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Abstract: In this paper, we consider a boundary value problem for a singularly perturbed delay
differential equation of reaction-diffusion type. We construct an exponentially fitted numerical
method using Numerov finite difference scheme, which resolves not only the boundary layers but
also the interior layers arising from the delay term. An extensive amount of computational work
has been carried out to demonstrate the applicability of the proposed method.

1. Introduction

A singularly perturbed delay differential equation is a differential equation in which the highest order
derivative is multiplied by a small positive parameter ¢ and which involves at least one delay term. Delay
differential equations are prominent in the fields of biology, ecology, medicine, and physics [1-3]. In
[4,5], Lange and Miura initiated the asymptotic analysis of singularly perturbed difference-difference
equations with small shifts. The numerical analysis of these equations has found considerable growth in
recent years due to the applications in several areas, as discussed in [5-11].

The standard discretization methods, when applied to singular perturbation problems, are found to be
unstable and also fail to give accurate results for small values of the perturbation parameter ¢ . Hence,
suitable numerical methods are to be developed whose accuracy is independent of ¢ . Various numerical
methods to solve singularly perturbed differential equations can be found in [12—15]. In [16-22], a variety
of numerical techniques is discussed for solving second order singularly perturbed differential-difference
equation with small shifts. In [23-24], the authors Subburayan and Ramanujan presented initial value
techniques for solving second order singularly perturbed boundary value problems with delay. In[25]the
authors Amiraliyev and Cimen have presented an exponential fitted difference scheme for singularly
perturbed second order boundary value problem with the large delay in the reaction term. Manikandan
et.al [26] proposed a first order uniformly convergent numerical method for singularly perturbed
differential equations, which exhibit boundary layers at both end points and an internal layer.

In the present paper, we consider a boundary value problem for a singularly perturbed delay
differential equation of reaction-diffusion type. We construct an exponentially fitted numerical method
using Numerov finite difference scheme, which resolves not only the boundary layers but also the interior
layers arising from the delay term. The proposed numerical method converges uniformly with respect
toe. The efficiency of the proposed method is discussed with the help of extensive computational work.

2. Statement of the problem
We consider the following boundary value problem for a singularly perturbed delay differential equation
of reaction-diffusion type:

—&y" () +a()y(x) +b(x)y(x-1) = f(x) ,0<x<2 @))]

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1


http://creativecommons.org/licenses/by/3.0

14th ICSET-2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 263 (2017) 042110 doi:10.1088/1757-899X/263/4/042110

subject to the interval and boundary conditions,
y(x) =¢(x);-1<x<0,
y@2)=5
where 0 < ¢ <<landa(x) >0, b(x) <0, a(x) +b(x) > 2« for ¢ > 0 and a(x), b(x), f (x) are given
sufficiently smooth functions on [0,2], #(X) is a smooth function on [-1,0]and } is a given constant
which is independent of ¢ .
Assuming y € 3=C°[0,2]nC}(0,2) nC?{(0,1) U (1,2)}.
The problem(1) and (2) can rewritten as
Ly(x) =—&y"(x) +a(x)y(x) = f (x) —b(x)¢(x -1),0<x<1 (3a)
Loy(x) =—gy"(x) +a(x)y(x) + b(x)y(x —1) = f (x),1<x <2 (3b)
and y(x) =¢(xX)on [-1,0], y(@-)=yl@+),y' @) =y'@+),y(2) =4, wherey(l-) and y(1+)denote
the left and right limit of y atx =1 respectively. The solution y(X) exhibits boundary layers at x =0and
x = 2 and the interior layer x =1[5].
Throughout the paper, C denotes a generic positive constant that is independent of xas well as & .In

2

case of discrete problems, Cis also independent of the mesh parameter N . |||| denotes the global

maximum norm over the appropriate domain of the independent variable, i.e.,

fl= max}f ok

The operator L corresponding to equation (1) satisfies the following continuous maximum principle
and the stability estimate:

3. Stability result
Lemma 3.1.Let a(x) >0, b(x) < Osatisfy a(x)+b(x) > 2« .Let we Ibe any function satisfyingw(0) >0,
w(2) >0, Lw(x) >00n (0,2), then w(x) >0 on [0,2].

