
Journal of Computer Science 10 (2): 190-197, 2014
ISSN: 1549-3636

© 2014 Science Publications

doi:10.3844/jcssp.2014.190.197 Published Online 10 (2) 2014 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Prabhu Jayagopal, Department of Computer Science and Engineering, Sathyabama University, Chennai, India

190 Science Publications

JCS

A NOVEL PRIORITIZATION ALGORITHM MODEL BASED
TEST-SUITE GENERATION USING REGRESSION TESTING

1Prabhu Jayagopal and 2Dr. Malmurugan Nagarajan

1Research Scholar, Department of Computer Science and Engineering, Sathyabama University, Chennai, India

2Director, Sri Ranganathar Institute of Engineering and Technology, Coimbatore Tamil Nadu, India

Received 2013-09-01; Revised 2013-10-14; Accepted 2013-11-13

ABSTRACT

The fully automatic Graphical User Interface tool for any application using novel model based test suite

generation techniques for a GUI. They are unable to control response time and time intervals are based on

relationship between GUI events handlers and test cases with their responsibilities. We present a novel

prioritization algorithm that enhances event handlers for the automated GUI tool. The proposed tool

generates GUI events, it Captures and Playback event responses to automatic verification point of the

results for the test cases which are written to a log file and corresponding report will be generated. This

novel algorithm was able to detect new test suite and ordering of test cases to reduce a GUI fault integration

defects. The number of faults detected for a single event are found after generating test cases for the

application. The Average Percentage of Fault Detection (APFD) and charts has been used to show the

effectiveness of proposed algorithm to find fault detection rate.

Keywords: Regression Testing, GUI Testing, Test Suite, Novel Prioritization Algorithm, Capture/Playback

1. INTRODUCTION

The Graphical User Interface application are

progressively more in real-world market. GUI are now

seen in mobile Phones, micro oven, cars, iPod. They are

popular because of the portability, flexibility that they

offer for the users. The Software systems have been built

on event-driven software platforms. This enables the user

either use (1) Mouse click (2) Mouse drag (3) Mouse

release (4) Mouse select or short cut key to change the

event state, this may include a change the software state,

which may impact the execution of subsequent events.

Hence, the context established by the sequence of events

executes may have an impact on how it executes.GUI

has been converted into a crucial component of any

electronics devices with the user interact. The

fundamental nature of GUI is of sensitive operation. On

the other hand, as the functional complication of

application increased. The repeated usage of cursor

operations by the user to give suitable comments to the

system. For making comparing with the GUI in order to

get numerous operations such as cursor pointing, drag

and dropping the menu and resizing the windows should

be continual for each display object. For the past ten

years, many software system had been developed on the

basis of event driven software platforms. GUI has been

developed from the event-driven software, which will

used to start-up the user to either mouse release, mouse

drag, mouse click and also key in data as input to change

the event state. The generic prioritization criteria that are

applicable to both GUI and Web application. It is to

evolve the model and use it to develop unified theory for

all Event Driven Software should be detected (Bryce et al.,
2011). At present circumstance criteria, the GUI

software application in our daily life routine. So these

GUI are now available in mobile phones, micro ovens,

music system, iPod so they permit a programmer to

develop the GUI by coding the software event handlers.

The fully automatic model based GUI testing

resulted, aggravated by work on prioritization algorithm

for test data generation, The Test Case Prioritization is

proposed in recent years, it can improve the fault

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

191 Science Publications

JCS

detection during the testing phase. The weighted and

non-weighted GUI test cases based on weight scores.

The weighted scores can be ranked in ascending or

descending order. The result shows that dynamic

adjusted-weight method can obtain a better fault-

detection rate. The efficiency of detected faults is not

always the same (Huang et al., 2010). The tester must

specify the test data coverage criterion to be used, either

branch coverage or mutation analysis. It is integrated

into javascript compiler and test generation by a

command line option (Alshraideh, 2008). The notion of

utilizing a fault-based approach to test case prioritization

is novel and n concrete terms how the approach may

apply to test suites generated to detect faults related to

logical expressions in specifications (Yu and Lau, 2011).

