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A Numerical Study on Vibration Control
of a Nonlinear Jeffcott Rotor via Bouc-
Wen Model

This paper aims to study numerically attenuation of whirl amplitude of a
Jeffcott rotor with nonlinear cubic stiffness using hysteretic damping based
on Bouc-Wen model. In the present work, a modified Jeffcott rotor with
linear viscous damping and cubic stiffness excited by harmonic forcing
function owing to mass unbalance is studied. The nonlinear cubic stiffness
term appears due to either mid-plane stretching of the shaft or by
introducing nonlinear spring at the supports. In view of attenuating the
vibrational response further, a nonlinear hysteretic damping term based on
widely accepted Bouc-Wen model multiplied with a suitable scale factor is
introduced into the system equation. Through appropriate choice of
parameters of the model, a wide variety of hysteresis loops are obtained to
illustrate the influence of Bouc-Wen parameters over the control of the
loop size and smoothness. Following a numerical investigation to highlight
the benefits of using Bouc-Wen hysteretic damping, time history and
frequency response of the system are presented. A comparison between the
responses of the system while using cubic stiffness and hysteretic damping
reveals the effectiveness of Bouc-Wen hysteretic damping in reducing whirl
amplitude in the subcritical range.

Keywords : Bouc-Wen model, cubic stiffness, hysteretic damping, Jeffcott
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1. INTRODUCTION

Vibration attenuation of high speed rotating machines
has received a considerable interest in the last few years.
In high speed rotating machinery, such as gas turbine
and compressors, rotating shafts are often subjected to
vibrations which yield fatigue failure of the rotating
components, excessive noise, instability and
transmission of vibration to the supporting structure.
The dynamical interaction among the stator and rotor
and the mass unbalance are the main two reasons of
their vibrations. In the present work, a modified Jeffcott
rotor well discussed by Genta [1] with linear viscous
damping and cubic stiffness excited by harmonic
forcing function owing to mass unbalance is studied.
Mass unbalance is commonly observed in high speed
turbo-machinery due to many reasons such as
manufacturing defect, material characteristics, non-
uniform wear or corrosion, sticking of foreign particles
etc. It causes whirling [2] of the shaft defined as the
rotation of the plane made by the bent shaft and the line
of centres of the bearing/support. Apart from that,
instability phenomena in high speed rotors driven by a
non-ideal source [3] owing to the presence of internal
damping is of great importance in designing a
controllable damping parameters for safe ruuning at
high speeds.
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In this work, instead of considering internal damping,
non-ideal system issues, the attenuation whirl ampltide
as a fallout of eccentricity between the centre of mass
and the geometrical centre of the rotor disc via a special
type of hysteretic damping model is primarily focused.
It is well-known that especially at high speed, the
impact of mass unbalance causes excessive whirl
amplitude leads to catastrophic failure of the rotor
system if not predicted and controlled properly.

Most of the scientific literature in rotor dynamics
discussed the nonlinear dynamical aspects of machines
and their interaction with non-linear bearings. Different
faults such as rotor-stator rubs, cracked rotors have also
been addressed extensively. However, only a few works
are available so far which exploit the nonlinear
characteristics of either passive support or dampers to
reduce the whirl amplitude of the rotor-shaft. Das et al.
[4] proposed an active vibration control approach to this
problem. Vibrational response of rotor using passive
support was studied by Dutta et al. [5]. Reduction the
whirl amplitude using nonlinear springs is studied by
Carrella et al. [6].

A variety of nonlinear hysteretic vibration absor—
bers/isolators such as electro- or magneto-rheological
dampers have shown great promise in the field of
vibration reduction due to their inherent hysteretic
characteristics. Hysteresis is a typical nonlinear
phenomenon, and encountered in many scientific fields.
Recently, the role of squeeze film damper (SFD) to
reduce the vibrational response was reported by several
researchers [7,8]. Dutta & Chakraborty [9] studied the
performance of nonlinear oscillator with Magneto-
rheological (MR) damper based on hysteretic Bouc-
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Wen model [10,11]. In 2014, Balthazar and his co-
workers [12] presented the attenuation and suppression
of Sommerfeld effect [3] (a nonlinear jump phenomena
which destabilizes the rotor system) using MR damper
/device [13] through additional increase in current of the
MR damper.

However, the application of hysteretic damping
based on Bouc-Wen model has not been considered so
far to reduce the whirl amplitude of rotor shaft.