Proof: Let X be such that w(x") = n?ér; : w(x) . If w(x") >0, there is nothing to prove.
xe[0,

Suppose W(X ) <0, then we have X ¢[0,2]. As w'(X ) >0,

Lw(x") =—aw"(X") +a(x )w(x ) +b(x )w(x” —1)

<—aw'(x) +(a(x") + b () <0, asw(x” ~1) = w(x)

which is a contradiction. Hence our assumption is wrong. Therefore, W(X*) >0, which proves the lemma.

Lemma 3.2.Let a(x)>0, b(x) <Osatisfy a(x)+b(x) >2a. Let ye Jis any function, then for all
x €[0,2], we have
1
2.
a

y(0)| < maX{\y(O) y(2)
Proof: We construct two barrier functions * defined by
. 1
wE(x) = maX{\y(O) y(2) ,;HLyH} £ y(X).
Then we have

v (0) = max{y(omy(z)\%uwu}i y(0)

_ max{\y(O)\, vl LyH} + gy since Y(0) = o
>0,
v (2) - max{\y(O)\, v éuLyH} +y(2)

_ max{\ym)\,\y(z)\%uwu}i p. since y(2) =3

>0,
and we have

Ly (0 = el (0] +aGap* 09+ 0oy (x-1)
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= max{w(O),\w(Z)\,lHLwH} + Ly(x) > 0.
a
Using the condition of a(x) and b(x) and using Lemma 3.1 we get y*(x) >0 on [0,2]. Therefore,

ly(x)| < max{w(O),

Lemma 3.3.Let a(x) >0, b(x) < Osatisfya(x) +b(x) > 2« .Let y be the solution of (1) and (2). Then, for
all x €[0,2], we have

w(2)

,EHLWH}, x<[02].
(24

),fori:O,l

i
\y<i>(x)\scg 2(ly|+|t

and
y<i><x>scs"2[y+f+e('2)f“‘”]’f°fi=2’3'4-

Proof:

From (1) we have

y"() =& H(a(x)y(x) +b(x)y(x-1) - f (x)) “4)

and the bound on y(x) follows from lemma 3.2 and bound on y”"(x) follows from (4).

To bound y'(x) in the interval (0,1) , consider the interval N =[a,a++/&] =[0,1]. Then by mean value
theorem, for some £ N,

y(e) = Y@rYE) —y@

\/E b
1

y'(@)=<2¢ 2|y
Now for any x e N, we get

Y'(9=y(©)+][y"(s)ds
s

=

X

=)+ [ (- 1(9) +a)y(s) + be)g(s-D)ds
3

X
y el <ly @1+ (I O+ [a@lly©)]+ Ellss -))f os
3
1
y (] <Ce 2(|f]+]y])-
Similarly, to bound y'(x)in the interval (1,2), consider the interval N =[a,a+~/¢]< (1,2] Then by

ya+Ve)-y@ ., -
By g (&) <2¢ 2|y|

=

mean value theorem, for some £e N, y'(&)=

Then for any X e N, we get
1
=y <Ce 2(f]+]y)).

which follows the required bounds. Similarly differentiating (4) once and twice gives the bounds on

y®and y® follows from those Yy’ and y".

4. Numerical algorithm

Step1.By setting ¢ =0 in equation (1), we get a recurrence relation for the solution of reduced problem
as

Yo(X) = F)- b;g)yo(x -1

whose solution does not satisfy both the conditions (2).

©)
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Hence the value of y(x=1) can be obtained by the solution of reduced problem i.., yy(X), i.e.,
f(@)-b@)y, (0
Jy - 1O -bDY©) _

7 (say).
a(l)
Now the problems (3) can be rewritten as
Ly(x) =—gy"(x) +a(x)y(x) = £ (x) —b(x)¢(x -1),0< x<1 (6)
subject to the conditions y(X) =@(x);—1<x<0, y() =y
and
Loy() =—&y"(x) +a(x)y(x) +b(x)y(x—1) = f(x),1<x<2 (7

subject to the conditions y(1) =y, y(2)=p.

Step2. The solution of (1)-(2)will be of the form

y(X) = Yo +Vo +Wo (®)
where vy and w are the left and right boundary layer functions respectively.