The search effort is then distributed amongst the paths,

with several ‘species’ working in parallel, each dedicated

to finding test data for an individual path (McMinn et al.,
2006). The interaction with it primarily using a mouse,

launches programs by clicking on icons and manipulates

various windows on the screen using graphical controls

(Reimer, 2005). The code modifications made to create a

new version may alter test execution patterns; an issue

impacting the efficiency of test case prioritization

techniques is whether these alterations will significantly

impact the predictive value of past execution data

(Rothermel et al., 2001).

In this study, we propose:

• GUI testing can test any application provided the

appropriate packages and interfaces are written for

that language

• The state based logging type, the start and end time

of each event that uniquely define a state are stored

in the log file. This file type contains a set of

interval records each one of them is characterized as

‘begin interval’, ‘end interval’, ‘continuation

interval’ and ‘complete interval’. Since each

occurrence of event is time stamped, we can

measure the responsiveness of the GUI

• We can use GUI capture and playback event at the

background, unlike in the automated testing. The

application has to designed what to test

• We focused on an novel prioritization algorithm to

generate test suite for above the same

1.1. GUI Testing

The GUI existing testing techniques have been focus

on implementing the automated GUI testing tools and

adopted by practioners (Marchetto et al., 2008; Memon,

2008). The most popular GUI testing approach used my

previous work, compared various testing tools like Junit,

Abbot, Marathon, Pounder, Robot, QTP.

In the automated testing process, testers have to ensure

the validation of software using testing techniques. Before

capture a testing process, we must decide to criteria for

expressive the capability of testing software (Jatain and

Sharma, 2013).

A graphical user interface for a.net may be

implemented using new components, GUI events, which

must be handled by the program. Thus, GUI events are an

important class of inputs to.net Codes, which capture and

replay correctly and efficiently, should be done in the

interactive applications. Capture of GUI events is

significantly different from the capture of other kinds of

inputs, playing back of events in the application and the

corresponding test case will be generated.It is Based on

data captured and the data which is stored in the

database, A report showing the type of event, unique id

for the event, the time of the event and the screenshot of

the application when the event took place is generated.

Based on the type of event, the corresponding test cases

are generated.

The existing methods used for modeling and testing a

GUI also affect its reliability. Consequently, the quality
of the reliability assessment process and ultimately, the
reliability of the GUI depend on the approaches used for
modeling and testing (Belli et al., 2012).

The present actual data on the experiences and to

discuss if advantages can be gained using model-based

testing when compared with traditional graphical user

interface testing. Another contribution of this paper is a

description of a keyword-based test automation tool that

was implemented for the Android emulator. All the

models and the tools created are available as open source

(Takala et al., 2011). The Fig. 4 shows an important

limitation is that contain state based relationships.

Relationship between E1 and E5. The desirable coverage

requires large number of test suites.

In earlier work, we found a feedback-based

techniques to enhance a two ways of covering test cases

are as follows (1) is able to significantly improve

existing techniques and helps identify serious problems

in the software and (2) the ESI relationships captured via

GUI state yield test suites that most often detect more

faults than their code, event and event-interaction-

coverage equivalent counterparts (Yuan and Memon,

2010). The GUI events interact in difficult ways an GUI

reply to an event wary depending on the preceding event

and their running orders. The capture and replay

event have been developed as a techniques for testing the

verification of interactive GUI applications. Using

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

192 Science Publications

JCS

capture the entire event occurred in the application can

be recorded. The replay event is used to repeat the

application process, An quality-assurance group can run

an application and record the entire interactive session.

The tool records all the user’s events, such mouse clicks,

mouse release, mouse drag and the keys press from the

keyboard. All these events will be recorded to see fault

detected during implementation and it is stored in log file

using JASON object. This tool can then automatically

replay the exact same interactive session any number of

times without requiring a user. The capture and replay

events are usually not used for recording entire

interactive sessions. their main aim is to record complex

interaction sequences, such as the user clicking on the

screen like mouse click on the file and then open to

verify that this click will response by the software

system or not We studied whether existing GUI capture

and replay tools can be used to record entire interactive

sessions with complex real-world applications and

whether the tools allow or preclude the accurate

measurement of perceptible performance given the

overhead they impose on the application.

A verification point enables during capturing the GUI

application, the object information stores it in a log file.

This file becomes the base of the expected state of the

object during subsequent builds. When you play back the

GUI Interactive events it retrieves from the log file.

Our automation tools retrieve the information from

the log file for each verification point and compare it to

the state of the object in the new build. After playback,

the results of each verification point appear in the tester

Log file. If a verification point fails you can select

the verification point in the log. The Reports will be

generated after correcting the bugs in the application.

