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Abstract

Cyber physical system (CPS) is facing enormous security challenges because of open and interconnected network
and the interaction between cyber components and physical components, the development of cyber physical
systems is constrained by security and privacy threats. A feasible solution is to combine the fully homomorphic
encryption (FHE) technique to realize the efficient operation of ciphertext without decryption. However, most current
homomorphic encryption algorithms only support limited data types, making it difficult to be widely applied in actual
environment. To address this limitation, we propose a parallel fully homomorphic encryption algorithm that supports
floating-point numbers. The proposed algorithm not only expands the data types supported by the existing fully
homomorphic encryption algorithms, but also utilizes the characteristics of multi-nodes in cloud environment to
conduct parallel encryption through simultaneous group-wise ciphertext computations. The experimental results show
that, in a 16-core 4-node cluster with MapReduce environment, the proposed encryption algorithm achieves
the maximum speed-up exceeding 5, which not only solves the limited application problem of the existing
fully homomorphic encryption algorithm, but also meets the requirements for the efficient homomorphic
encryption of floating-point numbers in cloud computing environment.

Keywords: Privacy protection, Fully homomorphic encryption, Encryption of floating-point number, Parallel
encryption, Cyber physical system

1 Introduction
The cyber physics system is a multi-dimensional compli-
cated system that integrates computation, communica-
tion, and physical environments. The system emphasizes
the interaction between cyber and the physical system,
so secure information transmission between physical
components and information system has become more
important [1–3]. For the cyber physical system, a rela-
tively complete secure service should provide privacy
protection, data confidentiality, information integrity, ID
certification and access control. Therefore, how to pro-
vide privacy and security protection to users in the cyber
physics system in a secure and effective manner has be-
come a hotspot in the current academic research [4, 5].

In recent years, various technologies have been broadly
used for data privacy protection, such as private informa-
tion retrieval [6–11], searchable encryption [12–17], and
secure multi-party computation [18–23], but these tech-
nologies can only provide limited functions, such as key-
word search, order search, range query, and subset search.
However, for many application scenarios in the cloud envir-
onment, it requires various types operations of ciphertext
data. For example, based on the medical data of thousands
of patients, we could conduct analysis of drug effects,
summarize frequently searched words by users in the
search engine to release-related advertisement, and conduct
statistical analysis of encrypted financial information of
company. Most traditional encryption methods do not sup-
port ciphertext operation. According to the traditional
method, these data are sent to the cloud after encryption,
and when processing the data, the user needs to download
data to a local system and uses the data after decryption.
This approach tends to cause exposure of privacy, and in
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the meantime, when the user has frequent use of data to
conduct communication with service provider and realize
encryption and decryption of data, it will consume massive
network bandwidth and user’s time, which will significantly
reduce the usability of cloud computing.
Another solution is to adopt the homomorphic en-

cryption technique [24]. This technique supports cipher-
text data management under privacy protection, which
can be used to realize various operations such as direct
search, computation, and statistics of ciphertext at cloud,
and the result can be returned to the user in the form of
ciphertext. Compared to the traditional encryption algo-
rithms, this method does not require frequent encryp-
tion and decryption operations between the cloud and
user, which can reduce the overhead of communication
and computation resources. The user’s private data are
saved in the form of ciphertext at cloud, and the service
provider cannot know the data content, which can pre-
vent them from exploring user’s privacy through illegal
embezzling and tampering of user data. It has provided
a security basis for the users to fully utilize the cloud
computing resources to conduct massive data analysis
and processing, and in particular, it can be combined
with the secure multi-party computation protocol to
well solve the privacy security issue when the user out-
sources the computation service.
Most current homomorphic encryption schemes

support integer homomorphic operation, but do not
support homomorphic operation of floating-point
data, so they cannot satisfy the requirement of actual
application. By combining the cloud computing envir-
onment, this paper proposes a fully homomorphic
encryption algorithm that supports floating-point op-
eration, and the objective is to expand encryption al-
gorithm from integer to floating-point number. This
scheme has combined the MapReduce framework to
realize fully homomorphic encryption of parallel
floating-point number. In the meantime, the cluster
advantage is used to improve the execution efficiency
of algorithm, realize efficient encryption and decryp-
tion operation, and effectively reduce the time of
homomorphic operation. Both the theoretical analysis
and experiment results show that the parallel homo-
morphic encryption algorithm supports floating-point
operation, which can be used to conduct fast and effi-
cient encryption and decryption operation of massive
floating-point data. It has high security and practical-
ity, and it is applicable to the cloud computing
scenario.
The main contributions of our work are summarized as

follows:

(1) We propose a fully homomorphic encryption
algorithm supporting Floating-point operation

(FFHE) in this paper, which has solved the problem
that direct operation of many floating-point cipher-
texts cannot be carried out in the real environment.

(2) We design a parallel homomorphic encryption
scheme in order to address the low efficiency of
homomorphic encryption algorithm. This scheme is
based on the MapReduce environment, which can
realize parallel performance of algorithm through
data blocks. The experimental result shows that, in
a 16-core 4-node cluster, this encryption algorithm
can reach the maximum speed-up ratio exceeding 5.

(3) In addition to improve the security of algorithm, we
add an operation to disrupt the ciphertext order in the
proposed homomorphic encryption scheme that
supports floating-point operation, which has elimi-
nated the association between the child ciphertext and
key pair.

The rest of this paper is organized as follows. Related
work is summarized in Section 2. Section 3 introduces
the background knowledge. The homomorphic encryp-
tion scheme that supports floating-point number is pro-
posed in Section 4, and the homomorphic performance
and security of algorithm are also proved. In Section 5,
parallel design of algorithm is conducted, and specific
realization method is provided. Section 6 consists of ex-
periment and analysis, and the experiment results and
discussion are presented in the form of a chart. Finally,
we conclude this paper in Section 7.