Vg, W, satisty the differential equations

— &(yg + Vg +Wj)+a(X)(Yo + Vo + W)= f(X) —b(x)y(x—1)

2
~9%O  paywy(r) =0;  re(0,) ©)
wﬁ‘b(l)wo(’?):(); 7€) (10)
n

with Vg (z = 0) + W (77 = \/ZEJ =¢$(0) - yo(0)

vo(r=j;J+w0<n=0)=ﬂ—yo(2)

Yo(z =o0) = Wy (57 = 0) =0

X and = 2-x

Ve Ve
Solutions of (9) and (10) are given by
Vo(7) = Ae V2Or

where 7 =

(11
Wy (7) = Be V2@ (12)
Therefore, solution of (8) becomes
_ 2O, ~ 22 5
y(X)=yo(X)+Ae ' ¢ +Be ' ¢ (13)
Applying the boundary conditions we get Aand B as
(2@
A_ B0 -yo(©)-(B-y) " * (13)
(J2a(0) +y2a(2)) '
1-e g
_» (a0
- B-%@)-(O -y " ° (15)
(V2200 +22(2)) '
l1-e Ve

Step 4.
Noxp;v the interval [0,2]is divided into 2N equal subintervals of constant step length h. Let
0=Xg,Xq,--- XN (=D, XN410---Xon =2 be the mesh points, such that x; =ih;i=01....2N . We choose N
such that Xy =1and x,\ =2. The boundary layer lies to the left end of the interval [0,1] and to the right
end of the interval [1,2].

At apoint X = X;, the equation (6) becomes
& (x) =g(x,y;) where, g(x;,y;) =—1(x) +a()y(x) +b(x)(xi_n)-



14th ICSET-2017 IOP Publishing
IOP Conf. Series: Materials Science and Engineering 263 (2017) 042110 doi:10.1088/1757-899X/263/4/042110

Yica —2Vi +Via
h2
vy 1 (= fia+agyig+b gd(xig )+

o $A =2k ) a0l vy 4B )

(= fia +AiaYivg +biad(Xisran))

By Numerov method, we have g( ] = 1—12(gi71 +10g; + gi+1).

Therefore, we have
g[ Vit —2Yi + Yi+1j_ 1

o2 E(ai—lyi—l +10a;y; +aj,1Yi41)

n (16)
= E(( fi1 +10f; + fiu) = (b_ad(Xi_in) +100,8(X_n ) +Biag(Xis1-n)))
Now a fitting factor o is introduced in the above difference scheme as
o1 —2Y; + Vi 1
55(%) - E(ai—lyi—l +10a;y; +a,1Yi41)
-1
= E(( fiy +10f; + fiq) — (01 (Xi_1_n ) +1008(X_n ) + b1 (Xia-n )
fori=12,..N-1. 17

To find o on the left boundary layer we use the asymptotic solution

O,
Vo(X) =Y; = Ae \/T (18)

where A is given by (14).
We assume that solution converges uniformly to the solution of (1), then f;_; +10f; + f;,4 is bounded.

As h— 0 equation (17) becomes

. a(0) .
fim s a2y + Yioa) = 202 lim (i, +10; + Y1) (19)
where p = %
&

Substituting (18) in (19) and simplifying, we get the fitting factor as
pza(O)(eVa(O)'” +eVaOr +10j

o=
a(0)p
2

(20)
485inh2[

which is a constant fitting factor. This will be the fitting factor in the interval [0,1] .
Substituting the fitting factor (20) in (17), we have the three term recurrence relation as

& A 260 10 & A
YTy i1~ hT+Eai Vit 1 Yitt
-1
:E((fi—l +10f; + i)~ (0 _16(xi_1_n ) +1006(X ) +05,16(Xi 11 1))

fori=12,.N-1. 2D
The above tridiagonal system (21) along with the boundary conditions y, = ¢(0); yy =y can solved by
Thomas algorithm.
Step 5.
Atapoint x =X, the differential equation (7) can be written as
&7 (x) = 9(x;, y;) where, g(x;,y;) =—f(x)+a(x)y(x)+b0x)y(X_n)
Proceeding as in Step 4, we get the three-term recurrence relation