1.2. Average Percentage of Faults Detected
(APFD)

To measure the target of rising a separation of the test

case of fault detection. APFD founded (Ashraf et al.,
2012).

The Fig. 1 shows an Novel GUI tool with

capure/playback, opening the application, Report

generation, Reset database, set verification point and

assignining the values periodic table holds the multiple

colors of tables with their description.

The Fig. 2 shows an report generation of each and

every event occurred in the application with their unique

Id, action type and view. The Fig. 3 shows the interface

between the events occurred and their response to their

other events. In earlier study of a test case Prioritization

consists of input and output value and expected result

before testing. Although test-case execution should be

successful, if some errors occur during execution, the

output value cannot be obtained or compared with the

expected result (Huang et al., 2010).

 An Event Flow Graph (EFG) consists of all events

and all possible interactions. Interactions are a set of

directed edges between events and events are the vertex

in the graph. This graph also records which events will

be invoked continuously (Huang et al., 2010).

Fig. 1. A Simple GUI tool with an application

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

193 Science Publications

JCS

Fig. 2. Report generation for the events

Fig. 3. Events for GUI application

 Automated GUI Testing is a solution to all the issues

raised with Manual GUI Testing. An Automated GUI

Testing tool can playback all the recorded set of tasks,

compare the results of execution with the expected

behavior and report success or failure to the test

engineers. Once the GUI tests are created they can easily

be repeated for multiple number of times with different

data sets and can be extended to cover additional features

at a later time. Most of the software organizations

consider GUI Testing as critical to their functional

testing process and there are many things which should

be considered before selecting an Automated GUI

Testing tool. A company can make great strides using

functional test automation. The important benefits

include, higher test coverage levels, greater reliability,

shorted test cycles, ability to do multi user testing at no

extra cost, all resulting in increased levels of confidence

in the software (Prabhu and Malmurugan, 2010).

 The Table 1 shows the events with the

corresponding action occurred in the GUI application.

 It measures the average rate of fault detection of test

suite execution. The APFD is calculated by taking

weighted average of the number of faults detected during

the run of the test suites. APFD is defined as:

APFD = (1-TF1 + TF2 +.... + TFm/nm) + (1/2n)

T→test suite under evaluation

m→number of faults

n→ total no. of test cases

TFm→position of test

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

194 Science Publications

JCS

Fig. 4. Software architecture experimental procedure

Table 1. Events and actions in the GUI application

Events Actions

E1 Changes in color

E2 Display the description box

E3 It glows on the button

E4 Disables the button

E5 Drag and copy the description

Table 2. The number of faults detected for an event E1 to

generate test suite

 TEST SUITE

--

E1 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

FD1 x x x

FD2 x x

FD3 x x

FD4 x x

FD5 x x

FD6 x

FD7 x x

FD8 x x x x

FD9 x

No. 2 2 2 3 1 2 3 2 2

of Faults

Time 4 8 3 2 11 6 7 8 9

1.3. Novel Prioritization Technique

In earlier work, it makes take long time depending

the size of test cases. How long each test case takes to

run. On the other hand through the use of an effective

prioritization technique. Software testers can be in

random order test cases to attain an increased rate of

fault detection. Novel technique presented in this

study implemented a new regression test suite using

prioritization algorithm that prioritized the test cased

with the target of faults can be found during the

execution of test suite. The below pseudo code for

ordering test cases from lowest PFD value to highest

PFD value. the variable means the current minimal

PFD value in all test cases. Initially the value of FD

will make null, Uot the test cases will be in unordered

list. All test cases are sorted in order to make a

effective test suite.

Algorithm

Input:

 Uot: Unordered test cases

 FD: Summation of fault detections

 E: Event handling

Output:

 TS: New prioritized Test Suite

 1. Begin

 2. Set TS empty

 3. Set E empty

 4. For each event E→TS do

 5. Calculate average faults found in a minute PFD =

FD×2/time

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

195 Science Publications

JCS

 6. End for

 7. Sort TS in ascending order based on the value of

each test suite

 8. APFD value generated

 9. End

PFDn = fault * 2 / time

PFD1 = 1

PFD2 = 0.75

PFD3 = 1.33

PFD4 = 3

PFD5 = 0.18

PFD6 = 0.66

PFD7 = 0.85

PFD8 = 0.5

PFD9 = 0.33

Prioritization order as follows:

PFD5 + PFD9 + PFD8 + PFD6 + PFD2 + PFD7 + PFD1 +

PFD3 + PFD4

APFD=(1-1+0.75+1.33

+3+0.18+0.66+0.85+0.5+0.33/9*9) +(½*9)

 =(1-8.6/81)+(1/2*9)

 =(1-0.1061)+(1/2*9)

 =(0.8939)+(1/2*9)

 =0.8939+0.055

 =1.4494

The Average percentage of fault detection metrics has

been used to measure the efficiency of proposed and

random prioritization and it shows that the proposed

value based algorithm is more efficient than random

prioritization to generate sequence of test cases for early

rate of fault detection (Ashraf et al., 2012).

Definition: A test case consists of input value, output

value and expected output before starting testing. The

function takes as input a set of test cases to be ordered

and returns a sequence that is ordered by the

prioritization criterion. Because we have developed a

unified model of GUI and Web applications, we need the

function to be extremely general so that it may be

instantiated for either application class and is able to use

any of our criteria as a parameter. The function (called

OrderSuite) selects a test case that covers the maximum

number of criteria elements (e.g., windows and

parameters) not yet covered by already-selected test

cases. The function iterates until all test cases have been

ordered (Sampath et al., 2013).

1.4. Source Code for Creating Test Casses

public void createtestcasebutton(string Val)

 {

 ob5[i] = new Button();

 this.ob5 [i].Text = "Test Case";

 testypos += 50;

 this.ob5 [i].Location = new

System.Drawing.Point (testxpos, testypos);

 this.ob5 [i].Size = new

System.Drawing.Size(100, 25);

 this.Controls.Add(ob5[i]);

 this.ob5[i].Click += delegate(object sender1,

EventArgs ee)

 {

 createtestcases(sender1, ee, val);

 };

 i++;

 }

 public void createtestcases(object sender,

EventArgs e, string val)

 {

 if (val == "mouse")

 {

 Mousetestcases ob = new mousetestcases();

 ob.Show();

 }

 else if (Val == "key")

 {

 Keytestcases ob1 = new keytestcases ();

 ob1.Show ();

 }

}

Fig. 5. The cummulative of test cases before the fault detection

rate

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

196 Science Publications

JCS

Fig. 6. The cummulative of test cases after the fault detection

rate

It is used for playing back the events which were

recorded during the capture phase. Based on each tick of

system clock and the data stored in the structure, all

mouse and keyboard events get replicated and if a

verification point is set, then during playback, at the

corresponding event, The data gets tested whether the

test passed or failed.

2. RESULTS

From Table 2 which is also represented in Fig. 5
and 6, shows the fault detection is very effective after

ordering the test cases compared to unordered test

cases. It is identified that the fault detection rate is

sequence and computational cost and transmission

cost of the proposed method are improved than the

existing model.

3. DISCUSSION

 The novel Prioritization algorithm for model based

test suite generation presented in this study documents

certain aspects of GUI testing. In this section we

present an objective summary of trends in GUI testing.

From the data collected, it can be seen that model-based

GUI testing techniques have attracted the most

attention in the Research community. However,

industrial tools such as Pounder, Marathon, Jacareto,

JFC Unit, QTP are model based on improving the

response time, capture/Replay, ordering of test cases

with prioritization with comparing the GUI testing

techniques, methods and practices in the research

community. There has also been a general lack of

collaboration between practitioners and researchers

(Fig. 4), although with exceptions in recent years.

These techniques are typically not usable by other

researchers because they are not widely applicable. It

provides guidance about possible future development

and research directions.

4. CONCLUSION

In this study we presented a new automated tool for

any GUI applications. The proposed Prioritizatation

algorithm is used to Ordered of test cases using regression

testing, implemented proof-of-concept tool support for the

approach and combined the implemented GUI tool with

an model-based approach aims to reduce the amount of

fault detection rate in the test suite generation, it is

required to model based GUI applications to enable quick

response time and time interval in GUI events in

automated testing. In our previous work, the strengths of

our approach in comparison to the automated testing tools

include automatically generating human readable

graphical models while requiring none or only a little

manual effort. In future, we plan to improve the GUI Tool

so that the generated Feedback would inform about the

detected usability issues and include information about the

changes that happened in the GUI after a specific

interaction. The GUI Tool should indicate more clearly the

states that should be manually elaborated in the model and

support iterative modeling containing manual and

automated phases. Also, we plan to extend the approach to

be also usable on other kinds of GUI applications.