2 Related work
In 1978, Rivest et al. proposed the concept of homo-
morphic encryption for the first time in Literature [25],
which is also called the “privacy homomorphism,” and in
the same year, they also proposed that the RSA public key
encryption algorithm has multiplication homomorphism
[26], and the security of this scheme is based on integer
factorization. Later, many homomorphic encryption
schemes have been proposed, such as the ElGamal [27]
encryption scheme with multiplication homomorphism
and the Paillier [28] encryption scheme with the addition
of homomorphism, but none of these methods have the
feature of fully homomorphic encryption, and are called
partial homomorphic encryption (PHE).
In 2009, Gentry proposed the fully homomorphic encryp-

tion(FHE) scheme based on the ideal lattice problem for
the first time [29], and this scheme can be used to conduct
any addition and multiplication operations of ciphertext.
Later, the fully homomorphic encryption technique entered
the period of fast development. Dijk et al. proposed the fully
homomorphic encryption scheme DGHV within the inte-
ger field [30], and this scheme is based on the greatest com-
mon divisor problem. Brakerski et al. proposed a fully
homomorphic encryption scheme based on the LWE
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(learning with errors) problem [31], its main idea is to ad-
dress the defects of ideal lattice-based scheme through the
re-linearization technique. Stehle et al. introduced the
NTRU (number theory research unit) algorithm for the
first time to improve the efficiency of initial FHE
scheme [32]. Its security assumption is based on
RLWE (ring learning with errors). Brakerski et al.
proposed the BGV scheme in literature [33], which
can support multi-bit operation, and the computation
complexity is much lower than that of Gentry’s initial
scheme. From the initial scheme of Gentry to BGV
scheme, the research on the homomorphic encryption
scheme has made remarkable progress, but still far
away from the actual application.
In recent years, some mature homomorphic encryp-

tion schemes are proposed in literatures [34–41], es-
pecially, Garg et al. proposed a fully homomorphic
algorithm based on the LWE and RLWE problems,
which utilizes the addition and multiplication opera-
tions of matrix to realize homomorphic computation
of ciphertext, and it is believed as an ideal scheme at
present. Based on the approximate greatest common
divisor problem, Liu proposed a fully homomorphic
encryption (LFHE) that supported integer operation
[42], and a fully homomorphic encryption is realized
through complicated algebraic equation, which has
high execution efficiency. He also applied this scheme
to cloud computing environment [43]. Liu et al. [44,
45] designed a computation framework and toolkit
that support privacy protection, this scheme supports
multi-key encryption, and it can be expanded to ra-
tional number computation.
In real scenarios, some homomorphic encryption

techniques have been used in the cloud environment
for privacy protection. According to the data privacy
problem in cloud computing environment, Brenner
et al. [46] adopted a fully homomorphic encryption
technique to realize safe execution of confidential
program at third-party server. For the multimedia in-
formation retrieval problem in cloud computing en-
vironment, Lu et al. [47] proposed SIFT (the security
scale invariant feature transform) scheme based on
Paillier encryption scheme. The feasibility and effi-
ciency problems of existing homomorphic encryption
schemes are discussed in literatures [48–56], and
some application scenarios were combined to analyze
the requirement for homomorphic algorithms. In ac-
cordance with the low efficiency problem of Paillier
encryption algorithm, Min et al. [57] proposed a
homomorphic encryption algorithm that can conduct
parallel encryption in the cloud environment, but be-
cause most practical computations involve integer and
floating-point number operation, this method still has
its shortages.

Literatures [58–60] expanded the homomorphic
encryption scheme of integer domain to the fixed--
point and floating-point parts, which has extended the ap-
plication scenarios of homomorphic algorithm. Literature
[61] specifically analyzed the theoretical basis and charac-
teristics of above homomorphic encryption schemes in
theory, stipulated various terms, related concepts and defi-
nitions used in the homomorphic schemes, and made uni-
form description of above concepts based on
mathematical knowledge.
As most current homomorphic encryption schemes

support integer homomorphic operation, we propose
a fully homomorphic encryption algorithm that
supports floating-point operation. The proposed
algorithm can not only solve the problem of limited
application in the existing fully homomorphic
encryption, but also conduct parallel encryption
based on the characteristics of multi-nodes in cloud
environment, and as a result, the efficiency can be
improved.

3 Background
3.1 The LFHE algorithm
LFHE algorithm allows the ciphertext to contain
huge noise, and the ciphertext generated after mul-
tiple homomorphic operations can still be accurately
decrypted, no matter how big noise volume has been
accumulated during this process. This scheme is
mainly based on the approximate greatest common
divisor problem, which depends on complicated alge-
braic operation, so it has higher efficiency than the
homomorphic encryption scheme based on the ideal
lattice problem. The specific encryption scheme is as
follows:

1. Generation of key

Assume q is a prime number and Zq be the set of
integers modulo q, from GF(q)n + 1, select a random
integer vector K(n) = [ k1, …, kn ], n ≥ 3; in GF(q)l,
select random vector Θ = [θ1,…,θl], select random
ciphertexts encrypted by elements in Θ, which is Φ
= [Encl(K(n),θ1),…,Encl(K(n),θl), Encl(K(n),1)]. Then the
private keys are K(n) and Φ.