The present work exploits the hysteretic charac—
teristics of a special type of damping force based on a
Bouc-Wen model to attenuate the whirling of a rotor-
shaft supported by nonlinear springs through numerical
simulation. Over the years, many phenomenological
models of hysteresis for mechanical systems have been
proposed. One of the most widely accepted smoothly
varying differential models is Bouc-Wen hysteresis
model [11,12,14]. This model has been widely used to
describe nonlinear hysteretic systems and this nonlinear
differential equation model reflects local history
dependence through introducing an extra state variable.
Through appropriate choices of parameters in the
model, it can represent a wide variety of softening or
hardening smoothly varying behavior.

In the present study, our aim is to attenuate the whirl
amplitude of a modified Jeffcott rotor with nonlinear
cubic stiffness using hysteretic damping based on Bouc-
Wen model. Through appropriate choice of parameters
of the model, a wide variety of hysteresis loops are
obtained to illustrate the influence of Bouc-Wen para—
meters over the control of the loop size and smoothness.
Following a numerical investigation to highlight the
benefits of using Bouc-Wen hysteretic damping, time
history and frequency response of the system are
presented. A comparison between the responses of the
system while using cubic stiffness and hysteretic
damping reveals the effectiveness of Bouc-Wen hyste—
retic damping in reducing whirl amplitude in the
subcritical range.

2. MATHEMATICAL MODELLING AND
APPROACHES

A simple two degree of freedom (DOF) model of a
Jeffcott rotor is considered in this study, as shown in
Fig. 1. The rotor system is assumed to be symmetrical,
so that the centre of mass of the disc is mid-way bet—
ween two identical supports. Thus unbalanced force due
to eccentricity (e) applied at the centre of the rotor will
only excite translational motion (as shown in Fig. 2).
Furthermore both the flexible supports and the shaft are
assumed to have negligible mass. The mass of the shaft
is considered to be zero and it rotates with the angular
speed o along with phase [1.The springs are linear with
overall stiffness (i.e., support and shaft) of k, and £,.
The viscous damping is a combination of the shaft
structural damping, fluid damping due to the flow in
turbo-machines, and the effective damping added by the
bearings (as shown in Fig. 3 modeled as dashpot). In our
present work the direct stiffness k.= k, = k; is considered
only which produces radial force directed inward and
collinear with the rotor deflection vector. The stiffness
of the shaft experienced by the centrally mounted disk is
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Ks = 48EI / L*, where EI = flexural rigidity and L=
length of the shaft. The total stiffness provided by the
supports (i.e. stiffness for individual identical bearing=
k, connected in parallel) i.e., Kz = 2 k,. Now the K and
Kp are connected in series. So the effective stiffness £ is
given by k] = KS KB / (Ks +KB)~

The equations of motion of the shaft-disc system
may be written as:

m + % + kyx = mew* cos (ot +¢) o

mj}+cyy+kyy=mea)2 sin (@t +¢)

® = rotor spin velocity

Disk, m

Figure 1. Schematic of shaft-disc system
M — Mass centre
G — Geometric centre

O — Origin of reference

Figure 2. Positions of the geometric and mass centers of
the rotor-disc.

The equations of motion are decoupled and apart
from phase of the out-of-balance force, have the identi—
cal form. Thus we would analyse the generic equation in

terms of the displacement(q) and linear direct stiffness

k, as:

mij +cg + kyq = mea* cos(wt+¢) )

mee”

B S S

Py oS

Figure 3. Orbital motion of the rotor disc in the radial x-y
direction connected through linear springs and dampers

The motion of the shaft is referred to as whirling.
Excessive whirling may have catastrophic consequence
for the integrity of the system. Lower amplitude
whirling may result support vibration and noise and is
usually reduced by balancing the machine or by the use
of isolation mount.
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2.1 Introduction of non-linear cubic stiffness and
hysteretic damping terms

Introducing nonlinear cubic stiffness term into Eq. (2)
this becomes a non-linear Duffing equation of the
following form:

mij+cq+kq+ kg’ = mew” cos(wr + §) ®

The Duffing oscillator discussed by Nafey & Mook
[15] has been studied for many years, since it is rep—
resentative of many nonlinear systems. Nonlinear cubic
stiffness term appears due to either mid-plane stretching
[16] of the shaft or by introducing nonlinear spring [6]
at the supports. Nonlinear spring offers a lower natural
frequency and reduces whirl amplitude compared to its
linear counterpart.

In order to attenuate the whirl amplitude further, a
hysteretic damping force(z) based on Bouc-Wen model,
following the approach presented in the reference [17] is
added in the right hand side of Eq. (3) multiplied with a
suitable scaling factor (y) and can be re-stated as:

mg+cq+kyg+ k3q3 +yz= meaw* cos(a)t + ¢), (4)

t=dg-aldz|2["" - Bl ©)

where z :% and dot (-) represents differntiation with

respect to time (7).

a=0.05 3=0.75

a=0.01,3=05
2 - P 5

ny7 : a= 0.05, 3= 0065

-‘ICIL

q q

Figurer 4. The hysteresis loop generated by Bouc-Wen
model for various ¢ and /3 values.