However, in this study we didn’t consider that some

events might give failed test cases events are unrestricted

to the action take place in the application. We might

need to further investigate whether the fault-detection

ability of the other tool is the same as the latter.

Furthermore, we still have to know how to generate

report generation for other application. We plan to study

and present above mentioned issues in the future.

5. REFERENCES

Alshraideh, M., 2008. A complete automation of unit

testing for JavaScript programs. J. Comput. Sci., 4:

1012-1019. DOI: 10.3844/jcssp.2008.1012.1019

Ashraf, E., A. Rauf and K. Mahmood, 2012. Value based

regression test case prioritization. Proceedings of the

World Congress on Engineering and Computer

Science, Oct. 24-26, San Francisco, USA.

Belli, F., M. Beyazit and N. Guler, 2012. Event-

oriented, model-based GUI testing and reliability

assessment-approach and case study. Adv. Comput.,

85: 277-326.

Prabhu Jayagopal and Malmurugan Nagarajan / Journal of Computer Science 10 (2): 190-197, 2014

197 Science Publications

JCS

Bryce, R.C., S. Sampath and A.M. Memon, 2011.

Developing a single model and test prioritization

strategies for event-driven software. IEEE Trans.

Soft. Eng., 37: 48-64. DOI: 10.1109/TSE.2010.12

Huang, C.Y., J.R. Chang and Y.H. Chang, 2010. Design

and analysis of GUI test-case prioritization using

weight-based methods. J. Syst. Software, 83: 646-

659. DOI: 10.1016/j.jss.2009.11.703

Jatain, A. and G. Sharma, 2013. A systematic review of

techniques for test case prioritization. Int. J.

Comput. Applic., 68: 38-42. DOI: 10.5120/11554-

6833

Marchetto, A., P. Tonella and F. Ricca, 2008. State-

based testing of ajax web applications. Proceedings

of the 1st International Conference Software

Testing, Verification and Validation, Apr. 9-11,

IEEE Xplore Press, Lillehammer, pp: 121-130. DOI:
10.1109/ICST.2008.22

McMinn, P., M. Harman, D. Binkley and P. Tonella,

2006. The species per path approach to SearchBased

test data generation. Proceedings of International

Symposium on Software Testing and Analysis, Jul.

17-20, ACM Press, Portland, ME, USA., pp: 13-24.

DOI: 10.1145/1146238.1146241

Memon, A.M., 2008. Automatically repairing event

sequence-based GUI test suites for regression

testing. ACM Trans. Software Eng. Methodol., 18:

pp: 1-36. DOI: 10.1145/1416563.1416564

Prabhu, J. and N. Malmurugan, 2010. A survey on

automated GUI testing procedures. Eur. J. Sci. Res.,

64: 456-462.

Reimer, J., 2005. A History of the GUI. Arc Technical,

LLC.

Rothermel, G., R. Huntch, C. Cu and M.J. Harold, 2001.

Prioritizing test cases for regression testing. IEEE

Trans. Software Eng., 27: 929-948. DOI:
10.1109/32.962562

Sampath, S., R. Bryce and A.M. Memon, 2013. A

uniform representation of hybrid criteria for

regression testing. IEEE Trans. Soft. Eng., 39: 1326-

1344. DOI: 10.1109/TSE.2013.16

Takala, T., M. Katara and J. Harty, 2011. Experiences of

system-level model-based GUI testing of an android

application. Proceedings of the IEEE 4th

International Conference on Software Testing,

Verification and Validation, Mar. 21-25, IEEE

Xplore Press, Berlin, pp: 377-386. DOI:

10.1109/ICST.2011.11

Yu, Y.T. and M.F. Lau, 2011. Fault-based test suite

Prioritization for specification-based testing. Inform.

Software, 54: 179-202. DOI:

10.1016/j.infsof.2011.09.005

Yuan, X. and A.M. Memon, 2007. Using GUI run-time

state as feedback to generate test cases. Proceedings

of the 29th International Conferences on Software

Engineering, May 20-26, IEEE Xplore Press,

Minneapolis, MN., pp: 396-405. DOI:
10.1109/ICSE.2007.94