(ﬂ— aifl]Yifl —(280-1 +Eaij>/i J{ﬂ— aiﬂanl

h? 12 h? 12 h? 12
-1
= E(( fiy +10f; + fi+1)* (bi—ly(xi—l—N ) +10b;y (XN ) + i Y (Xian )))
fori=N+1N+2,...2N-1. (22)

The above tridiagonal system (22) along with the boundary conditions yy =y; Yon = £ can solved by
Thomas algorithm.
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5. Numerical examples

The numerical method proposed in this paper is applied to four examples to illustrate the & —uniform
convergence. Since the exact solutions for these problems are not available, the maximum absolute errors
are calculated using the double mesh principle as follows:

E, = max yiN - y%iN .

0<i<N

For a value of N, the & -uniform maximum absolute error is calculated by the formula EN = maxE,.
&

The numerical rate of convergence for all the examples has been calculated by the formula
_log|E, /EZY |
log2 '

RN

Example 1. [24, p. 76]. Consider a constant coefficient boundary value problem
—&y"()+5y(¥) —y(x-D =1, y(x)=L-1<x<0, y(2)=2.

Example 2. [26, p. 87].Consider a constant coefficient boundary value problem
—&y"(0)+2y(x) - y(x-1) =0, y(x)=1-1<x<0, y(2)=1.

Example 3. [24, p. 76].Consider a variable coefficient boundary value problem
—' () +(X+5y(x) - y(x-1) =1, y(x)=L-1<x<0, y(2)=2.

Example 4. [24, p. 76]. Consider a boundary value problem with discontinuous source term

) L 0<x<1
&y"(x) +5y(x) - y(x-1) {_l_ lex<?
The maximum point wise errors and the rates of convergence of the boundary value problems in
Examples 1-4 are presented in Tables 1-4 respectively. The numerical solutions plotted in Figures 1-4
illustrate the nature of the boundary layers for these problems.
We compared our results with the results available in [26].
numerical rate of convergence is better than the method proposed in [26].

, Y(X)=1-1<x<0, y(2)=2.

It has been observed that the

Table 1.
ed | 2N— 512 1024 2048 4096 8192 16384
29 2.0501¢-004 | 9.6607¢-005 | 4.6858e-005 | 2.3073¢-005 | 1.1449¢-005 | 5.7023e-006
2-10 3.0199¢-004 | 1.4003e-004 | 6.7099¢-005 | 3.2837e-005 | 1.6242¢-005 | 8.0771e-006
o-11 4.5089¢-004 | 2.0501e-004 | 9.6607e-005 | 4.6858e-005 | 2.3073e-005 | 1.1449e-005
o-12 6.9788e-004 | 3.0199¢-004 | 1.4003e-004 | 6.7099¢-005 | 3.2837e-005 | 1.6242¢-005
213 1.0677e-003 | 4.5089¢-004 | 2.0501e-004 | 9.6607e-005 | 4.6858e-005 | 2.3073e-005
o-14 1.7074e-003 | 6.9788e-004 | 3.0199¢-004 | 1.4003e-004 | 6.7099¢-005 | 3.2837e-005
2-15 2.3379¢-003 | 1.0677¢-003 | 4.5089¢-004 | 2.0501e-004 | 9.6607¢-005 | 4.6858e-005
RN 1.0855 1.0438 1.0221 1.0110 1.0056 -
Table 2.
ed | 2N— 512 1024 2048 4096 8192 16384