Bouc—Wen model has been widely used to describe
nonlinear hysteretic systems, which reflects local his—
tory dependence through introducing an extra state
variable (z) described by a nonlinear differential equa—
tion (shown in Eq. (5)).

In general, 4,«, f influence the loop size and n the

smoothness of the loop. The hysteretic loops generated
by Bouc-Wen model for different a and f values are
shown in Fig. 4. For the present study, the value of
A and n both are taken as unity.

The Eq. (4) & (5) then may be written in non-
dimensional form as follows:

7' +267 +3 +5G° + 77 =Qcos(Qr +9), (6)
7= A7 -alq7|z - B 2], (7)
where
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_, d*q dg dz
=wyt, ' =———,q¢' =—=, 7 =—7q /e
o 4= oA = - q=4

S=ky/mg¢=cl2mo, o, =k/m y=y/m, &=ae,

T=z/e, f=Pe and Q=w/o,.

All the parameters of rotor and Bouc-Wen model are
presented in appendix in tabular form.

3. NUMERICAL RESULTS AND DISCUSSION

The following representative values are considered for
the numerical simulation:

m =22 kg, =09, ¢ =0.1,0=04, ¢=0.02,a=
0.45, = 0.5 and e=0.1 mm. The initial conditions are

takenas g|_, =0and | _, =

Using the above parameters, the two normalized
coupled equations ie, Eq. (6) and (7) are simul—
taneously solved numerically through Runge-Kutta
method (i.e., ode45 scheme in MATLAB).

=—=Linear
—Nonlinear 1
—Bouc-Wen Model

0 50 100 150 200

Figure. 5. Time response of the rotor to unbalance for sub-
critical range Q < and }7 = 0.5 for linear, nonlinear cubic

stiffness and hysteretic damping based on Bouc-Wen
model.

In the subcritical range, i.e.,, Q <1, the time response
of the rotor with hysteretic damping based on Bouc-
Wen model has a better stabilizing effect over the sys—
tem with cubic stiffness as shown in Fig. 5.

2 . . .
—Linear
—Non-linear
—Bouc-Wen Model
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O L L
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Figure 6. Frequency response of the rotor to unbalance for
sub-critical range Q <1 and }7 = 0.5 for linear, non-linear
cubic stiffness and hysteretic damping based on Bouc-
Wen model.

Moreover, when the forcing frequency is lower than
its critical speed i.e., in the subcritical range (i.e., Q <
1), the whirl amplitude for the hysteretic damping
(Bouc-Wen) is found to be the lowest in amplitude-
frequency response (as shown in Fig. 6) compared to its
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linear and nonlinear counterparts. Thus it highlights the
effectiveness of using Bouc-Wen hysteretic force in
reducing whirling amplitude of the rotor system com—
pared to its linear and cubic stiffness as reported by
Carrella et al.,[6]. Further reduction of amplitude is
made possible by increasing the scaling factor per unit

mass of the disc (i.e, V= 0.8) as shown in Fig. 7.

1 .
—Linear
—Non-linear
—Bouc-Wen Model
I 0.5} 1
0
0 2 4 6 8

Q

Figure 7. Frequency response of the rotor to unbalance for
sub-critical range (i.e., @ <1) and » =0.8.

2 T .
—Linear
—Non-linear J
—Bouc-Wen Model

Figure 8. Frequency response for synchronous operation,
(i.e., Q<1).

In synchronous operation i.e, Q =1, in which whirl
frequency (@, ) is same as the spin speed (@), the Bouc-

Wen damping has almost no or very little effect in
stabilizing the system (as shown in Fig. 8) compared to
its nonlinear counterpart. Rather this phenomenon can
be seen as a threshold wherein the effect of damping
shifts from stabilizing to destabilizing [18].

2 . . .
—Linear

—Non-linear ]
—Bouc-Wen Model

Figure 9. Frequency response of the rotor to unbalance for
supercritical range ;”’pand 7 =0.8.

In the supercritical range of whirling i.e., Q >1, the
whirl amplitude is found to be maximum (as shown in
Fig. 9) i.e., instead of decreasing, it continues to go on
increasing and leads to destabilize the system. The
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stabilizing and destabilizing effect of hysteretic
damping of the rotating elements of a machine in
subcritical and supercritical conditions respectively are
very well known and has been reported in many papers.
The results involving the present study are in good
agreement with the above-mentioned results reported by
the references [1,18].