2. Encryption algorithm

LFHE algorithm generally consists of two parts: the
lower level encryption algorithm and the upper level en-
cryption algorithm. Given the secret key K(n) and an in-
teger v ∈Zq, the lower level encryption algorithm can be
expressed as Encl = (K(n),v) = (c1, …, cn + 1); the specific
algorithm is shown as Eq. (1).
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cΠ ið Þ ¼

a � ti � vþ
Xh−1
j¼1

rv j

 !
þ S ið Þ þ ti � ri−rhð Þ modq i ¼ 1

a � ti � −rvi−1ð Þ þ S ið Þ þ ti � ri−ri−1ð Þ modq 2≤ i≤h

rsu þ
Xm
j¼uþ1

sij � rs j þ ti � rr modq hþ 1≤ i≤n−1; u ¼ i−h

rsm þ ti � rr modq i ¼ n
rr modq i ¼ nþ 1

8>>>>>>>>>><
>>>>>>>>>>:

ð1Þ
where r1,…,rh, rs1,…,rsm, rv1,…,rvh-1 and rr are random
integers uniformly sampled from Zq. For correctness, we
require a ≠ 0 ti ≠ 0 for 1 ≤ i ≤ h, andS(i)is defined as SðiÞ
¼Pm

j¼1sij � rs j.
The lower level encryption algorithm is only used to

generate the key element in the fourth part Φ of key. As-
sume in key K(n), Θ = [θ1,…, θl] has been defined, and it
satisfies l ≤ n-2. For each element θ in Θ, n + 1 cipher-
texts Cθ1, …,Cθ(n + 1) can be obtained according to Eq.(1),
which is element ϕ in key Φ. Therefore, Φ can be de-
fined as Eq. (2).

Φ ¼ ϕ1;⋯;ϕlþ1

� �
¼ Encl K nð Þ; θ1ð Þ;⋯; Encl K nð Þ; θlð Þ;Encl K nð Þ; 1ð Þ½ �

ð2Þ
And the specific definition of ϕi is:

ϕi ¼ Encl K nð Þ; θið Þ i≤ l
Encl K nð Þ; 1ð Þ i ¼ l þ 1

�
ð3Þ

where ϕl + 1 is the ciphertext result obtained through
encryption of integer 1. If it satisfies the requirement of
low-order encryption algorithm, it can use maximal n −
1 constraints.
Assume ru1,…,rul-1, and rul are all random integers

samples from Ζq, rul + 1 and plaintext v are satisfied rulþ1

¼ v−
Pl

i¼1rui � θi modq . In key K(n), the third and
fourth parts are Θ = [θ1,…θl] and Φ=[ϕ1,⋯, ϕl + 1] re-
spectively, every plaintext can be encrypted into l + 1 ci-
phertexts. And then, the upper level encryption
algorithm can be expressed as Eq. (4).

Enc K nð Þ; vð Þ ¼ c1;…; cnþ1ð Þ ð4Þ
where ci = ru1 × cθ1i + … + rul + 1 × cθ(l + 1)i.

3. Decryption algorithm

The decryption algorithm uses key K(n) to decrypt ci-
phertext (c1,…,cn + 1) into plaintext v, and it mainly in-
volves the following steps:

– RR = cΠ(n + 1) mod q;
– RSm = cΠ(n) − tn ∗ RRmod q;
– RSu ¼ cΠðiÞ−ti � RR−

Pm
j¼uþ1sij � RS j modq

where u ranges from m − 1 to 1,i = u + h;

– F ¼ Ph
i¼1ððcQðiÞ−

Pm
j¼1 � RS jÞ=tiÞ modq;

– v = F/amod q.

In the above definition, the decryption algorithm is de-
scribed in five steps by using intermediate variables,
such as RSu and F. Actually, we can fuse these steps and
then we can get a linear form of the decryption algo-
rithm as Eq. (5).

v ¼ dk1
�cΠ 1ð Þ þ…þ dknþ1

�cΠ nþ1ð Þ modq ð5Þ

Compared to the common fully homomorphic encryp-
tion algorithm, LFHE can provide good execution effi-
ciency, which has certain practical value and realistic
significance. The defects mainly consist of two aspects:
(1) the algorithm can only support integer homomorphic
operation, but do not support homomorphic operation
of floating-point data, so they cannot satisfy the require-
ment of actual application; (2) it has certain limitation
on the aspect of security, which has the risk of leaking
the key. The reason why the attacker is able to decode
all ciphertexts information based on the PEK is that the
relative location of key elements ki is maintained the
same when the LFHE scheme uses the key to encrypt
plaintext data, so the attacker is still able to decode the
key information by solving the equations.
In this chapter, a new fully homomorphic encryption

algorithm is proposed to support floating-point oper-
ation, which increase its application scene range, and
makes further improvements in the areas of security
flaws. In the meantime, in order to improve the execu-
tion efficiency of algorithm, we combine the MapReduce
framework to realize fully homomorphic encryption of
parallel floating-point number.

3.2 MapReduce model
The MapReduce parallel computation framework is a
parallel program execution system, and it provides the
parallel processing model and process that consists of
the two stages of Map and Reduce. The Map function
and Reduce function provide two high-level abstract
models and interfaces for parallel programming, and the
programmer only needs to realize these two interfaces to
quickly complete parallel programming.
The basic processing procedure of MapReduce parallel

programming model is as follows:

– Various Map nodes conduct parallel processing of
divided data, generating corresponding intermediate
results from different input data and output the
results;
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– Various Reduce nodes also conduct parallel
computation, and they are responsible of processing
the datasets of different intermediate results;

– The processing of all Map nodes must be completed
before the Reduce processing, so it requires a
synchronous barrier (Barrier) before the Reduce
processing.

– By summarizing the output results of Reduce nodes,
the final result can be obtained.

4 The proposed full homomorphic encryption
algorithm supporting floating-point operation
4.1 The proposed FFHE algorithm
The FFHE encryption scheme proposed in this paper
supports both integer and floating-point number opera-
tions (in the following part, it will be illustrated with
floating -point number as example), which simultan-
eously has the characteristics of addition homomorph-
ism and multiplication homomorphism. This algorithm
mainly consists of three parts: generation of key, encryp-
tion algorithm, and decryption algorithm.
Generation of key: assume k and s are n-dimension

key vectors, set K(n) = [(k1,s1),…, (kn,sn)], where ki∈R,
si∈R and n > 3, and they satisfy Eq. (6).

ki≠0;∀1≤ i≤n
s1 þ⋯sn−1≠0; sn≠0

�
ð6Þ

Encryption algorithm: assume v is the floating-point
number that needs to be encrypted. The specific encryp-
tion process mainly consists of the following steps:

1. Randomly generate n − 1 pairs of floating-point
number sets P = [(r1, p1),…,(rn-1, pn-1)] as the
encrypted noise.

2. Compute the order ciphertext C′ which includes
nciphertexts, and the specific computation Equation
is:

ci ¼
ki � si � vþ pið Þ þ ri; 1≤ i≤n−1

kn � sn �
Xn−1

i¼1
pi þ ri=kið Þ; i ¼ n

(
ð7Þ

in which v∈R.