29 2.5868e-004 | 1.2449¢-004 | 6.1054e-005 | 3.0232¢-005 | 1.5042¢-005 | 7.5028e-006
2-10 3.7669¢-004 | 1.7881e-004 | 8.7028e-005 | 4.2926¢-005 | 2.1316e-005 | 1.0621e-005
o-11 5.5695¢-004 | 2.5868e-004 | 1.2449¢-004 | 6.1054¢-005 | 3.0232¢-005 | 1.5042¢-005
012 8.3295e-004 | 3.7669¢-004 | 1.7881e-004 | 8.7028e-005 | 4.2926e-005 | 2.1316e-005
013 1.2725e-003 | 5.5695e-004 | 2.5868e-004 | 1.2449¢-004 | 6.1054e-005 | 3.0232¢-005
714 1.8719e-003 | 8.3295e-004 | 3.7669¢-004 | 1.7881e-004 | 8.7028e-005 | 4.2926e-005
215 3.0986e-003 | 1.2725e-003 | 5.5695e-004 | 2.5868e-004 | 1.2449¢-004 | 6.1054e-005
RN 1.0551 1.0279 1.0140 1.0071 1.0035 ---
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Table 3.
ey | 2N—> 512 1024 2048 4096 8192 16384
279 1.8782¢-004 | 8.8565e-005 | 4.2983e-005 | 2.1170e-005 | 1.0505e-005 | 5.2323e-006
910 2.7566e-004 | 1.2817e¢-004 | 6.1432¢-005 | 3.0068e-005 | 1.4874¢-005 | 7.3967e-006
o1 4.1067¢-004 | 1.8726e-004 | 8.8280e-005 | 4.2842e-005 | 2.1099¢-005 | 1.0469¢-005
712 6.2992¢-004 | 2.7512e¢-004 | 1.2788e-004 | 6.1289¢-005 | 2.9997e-005 | 1.4838e-005
213 9.7186e-004 | 4.1015e-004 | 1.8697¢-004 | 8.8135¢-005 | 4.2770e-005 | 2.1063e-005
914 1.5026¢-003 | 6.2936¢-004 | 2.7484¢-004 | 1.2774e-004 | 6.1216e-005 | 2.9961e-005
715 1.9213e-003 | 9.7137¢-004 | 4.0988¢-004 | 1.8682e-004 | 8.8062¢-005 | 4.2734e-005
RN 0.98399 1.0430 1.0217 1.0109 1.0056 --
Table 4.
ey | 2N— 512 1024 2048 4096 8192 16384
279 2.0501e-004 | 9.6607¢-005 | 4.6858e-005 | 2.3073e-005 | 1.1449¢-005 | 5.7023e-006
910 3.0199¢-004 | 1.4003e-004 | 6.7099¢-005 | 3.2837e-005 | 1.6242¢-005 | 8.0771e-006
o1 4.5089¢-004 | 2.0501e-004 | 9.6607¢-005 | 4.6858e-005 | 2.3073e-005 | 1.1449¢-005
712 6.9788e-004 | 3.0199¢-004 | 1.4003e-004 | 6.7099¢-005 | 3.2837¢-005 | 1.6242¢-005
213 1.0677¢-003 | 4.5089¢-004 | 2.0501e-004 | 9.6607¢-005 | 4.6858e-005 | 2.3073e-005
o-14 1.7074e-003 | 6.9788e-004 | 3.0199¢-004 | 1.4003e-004 | 6.7099e-005 | 3.2837e-005
215 2.3379¢-003 | 1.0677e-003 | 4.5089¢-004 | 2.0501e-004 | 9.6607¢-005 | 4.6858e-005
RN 1.0855 1.0438 1.0221 1.0110 1.0056 --
1 0 \ 0 0 0 0 0 0 0
0.8
\:, 0.6]
0.4r k
02 [ [ [ [ [ [ [ [ [
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
X

Figure 1. Graph of the solution with & =27° for Example 1.
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Figure 2. Graph of the solution with & =27 for Example 2.
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Figure 3. Graph of the solution with & =27 for Example 3.
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Figure 4. Graph of the solution with & =27° for Example 4.
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6. Discussion and Conclusions

In this paper, we considered a boundary value problem for a singularly perturbed delay differential
equation of reaction-diffusion type. To obtain an approximate solution of this problem, we constructed an
exponentially fitted numerical method using Numerov finite difference scheme. The method resolves the
boundary layers due to the perturbation parameter as well as the interior layers due to the delay term.
The proposed method is & uniformly convergent order one and has been illustrated in tables 1-4. To
illustrate the nature of the boundary layers and the internal layer, graphs are plotted in Figures 1-4 for
problems given in Examples 1-4 respectively. By considering several numerical results on a variety of
examples, it is concluded that the present method is efficient in solving the singularly perturbed linear
differential equations of reaction-diffusion type with delay.
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