic Rayleigh problem at a rigid surface, where the solution
reduces to hydrodynamic Rayleigh problem solution. But, in case rotational
effects are included (see: Benton and Loper [2]) the solution corresponding to
Pm = 0 does give a transient solution for an Ekman-Hartmann layer.
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