3. Define the mapping function Π:

Π ið Þ ¼ j 1≤ i; j≤n ð8Þ
Rearrange the ciphertext fragments according to the

output result of mapping function Π, and generate
out-of-order ciphertext C″; according to the mapping

result of function Π, map the ith child ciphertext ci of order
ciphertext C′ into the jth child ciphertext of out-of-order
ciphertext C″, denoted as cdj, so dj = i. In which, the sub-
script j indicates that cdj is at the jth position of ciphertext
C″. For i∈[1,2,…,n], define the set of all mapping results as
J, so the child ciphertexts ci and cdj satisfy:

∀cd j∈C
00
;∃ci∈C

0
; cd j ¼ C

00
j½ � ¼ C

0
i½ � ¼ ci ð9Þ

According to Eq. (9), function Π maintains the rela-
tionship among the child ciphertexts of C′ and C″. The
mapping results of function Πare random, and the map-
ping results for different ciphertext C′ are independent
from each other. Therefore, the child ciphertexts order
of different ciphertexts do not influence each other, and
they are all random arrangement.

4. Use the AES (Advanced Encryption Standard)
encryption algorithm to encrypt mapping array J
and generate child ciphertext cn + 1, i.e., cn + 1 =
Enc(J), and ciphertext C′ and child ciphertext cn + 1

are the final encryption result C ¼ ½cd1 ;⋯cdn ; cnþ1�
of plaintext v.

Decryption algorithm: the process to decrypt cipher-
textCinto plaintext v mainly consists of the following
three steps:

(1) Use the AES algorithm to decrypt ciphertext cn + 1

and obtain array J, determine the child ciphertext ci
according to Eq. (9), and build corresponding
relationship between ci and key elements ki and si;

(2) Compute S:

S ¼
Xn−1
i¼1

si ð10Þ

(3) Compute plaintext v:

v ¼
Xn−1

i¼1
ci= ki � Sð Þ−cn= kn � sn � Sð Þ ð11Þ

Specifically, based on Eqs. (7) and (11), the derivation
process of Eq. (11) can be described as follows:
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Dec Cð Þ
¼
Xn−1

i¼1
ci= ki � Sð Þ−cn= kn � sn � Sð Þ

¼ k1 � s1 � vþ k1 � p1 þ r1ð Þ= k1 � Sð Þ
þ k2 � s2 � vþ k2 � p2 þ r2ð Þ= k2 � Sð Þ þ⋯
þ kn−1 � sn−1 � vþ kn−1 � pn−1 þ rn−1ð Þ= kn−1 � Sð Þ
−kn � sn �

Xn−1

i¼1
pi þ ri=kið Þ= kn � sn � Sð Þ

¼ v

ð12Þ

4.2 Homomorphism proof
For this scheme, the security parameter is n. During the
homomorphic addition and multiplication operations,
the n child ciphertexts of ciphertext C″ are believed as
participating in computation by default. Unless it is
pointed out otherwise, child ciphertext cn + 1 is only used
as the ciphertext to reflect the mapping relation, which
does not participate into the addition and multiplication
operations of child ciphertext. In the improved FFHE
scheme, the encryption and decryption operations can
be reflected by the following expressions:

Enc K nð Þ; vð Þ ¼ cd1 ;⋯; cdn ; cnþ1½ �
DecðK nð Þ; cd1 ;⋯; cdn ; cnþ1½ � ¼ v

�
ð13Þ

4.2.1 Addition homomorphism
For plaintexts v1 and v2, assume their ciphertext data
after encryption are C1 and C2, respectively, then

C1 ¼ c1d1 ;⋯; c1dn ; c1 nþ1ð Þ
� � ¼ Enc K nð Þ; v1ð Þ

C2 ¼ c2d1 ;⋯; c2dn ; c2 nþ1ð Þ
� � ¼ Enc K nð Þ; v2ð Þ

�
ð14Þ

In this scheme, the homomorphic addition operation of
ciphertexts C1 and C2 is defined as vector addition. How-
ever, because the child ciphertexts have been randomly
shuffled, the child ciphertexts c1dj and c2dj at correspond-
ing locations of C1 and C2 are not necessarily encrypted
from the same key pair ki and si, so the child ciphertexts
at corresponding locations cannot be directly added.
If ciphertext C is decrypted as original ciphertext C′,

and addition homomorphism operation is completed by
adding the child ciphertexts at corresponding locations
of C1′ and C2′, the attacker might obtain corresponding
location relation between child ciphertext ci and keys ki
and si, and crack the keys.
This paper utilized the mapping function to regenerate

a group of new mapping relationships, denoted as J-adj.
Based on J-adj, adjust the arrangement of the child ci-
phertexts of out-of-order ciphertexts C1″ and C2″ into
new out-of-order arrangement. Assume the ciphertexts
are C″

1 adj ¼ ½c1d1 ;⋯; c1dn � and C″
2 adj ¼ ½c2d1 ;⋯; c2dn �

after adjustment, and the adjustment method is:

C00
adj J adj i½ �½ � ¼ C

00
J i½ �½ � ð15Þ

Adjust the child ciphertext order of C1″ and C2″, gen-
erate new ciphertexts C 00