4. CONCLUSION

The vibration control of whirl amplitude of a nonlinear
Jeffcott rotor is studied numerically using hysteretic
damping based on Bouc-Wen model. From the time and
frequency response diagrams, it is evident that in the
subcritical range, the Bouc-Wen model based hysteretic
damping yields better stabilizing effect compared to its
linear and nonlinear stiffness models thus effectively
reduces the whirl amplitude of the rotor. In synchronous
operation, in which whirl frequency is same as the spin
speed, the frequency of the hysteresis cycle is close to
zero and Bouc-Wen damping has a very little or no
stabilizing effect. In the supercritical operation, Bouc-
Wen model based hysteretic damping destabilizes the
rotordynamic system above the critical speed. Therefore
designers must then be careful when studying machines
operating in the supercritical range and should avoid
using hysteretic damping since it increases energy
dissipation within the rotor (similar to material/internal
damping, splined shaft and so on) and can cause severe
instability problems. This work can be extended further
by considering internal damping and gyroscopic forces
in the rotor.
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NOMENCLATURE
Symbol Parameter
m mass of the disc

k. k, linear spring stiffness in x and y directions
¢, ¢,  viscous damping in x and y directions

e unbalance eccentricity
W, whirl speed of the rotor
0] angular speed of the shaft/spin speed
é constant phase corresponding to the initial
position of the mass center of the disk
t time
displacement of rotor in the generic
Q equation of motion
c Linear viscous damping
ki Linear/effective direct spring stiffness
k3 cubic spring stiffness

zZ hysteretic force based on Bouc-Wen model
¢ damping factor

y scaling factor

Bouc-Wen parameters, influence the

A . .
apin hysteresis loop size and smoothness
T non-dimensional time
q non-dimensional whirl amplitude
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HYMEPUYKO TIPOYYABAIBE YIIPAB/bAIBA
BUBPAIINJAMA KO HEJIMHEAPHOT
IIE®KOTOBOI POTOPA
KOPUIIREBEM BYK-BEHOBOI' MO/IEJIA

A.K. Jxa, C.C. lacrynTa

Pan ce 0aBu npoydyaBameH HyMEPHUYKOT MPUTYIINBaKka
aMIUTUTYJa HACTAINX TPH BPTJIOKHOM OCLIJIOBAKY KOX
IledpxoroBor poropa ca HeTMHEAPHOM 3aIPEMHHCKOM
KkpyTomhy IPUMEHOM XHCTEPE3UIIHOT IPHTYIICHa
6asupanor Ha byk-BenoBom wmopmeny. Ilpukazan je
mMoaudukoBanu [lekoToB poTOp ca JIMHEApPHUM
BUCKO3HUM TPUTYIIEHEM H 3allPEMHHCKOM KpyTtomhy
nodyheHoM XapMOHHjCKOM (yHKIHjOM cMeTHe 300r
HeypaBHOTeKeHe Mace. HenmmHeapHu wiaH 3arpeMHH—
CKE KPYTOCTH c€ II0jaBJbyje WIIM YCJel H3IyKermha
BpaTHJIa Ha CpEOVHH paBHH WM yclien yBohema
HeJIMHeapHe OIpyTre y moAynupaduma. Jasee, y cMuCITy
MpHUTyIiekha BHOpanrja y CHCTEM jeIHadYWHA C€ YBOIU
HEeNMHEeapHH  WIAH  XUCTEPE3HIIHOT  IPUTYIIeHa,
OasmpaHor Ha mmHMpoko mnpuxBaheHoMm byk-BerHoBoM
MOJieNly, KOjU ce MHOXHU ojaropapajyhum dakropom
pasmepe. AIEKBaTHMM H300pOM IapaMeTrapa Mojelna
nobujajy ce pasiuyuTe IMeTJbe XHCTepe3e  Koje
WIYCTpYyjy  YTHIa] napamerapa  byk-BeHoBor
XHCTEPE3UIIHOT  TPHUTYIICHa  Ha  YIPaBJbambe
IVMEH3MjaMa M yjeqHadaBameM IeTibe. [lokaszaHa je
KOPHCT Ol HyMEpHYKOT HCTpaxkuBama byk-BeHoBor
MIPUTYIICHa, Pa3Boj U (PPEKBEHIM]CKH OJ3UB CHCTEMA.
Wsspmeno je mopeheme om3WBa CHUCTEMa, JIOK
Koprmheme 3aMpeMUHCKE KPYTOCTH M XHCTEPE3HIIHO
Mpuryieme ykadyjy Ha edukacHocT byk-BeHoBor
NPUTryIIekha KO peayKluje aMIUINTyJa HACTaluX HpH
BPTJIOKHHUM OCIJIAIMjaMa Y MTOJKPUTHYHOM PaCIIOHY.
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