1 adj ¼ ½c1d1⋯c1dn � and C00
2 adj

¼ ½c2d1⋯c2dn �, add corresponding terms of ciphertexts C
″1_adj and C″2_adj, and use the new mapping relation
J-adj as child ciphertext cn + 1, i.e.,

C1⊕C2 ¼ c1d1 þ c2d1 ;⋯c1dn þ c2dn ; cnþ1½ � ð16Þ
where ⊕ denotes the addition operation of ciphertext

vectors. Using the Eq. (12), we decrypt the ciphertext of
homomorphic addition:

Dec K nð Þ;C1⊕C2ð Þ
¼
Xn−1

i¼1
c 1dþ2dð Þi= ki � Sð Þ−c 1dþ2dð Þn= kn � sn � Sð Þ

¼ v1 þ v2 ¼ Dec K nð Þ;C1ð Þ þ Dec K nð Þ;C2ð Þ
ð17Þ

In other words, they are the corresponding results of
plaintext addition. In summary, it can be inferred that
the FFHE scheme has additive homomorphism.

4.2.2 Multiplication homomorphism
Assume C1 and C2 are the generated ciphertexts of
plaintexts v1 and v2 after using key K(n) for encryption
(K(n) can be different). The child ciphertext cn + 1 has
mapping relation, which does not participate in the op-
eration, then we can obtain a n ∗ n ciphertext matrix:

C1 � C2 ¼
c1d11 � c2d21 ;⋯; c1d11 � c2d2n

⋯
c1d1n � c2d21 ;⋯; c1d1n � c2d2n

2
4

3
5 ð18Þ

Using Eq. (13), we conduct decryption operation of ci-
phertext matrix according to rows or lines (here, we
conduct decryption based on lines), i.e.:

c�2d2i
¼ Dec K nð Þ; c1d11 � c2d2i ;⋯; c1d1n � c2d2i ; c1 nþ1ð Þ

� �� �
¼ c2d2i

�Dec K nð Þ; c1d11 ;⋯; c1d1n ; c1 nþ1ð Þ
� �� � ¼ c2d2i

�v1
ð19Þ

LFHE scheme supports the multiplication operation
between plaintext constant and ciphertext vector. As-
sume d∈Zn, then d⊙C = (d∗c1 mod q,…, d*cn + 1 mod q)
in which ⊙ represents the multiplication operation be-
tween plaintext constant and ciphertext vector. Then,
according to the property of homomorphic addition, this
multiplication operation also satisfies the homomorphic
decryption algorithm, i.e., Dec(K(n), d⊙ C) = d∗Dec(K(n),
C) mod q. So, we can obtain:

C� ¼ c�2d21 ;⋯; c�2d2n ; c2 nþ1ð Þ
� �

¼ v1
�c2d21 ;⋯; v1

�c2d2n ; c2 nþ1ð Þ
� �

¼ v1⊙C2

ð20Þ
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Ciphertext C* is the result of ciphertext multiplication,
and its ciphertext dimension and child ciphertext order
are the same as that of ciphertext C2. Similarly, if the de-
cryption is conducted based on rows, the dimension of
ciphertext C*and the order of child ciphertext should be
maintained the same as ciphertext C1, and by decrypting
ciphertext C*, we can obtain the product of v1

∗v2.

Dec C1 � C2ð Þ ¼ Dec C�ð Þ ¼ Dec v1⊙C2ð Þ
¼ v1

�Dec C2ð Þ ¼ v1
�v2 ¼ Dec C1ð Þ � Dec C2ð Þ ð21Þ

In conclusion, this scheme has multiplication homo-
morphism. After executing the homomorphic multipli-
cation operation, the number of child ciphertexts will be
maintained the same, which will not cause the expansion
of ciphertext data.

4.3 Security analysis
In order to avoid the problem of cracking the key through
the linear equations in the LFHE algorithm that may occur
in this algorithm, this paper introduces a new mapping
function Π, and through the mapping function Π, it can
turn the order ciphertext after reach encryption to ran-
domly generate out-of-order ciphertext. The mapping func-
tion can ensure that the orders of ciphertext fragments
obtained from plaintext data v and v′ through encryption
algorithm are independent and irrelevant, and each map-
ping is random with no rules. For random and independent
mapping relationship Π, during execution of certain en-
cryption operation, it requires using a convenient and ef-
fective method to save the relative order of result ciphertext
(i.e., the specific mapping relationship of this mapping Π
into the result ciphertext for subsequent homomorphic op-
eration or decryption operation). Without the assistance of
mapping relationship, even the legitimate user cannot ac-
curately match the corresponding relationship between key
ki and ciphertext fragment ci and accurately decrypt the ori-
ginal plaintext.
This paper encrypts each specific corresponding rela-

tionship of mapping relationship Π as critical data and
adds it to the end of result ciphertext C as additional ci-
phertext fragment cn + 1, which can be used as the baseline
to localize ciphertext fragment during subsequent oper-
ation. Therefore, in this paper, the final ciphertext after
encryption is Cv, Π = (cΠ(0),⋯, cΠ(n)), and for different
plaintext v, the child ciphertext arrangement [d1,…,dn] of
different ciphertext C is independent and random, without
any relationship between them. Based on the above ana-
lysis, we can draw the following conclusion.
Theorem 1 Adopting the Chosen-ciphertext attack

model, the probability of obtaining key from known ci-
phertexts is 1/n!n.
Proof We assume that the order of ciphertext C′ is

randomly disrupted, which contains n child ciphertexts,

and there are n! different arrangements. If the n child ci-
phertexts are chosen to crack the key, the accurate coef-
ficients 1/(ki*S) and 1/(kn*sn*S) of decryption algorithm
can only be obtained when the arrangements of n child
ciphertexts are completely consistent. Because each ci-
phertext C′ has n! different arrangements, n groups of
ciphertexts have n!n combinations and the probability of
accurately obtaining the coefficients is n!/n!n. Even after
obtaining the accurate coefficients 1/(ki*S) and 1/
(kn*sn*S), there are still n! possible arrangements, so the
probability of obtaining accurate coefficients and recov-
ering the original relative order is 1/n!n, and the time
complexity is O(n!n). That is, the probability of obtaining
the key is 1/n!n. According to Lemma 1, we have that
this scheme cannot be cracked within linear time, and
related information of key cannot be obtained.

5 Design of parallel algorithm based on
MapReduce
This paper proposes a parallel floating-point number en-
cryption scheme based on MapReduce, which combines
the parallel characteristics of cloud computing with the
floating-point encryption algorithm to realize parallel
encryption through plaintext blocking, and it has signifi-
cantly increased the encryption efficiency.

5.1 Algorithm procedure
In the MapReduce programming model, the Split
function is used to split the input data into data
blocks with fixed size according to the user’s require-
ment, and then, these blocks will be distributed to
different slave nodes by the master node based on

Fig. 1 Parallel encryption process of floating-point number. The
encryption process is mainly divided into three parts, split, map and
reduce, where map and reduce are parallel parts
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corresponding scheduling mechanism. The Map func-
tion conducts corresponding operation of each data
block after splitting based on the user-defined encryp-
tion algorithm. Each Map completes one part of final
result, and each Reduce is responsible of integrating
all partial results completed by Maps. Each encryption
computation of parallel encryption scheme is inde-
pendent, so it can be distributed to multiple Maps for
simultaneous encryption. It can be defined as a cubic
polynomial time algorithm ∏ = (Split,Map, Reduce),
and the specific process is as shown in Fig. 1.

5.2 Split algorithm
Assume the plaintext file size is L(MB), the number of clus-
ter processing nodes is P, and the original file is split into t
data blocks (t ≥ 1). We give the specific split algorithm as
algorithm 1. In which, pos refers to the location of currently
processed data in the original file; i represents the ith data
block; li represents the size of the ith block (i ≤ t). The spe-
cific process is as follows: Open the big-data file to be
encrypted, use the pos variable to save the offset of first byte
in the file, and when current data under processing has not
reached the end of file, use Eq. (22) to calculate the length
li of the ith fragment. Filebuffer refers to the content saved
in the ith block; Key refers to the offset of the start of ith
block in the file; value is the value saved in each filebuffer.
pos points to the next shard The size of each data block li
can be calculated based on Eq. (22).

li ¼ 220 � L=td e; i < n
220 � L− L=td e � t−1ð Þ½ �; i ¼ n

�
ð22Þ

5.3 “Map” function and “Reduce” function
After the splitting stage, each Mapper will independently
compute part of ciphertext. Each Mapper will conduct the
encryption process of steps 1 ~ 4 in the encryption algo-
rithm of Section 4.1, before each encryption of data, gen-
erate n − 1 pairs of encrypted noise; then, compute the
order child ciphertext ci according to Eq. (7); finally, gen-
erate out-of-order ciphertext with the mapping function.
The definition of the specific interface of Map ( ) func-

tion is as follows: public void map (Object key, Text
value, Context context) throws IOExecption, Interrupted
Exception. In which, the parameter key is the key value
passed into map; value is the value of corresponding
key value; and context is the context object parameter,
which is the context object of Hadoop to accessed by
the program. For each floating-point number in each
data block, repeat executing the Map algorithm in
Algorithm 2.
Reduce function waits for the partial ciphertext com-

putation by all Map functions to be completed and then
conducts sorting according to the key value. Because the
key value is the offset of text, the sorting result is the
read-in order of file. When writing in the file, only the
value part is output, and the final file splices partial ci-
phertexts based on the order and forms splices cipher-
text for output.

5.4 Performance analysis
The encryption process of floating-point number FFHE
scheme can be divided into two stages: the preparation
stage and encryption stage. The first stage mainly in-
volves the generation and check of key, the second stage
mainly involves the data encryption operation, and they
are the main parts of algorithm performance analysis. In
the improved FHE scheme, the operation granularity is
floating-point number. In the computer, the addition op-
eration, shift operation and assignment operation have
close complexity. An X operation is defined in this paper
to uniformly express the above three operations.
Assume the file with the size of L(MB), contains N

floating-point numbers, the total encryption time of
plaintext file is Tseq, the generation and check time of
key is Tkey, the encryption time is TEnc, and Tseq can be
expressed by Eq. (23).

Tseq ¼ Tkey þ TEnc ð23Þ
The preparation stage mainly involves the generation

of key K(n), including the generation of two n-dimension
vectors, i.e., keys k and s. By adding subsidiary

Min et al. EURASIP Journal on Wireless Communications and Networking         (2019) 2019:15 Page 8 of 14



conditions, the preparation stage consists of 2n fixed as-
signment operations, so Tkey consists of 2n X operations.
The data encryption stage mainly involves the

addition, multiplication, division, and assignment opera-
tions. The part to generate random noise involves 2(n −
1) assignment operations. Execute encryption algorithm
to real number v and obtain n-dimension ciphertext
array. In which, the first n − 1 child ciphertexts corres-
pond to 2(n − 1) multiplication operations and 2(n − 1)
addition operations, and there are 4(n − 1) X operations
in total. The child ciphertext cn mainly consists of two
multiplication operations, n − 1 addition operations and
n − 1 division operations, which can be expressed as 2(n
− 1) + 2 X operations. The random sorting operation in-
volves n mapping and n assignment operations of map-
ping function Π, as well as deterministic encryption
operation that includes m X operations, which can be
expressed as 2n +m X operations, and it require the fol-
lowing number of X operations in order to encrypt N
floating-point number plaintexts:

2 n−1ð Þ þ 4 n−1ð Þ þ 2 n−1ð Þ þ 2þ 2nþm½ �
� N ð24Þ

Assume one X operation takes time of Tfc, then, the
FHE parallel encryption algorithm that includes N
floating-point number takes time of Tseq:

Tseq ¼ Tkey þ TEnc

¼ 2nþ N � 10n−6þmð Þ½ �Tfc ð25Þ
When N> > n, the value of 2n (i.e., Tkey) can be ig-

nored; however, with the increase of N, the encryption
time generally presents linear increase.

During the parallel encryption process, assume there is
no overlapping during the operation process, and the
execution time of parallel encryption algorithm consists
of four parts, i.e.:

Tn ¼ Tcomm þ Tkey þ TMap þ Treduce ð26Þ
In which, Tcomm is the communication time, Tkey is the

generation and check time of key, TMap is the parallel
encryption time of Map, and Treduce is the time to merge
encrypted ciphertexts according to the key value.
During the parallel encryption stage of Map, each slave

node would have communication with host during the
start and ending stages of task, and the plaintext of N
floating-point numbers are divided into t data blocks, so
it requires overhead for at least 2 t data communications,
and we can set Tcomm = ξ1tTfc.
Assume each data block contains x floating-point

numbers, then x =N/t. Ti represents the time required
to encrypt the ith data block, then Ti = x × (10n-6 +m) ×
Tfc. Set ST as the speed-up ratio of each Map during the
parallel encryption stage, then

ST ¼ Tseq

Tcomm þ Tkey þ Ti

¼ 2nþ N � 10n−6þmð Þ½ �Tfc

ξ1t þ 2nþ x� 10n−6þmð Þ½ �Tfc

¼ 2nþ N � 10n−6þmð Þ
ξ1t þ 2nþ x� 10n−6þmð Þ

ð27Þ

In the actual application scenario, both the file partition
number t and the number of child ciphertexts n are sig-
nificantly smaller than the floating-point number M in the
plaintext, i.e., t, n < <M. In addition, the communication
time can be ignored, so we can know that the speed-up ra-
tio ST is close to N/x, i.e., the block number t of plaintext.
For plaintext data with the same size, the generated ci-

phertexts also have the same size. Assume it requires re-
duce time of Tric for each floating-point number to
generate ciphertext, then the plaintext that contains N
floating-point numbers requires the time of Treduce =
N × Tric, and it can be seen that Treduce is proportional to
the size of generated ciphertext.

Table 1 Software and hardware configuration

Product name The parameter and model

Cash 3.2 GHz/8 M

Memory bank 16 GB(2 × 8 GB)1333 MHz

Dual ranked RDIM

Hard disk 1 TB 3.5-in. 7200 RPM SATA II

Operating system CentOS Linux Server6.6

JAVA VM JAVA 1.7.0

Hadoop Hadoop-2.5.2
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Considering Reduce takes a lot of time, and the experi-
ment involves 16 nodes, so in this experiment, the num-
ber of Reduce is 15, and the time required by parallel
encryption can be expressed as:

ST ¼ Tseq

Tcomm þ Tkey þ Ti

¼ 2nþ N � 10n−6þmð Þ½ �Tfc

ξ1t þ 2nþ x� 10n−6þmð Þ½ �Tfc

¼ 2nþ N � 10n−6þmð Þ
ξ1t þ 2nþ x� 10n−6þmð Þ

ð28Þ

when the value of N is high, Tkey and Tcomm can be ig-
nored. Therefore, it can be seen that during parallel en-
cryption, if N stays the same, with the increase of t, the
time consumed by Reduce also stays the same, the time
consumed by Map gradually declines, and the time con-
sumed by Reduce gradually becomes dominant.
If SP is used to represent the overall speed-up ratio, SP

can be expressed as:

SP ¼ Tseq

Tn
¼ Tkey þ TEnc

Tcomm þ Tkey þ TMap þ Treduce

¼ 2nþ N � 10n−6þmð Þ½ � � Tfc

ξ1t � Tfc þ 2n� Tfc þ Tfc � 10n−6þmð Þ � N=t½ � � t=pd e þ N=15� Trci
≈

t
t=pd e þ t=15� Trci=Tfc � 1= 10n−6þmð Þ

ð29Þ
It can be seen that under fixed core number p, when

t∈(kp,kp + p] (in which k is a natural number), the
speed-up ratio ηT presents growth trend, and it will not
exceed p.

6 Experimental results and analysis
The hardware platform of experiment includes 1 Master
node and 3 Slave nodes. The Master node is responsible
of the monitoring and scheduling of tasks, and the Slave
nodes are responsible of the distributive storage data file
and computation task, see “Table 1-experiment cluster
node configuration” for the specific hardware configur-
ation and software environment for each node.
In this experiment, data test was conducted from two

main different perspectives: in the first scenario, plain-
text data with different sizes were chosen to compare
their encryption speed and speed-up ratio in different
serial and parallel environment; in the second situation,

Table 2 The test results of different size file

File size (MB) Serial time (seconds) Parallel time (seconds) Max Map time (seconds) Reduce time (seconds) SP

256 61 33 16 13 1.8

512 123 44 17 22 2.8

768 186 51 18 30 3.6

1024 254 58 17 36 4.4

1280 312 83 18 45 3.8

1536 378 88 17 51 4.3

1792 443 97 17 58 4.6

2048 516 104 18 63 5.0

Fig. 2 The encryption time of different size file. The figure compares
the encryption time under different file sizes in serial and
parallel environments

Fig. 3 The speed-up rate of different size file. The figure shows the
overall speed-up rate under different file sizes in
parallel environments
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plaintext data with fixed size were chosen to compare
their encryption speed and speed-up ratio under differ-
ent block sizes. In the first situation, the chosen plain-
text data had the sizes of 256MB, 512MB, 768MB,
1024MB, 1280MB, 1536MB, 1792MB, and 2048MB,
the default data block size was 64MB in the parallel en-
vironment, and the encryption test was conducted in
both serial and parallel environment. For the second
situation, the plaintext data with the sizes of 2G and 4G
were chosen in the experiment, the data fragment num-
bers were 1, 4, 8, 12, 16, 20, 24, 28, and 32, respectively,
and their encryption speeds were tested. In the experi-
ment, the size of float-point numbers is 32 bit, and the
dimension of the security parameter n is 128 bit.
In the experiment, 4 computation nodes were used, and

each node had 4-core CPU, so the CPU had total 16 cores.
In the parallel experiment, we found that with the increase
of plaintext data volume, the time occupied by Reduce
would keep growing, and in order to increase the effi-
ciency, the number of Reduce was all set as 15 in parallel
experiment.
In this paper, the file encryption time and overall

speed-up ratio under different file sizes are summa-
rized in the serial and parallel environment, and the
results are shown in Table 2, Figs. 2 and 3. Tables 3
and 4 have recorded the overall encryption time of
file, the execution time of Map process, and the over-
all speed-up ratio and the speed-up ratio of Map
process when the plaintext size is 2G and 4G,
respectively.

According to Table 2 and Figs. 2 and 3, it can be seen
that under fixed number of nodes: (1) the time required
by serial encryption is basically proportional to the
plaintext size; (2) the time required by parallel encryp-
tion will increase with the increase of plaintext; (3) when
t < p, the time consumed by Reduce function will grad-
ually increase with the increase of t, and with the time
consumed by Map function stayed the same, the propor-
tion of time consumed by Reduce function in the overall
parallel encryption process will gradually increase; (4)
when t < p, the increase of speed-up ratio SP is fast, and
it will reach the highest value when t = p. When t > p, for
each t∈(kp,kp + p], the speed-up ratio presents the trend
of slow growth, and it will reach the highest value when
t = (k + 1) × p.
Figures 4 and 5 show the encryption time of 2-GB and

4-GB files allocated to different cores in parallel environ-
ments. According to Figs. 4 and 5, we can see that with
the increase of usable cores and file partitions in the
cluster: (1) for plaintext big-data file with certain length,
with the increase of Map quantity, the file encryption
time presents a general trend of decline, and the time
consumption will be the lowest when the Map quantity
equals the node number; (2) the time consumed by max
Map will gradually decline, because with the increase of
Map quantity, the size of each Map data block will de-
cline, and the time-consuming of Map mainly concen-
trates on the encryption operation, so the time
consumed by this part will be low. The time consumed
by Reduce is basically the same, because no matter how

Table 3 The test results of a 2-GB file on different cores

No. P Max Map time (seconds) Reduce time (seconds) General time (seconds) Map SP General SP

1 456 65 526 1.0 1.0

4 129 62 198 3.5 2.6

8 61 64 131 7.4 4.0

12 47 64 117 9.7 4.5

16 33 63 105 13.8 5.0

24 25 64 114 18.2 4.6

32 17 63 107 26.8 4.9

Table 4 The test results of a 4-GB file on different cores

No. P Max Map time (seconds) Reduce time (seconds) General time (seconds) Map SP General SP

1 901 120 1025 1.0 1.0

4 266 119 389 3.5 2.6

8 125 120 251 7.2 4.1

12 92 119 216 9.8 4.8

16 65 120 194 13.9 5.3

24 47 118 211 19.2 4.9

32 33 119 196 27.3 5.2
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high the Map quantity is, the number of Reduce is al-
ways 15.
Figures 6 and 7 compares the Map speed-up and Gen-

eral speed-up of 2-GB and 4-GB files under different
cores in parallel environments. According to Figs. 4 and
5, we can see that with the increase of usable cores in
the cluster: (1) the speed-up ratio of Map will increase
with the increase of Map quantity, and it will always be
lower than the Map quantity, which is consistent with
the theoretical analysis in previous section; (2) the
speed-up ratio of general also increase with the increase
of Map quantity, but the acceleration ratio tends to be
stable when the Map quantity equals the node number.
During the early stage, with the increase of usable cores,
the file encryption time presents significant decline, and
the cluster performance can be effectively carried out;
when all cores of cluster are used in the computation
equation, the increase of Map quantity will have little in-
fluence on the improvement of cluster performance, and
the file encryption time will become stable.

7 Conclusions
With the rapid development of cyber physical systems
technology, the privacy protection problem of data in

cyber physical systems has become more and more
important. Most of the existing fully homomorphic
encryption algorithms are limited to process the inte-
ger type. In order to expand the practical application
range of the existing fully homomorphic encryption
algorithm, we propose a parallel fully homomorphic
encryption scheme that supports floating-point oper-
ation. The proposed scheme can enhance the algo-
rithm security by using out-of-order ciphertexts
operations. In addition, we also design and implement
an efficient algorithm performed on the MapReduce
platform based on the proposed scheme. Specifically,
during the encryption process, a file is divided into
different number of data blocks, and the algorithm’s
parallelism can be controlled by specifying the usable
cores and the number of partitions. Meanwhile, the
multiple Reduce functions can be parallel carried out
to alleviate the high real-time cost of Reduce oper-
ation. The experimental results show that, compared
to the traditional linear encryption algorithm, the pro-
posed algorithm obtains the greater speed-up ratio
when processing big data files in MapReduce cluster.

Fig. 4 The encryption time of 2 GB on different cores. The figure
shows the encryption time of a 2-GB file allocates to different cores
in parallel environments

Fig. 6 The speed-up rate of 2 GB on different cores. The figure
compares the Map speed-up and General speed-up of a 2-GB file
under different cores in parallel environments

Fig. 5 The encryption time of 4 GB on different cores. The figure
shows the encryption time of a 4-GB file allocates to different cores
in parallel environments

Fig. 7 The speed-up rate of 4 GB on different cores. The figure
compares the Map speed-up and General speed-up of a 4-GB file
under different cores in parallel environments
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